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EÃect of Coulomb interaction on the formation of Cooper pairs in superconducting systems
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A study has been made of coupling of Cooper-pair states of different binding energies by treating the
intercarrier Coulomb interaction and the pairing interaction within a mean-field approximation. Illustra-
tive calculations have been made of the Cooper-pair binding energies and their coupling effects. It is
found that the Cooper-pair formation is affected in a complicated manner by the Coulomb interaction.
General features of the method are discussed.

I. INTRODUCTION

The role of Coulomb interaction in superconducting
systems has remained unclear even though more than
three decades have passed after the successful microscop-
ic theory of superconductivity formulated by Bardeen,
Cooper, and Schrieffer' (BCS) in 1957. A few years later
Morel and Anderson gave a theory to account for the
role of the Coulomb interaction when the attractive in-
teraction, which causes formation of Cooper pairs of elec-
trons, originates from the electron-phonon interaction.
During the past decade, a number of superconducting
systems —organic superconductors (including the re-
cently discovered K3C6o and Rb3C6o superconductors ),
heavy-fermion superconductor s, and copper oxide
superconductors —have been discovered in which the in-
teraction mechanism for superconductivity is believed to
be different from the electron-phonon interaction.

In such superconductor s, where the electron-
phonon interaction is not the sole source of the pairing
interaction between carrier fermions, the Coulomb in-
teraction has been treated in a number of different
ways. " In most ' of these methods, the role of the
Coulomb interaction is not so transparent. Furthermore,
except for the approach of Mila and Abraham, ' and of
Lal and Joshi, " the Cooper pairs formed because of a
suitable attractive interaction correspond to a single
binding energy at a given temperature. One consequence
of such Cooper pairs of a single binding energy is that the
properties of the superconducting systems involving such
pairs will be similar to the properties of BCS supercon-
ductors. However, in systems such as the cuprate super-
conductors, the behavior of the superconducting state is
quite different' from BCS superconductors. In a recent
study of superconductivity in cuprate systems, Lal and
Joshi" treated the Coulomb interaction with use of a
scattering theoretic approach and by this method they
find Cooper pairs with a finite range of binding energies,
ranging from the BCS value to zero value. The calcula-
tions made by Lal and Joshi" for the specific heat and
tunneling spectra of cuprate systems show good agree-

ment with the observed behavior of these properties.
However, Lal and Joshi have used a phenomenological
approach to obtain the values of the various binding ener-
gies of Cooper pairs. As the modified BCS approach of
Lal and Joshi is reasonably successful in explaining the
behavior of cuprate superconductors, it would be in-
teresting to formulate a microscopic method for the cal-
culation of various binding energies of Cooper pairs.
Such an effort has been made in this Brief Report.

We have developed in this Brief Report a mean-field
method to incorporate the Coulomb interaction between
fermions along with an effective pairing interaction. De-
tails of the formalism are given in Sec. II. In Sec. III we
present results of calculation for a one-dimensional sys-
tem. Conclusions are given in the last section.

II. FORMALISM

In general, a superconductor will be described by a
Hamiltonian containing three terms: the kinetic-energy,
Coulomb-interaction, and pairing-interaction terms. The
kinetic-energy term is given by

Ho = g sqCq Cq (l)
k, cr

Here Ck and Ck are creation and annihilation opera-
tors of the carrier fermions of energy ck, momentum k,
and spin o..

The Coulomb-interaction term is given by

Hc,„t=U g C~+ tCq )C~ (Cqt . (2)
k, k', q

Here U is the on-site Coulomb interaction between fer-
mions. It is independent of momentum, and here it is

treated as an instantaneous interaction.
The pairing-interaction term of the Hamiltonian,

which will be due to an indirect interaction mediated by
those bosons that are relevant to a given superconduc-
tors, is given by

H, „d
= g V(q, coq)C„+q&C„. q&Ct, , iC

k, k', q
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Here V(q, co&} is an indirect interaction between fer-
mions. This interaction is mediated by a boson of fre-
quency co . In cuprate and organic superconductors, the
exciton is one of the possible excitations ' for mediating
the interaction V(q, co~) between two fermions.

It is clear from the above description that the origin
and nature of the Coulomb interaction U and the indirect
interaction V(q, co&) are difFerent. A straightforward way
to treat these interactions is to combine Hc, „& and H;„d
and to work out the effect of this net interaction
U+ V(q, co&). However, it is interesting to use a method
in which the effects of U and V (q, co~) are evaluated sepa-
rately' and then combined to see their net effect. Here
we adopt this latter approach. In fact, we consider the
Coulomb interaction U to scatter an electron between
band states k and k+q and the indirect interaction
V(q, co&) to promote pairing between fermions. The
scattering caused by U may be conveniently taken
through the mean-field parameters

n (k, q)=(Ck+q/z Ck —p/z, cr ~ ~ (&)

Here ( ) denotes an average in terms of the states
of H,z (see below). The pairing effect of V may be de-
scribed through the mean-field parameters

(k, q)=( C„+ /z&C a+ /z& ~ (Sa)

v(k, q)=(C „+ /ztC„+ /zt ) .

The parameters v (k, q) and v(k, q) correspond to
I

Cooper pairs of zero as well as nonzero center-of-mass
momenta. The stabilization of Cooper pairs in zero as
well as nonzero center-of-mass momenta states will be
determined by the Coulomb interaction U through the
parameters n (kq) . More clearly, the interaction U
scatters an electron from the band state k —q/2 to the
band state k+q/2. The scattering effect is given by the
mean-field parameter' n (k, q}. Because of these
scattering and pairing processes (caused by the interac-
tion V}, a Cooper pair will be scattered from a zero
center-of-mass momentum state [characterized by the pa-
rameters v (k, O) and v(k, O)] to a nonzero center-of-mass
momentum state [characterized by v (k, q) and v(k, q)].
In this way, while the interaction V leads to the forma-
tion of Cooper pairs, the interaction U couples Cooper-
pair states of different center-of-mass momenta. This
treatment is quite different from that of Morel and An-
derson.

It is notable here that when U =0, n (k, q) =
n (k, O}5 0, so that there will be no coupling of Cooper-
pair states of nonzero center-of-mass momenta with a
zero center-of-mass momentum state. In fact, in the case
of U=O (which is the case of BCS superconductors),
Cooper pairs with q%0 will also be formed, but since the

q =0 pairs correspond to minimum energy and since
there is nothing to couple Cooper-pair states of various
momenta, the ground state of the system will involve

q =0 pairs only.
With the above plan for the treatment of the Coulomb

interaction U and pairing interaction V, we may reduce
the Hamiltonian H to the form

H ff g sQCs CQ +—,
' U g [n ( —q)C|t+z/z C& z/z +n (q)C& z/z C&+z/z ]

ko kqu

+ Vg [v (k, q)C I,+z/z~C&+z/zt+v(k, q)Cg~q/ztC k+g/zg ] .
k, q

In this equation we have assumed, for simplicity, that
V is independent of q and ~ . For such a V, we shall
have s-wave pairing, which is the case, for example, in cu-
prate superconductors. ' The mean-field parameters
n (q) are given by

n (q)=gn (k, q) .
k

When the mean-field parameters n (q), v (k, q), and
v(k, q) are determined, the effective Hamiltonian H, fr will
provide a framework for the calculation of the physical
properties of superconducting systems. It may be noted
that this type of effective Hamiltonian has not been used
earlier in the study of superconducting systems.

A superconductor based on such Cooper-pair states, in
which pairs of nonzero center-of-mass momenta are cou-
pled with the pairs of zero center-of-mass momentum
states, will show a Andreev reflection spectrum different
from that expected from BCS superconductors. Such a
deviation from BCS predictions for the Andreev
reflection spectrum has indeed been observed' in cuprate
superconductors. Thus the above idea of mixing nonzero

I

center-of-mass momenta Cooper-pair states with the zero
center-of-mass momentum Cooper-pair state is quite
reasonable in cuprate superconductors. In fact, the main
effect of this kind of mixing will be that a property of the
cuprate superconductor will be determined by a range of
Cooper-pair binding energies. " It may here be noted
that the success of Mila and Abrahams' in interpreting
the tunneling density of this state is also due to the fact
that they have worked in terms of a range of Cooper-pair
binding energies. However, the validity of the work of
Mila and Abrahams with respect to cuprates is question-
able because these authors have considered odd pairing,
which is not" the case in cuprates.

In order to diagonalize the Hamiltonian H,z, we
proceed as follows. First of all, we define the correlation
functions

Qp(k, r —r') = —( T,Cq p/z (r)Cg+p/z (r') ),
Vp(k, r v') = ( T,C~+p/zt (w)C (+—p/zg (r') ) .

Here T is the time-ordering operator. The Fourier
transforms of 0 (k, r r') and V (k, r —r') are gi—ven by
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the usual relations

1
Q&(k, r —r') =—g exp( i—co„r)Qz(k, ico„)

CO

(10)

U = 0.2ev
V=0.5ev

and

1
9'z(k, r r'—) =—g exp( ico—„r)V&(k,i co„) .

CO

)
E

C3

a
Here co„=(2n+1)n/P is the Matsubara energy; P= I/k& T, with k~ as the Boltzmann constant and T as

the temperature.
Using the method of the equation of motion' and em-

ploying Eqs. (10) and (11),we obtain
0 I

0.4

q, (f')

0.8

(ico„—ez iz)Q (k, ico„)

—U g n ( q)Q—
p q(k+q/2, ico„)

FIG. 1. Cooper-pair binding energy h(q) for q =0—0.78 A
and for U=0. 2 eV and V=0.5 eV.

+ Vg v kcr — cr, q
P+9

q, o.

X 7&+z(ko —qo l2, i co„)=5& o (12)

and

(i co+ ekp+q )2V (k, )co„)

+ U g n &(
—

q)V& z+(k+p/2, i co)

q

+ Vg v k+, q 0 + ( k+q—/2, i co)=0 .
2

(13)

n (q) = g Qq(k, r= 0)= —g Qq(k, i co„),1

k k, co

(14)

We may express the parameters n (q), v (k, q), and
v(k, q) in terms of g (k, E co„) and 'Vs(k, ico„) by using
Eqs. (5) and (7)—(9). We obtain

III. RESULTS AND DISCUSSIOX

In order to And out the nature of the variation of pair-
binding energies b, (q) with different parameters of the
model (U and V), we have calculated the values of
b (q) =h(q) at zero temperature for different values of
parameters U and V in a one-dimensional case. We deal
with a one-dimensional system for the sake of simplicity.
The calculation may be extended to a two- and higher-
dimensional systems in a straightforward manner.

In the following calculations, the lattice constant is
taken to be equal to a =4 A. The band structure is as-
sumed to be given by a parabolic band with the effective
band mass of the hole equal to m *=10m, where m is the
bare mass of an electron. The Fermi energy is assumed
to correspond to the Fermi momentum k+=0.75kBz,
where kaz is the momentum at the Brillouin-zone bound-
ary.

The results of our calculations are shown in Figs. 1 —3.
In Fig. 1 we show values of b, (q) for q =0 to ~/a for
U =0.2 eV and V=0.5 eV. It is clear from this Agure

and

v (k, q) = Pq(k, r=O) =—g 9'q(k, ico„),1

~n

(15) 40

50 .

V =0.l eV
g=o078R'

v(k, q)=Vq(k, r=O)= —g V (kico„,) .=1
~n

The binding-energy parameters of Cooper pairs may be
written as

)
20 -i

b,t(q)= —Vg v (k, q} . (17} IO

From Eqs. (12) and (13), it is clear that when there ex-
ists a solution of these equations, Cooper pairs will exist
with a range of binding energies. A self-consistent solu-
tion of Eqs. (12) and (13) may be obtained by using a
method similar to the methods used for solving the
Fredholm equation. '

0 I 2
U (eV)

FIG. 2. Cooper-pair binding energies 6(0) and 5(ql) for
U =0—5 eV and V =0.01 eV. Here q, =0.078 A
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4
b

O

0

gies 6(qAO) with the Cooper-pair state of the binding
energy 6(0). This coupling is characterized by the pa-
rameter n (q)—the higher the values of n (q), the more
the coupling of h(q) states with the 6(0) state. In Fig. 3
we show the variation of n (q) with U. It is clear from
this figure that for U =0, n (q) =0, so that the Cooper-
pair state of b,(q+0) will not be coupled with the
Cooper-pair state of b,(0). From Fig. 3 we see that n (q)
increases with increasing U, and so the coupling between
6(q+0) Cooper-pair states and the b,(0) state will be
enhanced with U.

0 I

i

4 5
U (eV)

FIG. 3. Coupling parameter n (q& ) for coupling of Cooper-
pair states of binding energies h(0) and h(q& ) for U =0-5 eV

and V =0.1 eV. Here q &
=0.078 A

that b,(q+0) (b,(0) for all q and that after a certain q,
say, qo, b(q) drops suddenly to negligibly small values.

From Fig. 1 we find that q0=0.4 A '. Yet another
feature of the h(q) values is that, for qAO and q (qo,
A(q) increases with q.

In Fig 2w. e have shown the variation of 5(0} and

h(qi) with U for V=0. 1 eV. Here qi=0. 078 A '. We
see from this figure that both b(0} and b, (qi } decrease
monotonically with increasing U for the considered value
of V.

In our treatment the role of the Coulomb interaction U
is to couple Cooper-pair states of various binding ener-

IV. CONCLUSIONS

In the present investigation, we have made a study of
the role of the Coulomb interaction on the formation of
Cooper pairs in a superconducting system. This study
shows that the formation of Cooper pairs in the case
where U and V are comparable is quite a complicated
process. The present study provides a microscopic
method for the calculation of coupling of Cooper pairs of
various binding energies. Having calculated the values of
the mean-field parameters n (q), v (k, q), and v(k, q), we

may use the effective Hamiltonian [Eq. (6}) to calculate
various properties of superconducting systems in a
manner similar to that described by us elsewhere. "
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