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Absence of dipole transitions in vortices of type-II superconductors
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The response of a single vortex to a time-dependent field is examined microscopically and an
equation of motion for vortex motion at nonzero frequencies is derived. Of interest are frequencies
near b iEF, where 6 is the bulk energy gap and Es is the Fermi energy. The low-temperature,
clean, extreme-type-II limit and maintenance of equilibrium with the lattice are assumed. A sim-
plification occurs for large planar mass anisotropy. Thus the results may be pertinent to materials
such as NbSe2 and high-temperature superconductors. The expected dipole transition between core
states is hidden because of the self-consistent nature of the vortex potential. Instead the vortex itself
moves and has a resonance at the frequency of the transition.
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The description of quasiparticle levels in vortex cores
of superconductors has been known for some time. Car-
oli, de Gennes, and Matricon and Bardeen et aLz cal-
culated the energies and wave functions of these discrete
levels using the Bogoliubov —de Gennes (BdG) equation.
This was a basis for theories of dissipative vortex mo-
tion based on the idea of a normal core such as those of
Bardeen and Stephen, s Nozieres and Vinen (NV), 4 and
others. s Kramer and Peschs used the Eilenberger equa-
tion to calculate the density of states in the core. Their
approach has proven useful in qualitatively explaining~
scanning-tunneling-microscope experiments on NbSez by
Hess et al.s These experiments, however, probe the den-
sity of states at a scale ~ 0.1 meV, whereas the separa-
tion of core levels is ~ 10 mK. Caroli and Matricons dis-
cussed the implications of discrete levels for ultrasound
attenuation and nuclear magnetic relaxation. Transitions
between these levels may have been observed recently
in high-temperature superconductors. io The electromag-
netic response is interesting from a practical point of
view. Herein we focus on the low-temperature and clean
limit, considering eigenfunctions and matrix elements of
quasiparticle states and assuming the BdG equations and
a local gap equation, 6 (r) = V(cy (r) ct (r)), (c is a spin
o electron operator) to be valid. The vortex response to
an electromagnetic field will be considered from a purely
microscopic point of view. Real materials have vortex
pinning but undergo a crossover to unpinned behavior
at frequencies of order of magnitude comparable to the
core-level separation;ii so a first step should be a study
of unpinned vortices at those frequencies. Real supercon-
ductors are nonlocal and the interaction is retarded but
the hope is that, since we deal with rigid motions and rel-
atively low frequencies, some relevance to real materials
remains.

In terms of eigenfunctions, i//„(r)T = (u„(r) v&(r)),
the quasiparticle operators are

The Schrodinger equation for @ is the BdG equation,
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where 6 = lb, (r —re) l
exp [

—ie(r —ro)j. 8(r —ro) is the
angle about the center of the vortex ro measured from
the x axis. We consider a vortex parallel to z.

In the extreme-type-II limit with H && H, g the mag-
netic field that creates vortices may be ignored. Its im-

portance compared to the phase of 6 is reduced by ( //A,

where ( is the coherence length and A is the penetration
depth.

The eigenfunctions for fixed k„p « kp~(, and the
radial coordinate r « ( are
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where y, = uzi, kz, . . . and J refers to the x, y direc-
tions (we assume at least cylindrical symmetry). They
fall off exponentially for r ) (. The energies as calcu-
lated by Kramer and Pesch, s who accounted for some
self-consistency effects due to the gap equation, are

6p, = 2p 60 7l'

lo —go coo 8/(, ), coo 0 = k| z/ko.
kFSF cos e 2

(4)

The logarithmic factor is not important here and is ig-

nored hereafter, but see Ref. 12.
Consider a long-wavelength electromagnetic wave,

A' J z, with polarization at angle 80 to x. We
treat the perturbation ——'A' p to Erst order in
A'. If the matrix elements with respect to low-

energy states are not very sensitive to the exact be-
havior of the wave functions at the core boundary,
then they may be estimated, using standard Bessel-
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function identities, to be f @„+~ (——',A' p) g„
(ehkF~A'/2mc) exp [pi(Hp + z)].

Consider a vortex with velocity vt, J z and a back-
ground superfluid velocity vs. These velocities will be
assumed uniform along the length of the vortex. This
is valid if the distance the electromagnetic wave pen-
etrates the superconductor (the shorter of the London
penetration depth and skin depth) is long compared to
the coherence length. We shall consider a background
supercurrent or gauge field of the form

A'(t) —= —(mc/e)vg(t) = Ect+ A().

E is the applied electric field.
Let us now outline the ensuing calculation. The time

dependence of the quasiparticle states under the applied
field and the moving vortex will be calculated and written
in terms of a density matrix. The motion of the vortex

will be inferred, using the gap equation, by identifying

changes in the off-diagonal components of the density
matrix with that due to a displaced vortex. Because this
calculation involves self-consistency in the vortex velocity
there is a slight subtlety. Given initial (t = 0) values of
vt, and vs, as considered below, in general, they will not
be consistent. In general, vL, is obtained by integrating
the equation of motion for a given vs(t). We shall first
derive the acceleration of the vortex at t = 0 and then
find the equation of motion for all time by beginning in

a well-defined equilibrium state (vt, = 0, vs = 0, rp = 0
at t = 0) and, given a time dependence vs (t), calculating
the resulting motion to all orders in t

Suppose the field in Eq. (5) is turned on at t = 0.
Let us calculate the quasiparticle density matrix to order
t . We use ( )p to denote the (diagonal) values at t =
0. Using matrix elements of A', the off-diagonal density
matrix elements are

(v„'w, -i)(i) =
((~tv& )o —(v„n„-i)ol —i—i —,(ihN '+ w(c„-, —er )I],.W t2

2h
(6)

where W = (ehk~~Ap/2mc) expi(Hp+ x2) and W' is the same as W except with Ap replaced by cE. Terms of
order W2 (such as the change in the diagonal density matrix element) are ignored by taking the amplitude of the
perturbation to be sufficiently small.

The significance of these density-matrix elements is clarified by considering a displaced vortex in terms of the
underlying quasiparticles. The inverse of Eq. (1) substituted into the gap equation is

h(r) = V) 6„„)(ptp—„) v,"(r)u„(r) +other terms . (7)

Suppose the quasiparticles are displaced by 6rp at angle Pp to x. The occupation is taken to be diagonal before
displacement, (p„p„)= 6„„f(e„),where f(s) is the Fermi function. Then, in the undisplaced eigenbasis, to linear
order in 6rp,

66(r) = V6rpk~g ) (—e' '[f(e„)—f(c„+q)]v„'+&(r)u„(r)

(9)
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in a direction Pp = Hp + 2 perpendicular to vs. This

Comparing with Eq. (6), it is clear that the term of
order t may be produced by a rigid translation of the
vortex core at velocity 6rp/t = (e/mc)Ap in—the direc-
tion Pp = Hp. It is simply the velocity by which the gauge
field boosts the group velocity of all waves.

Returning to Eq. (6), the first term of order 9 cor-
responds to an acceleration proportional to the electric
field, and Eq. (9) shows that it is vs. The second piece
is trickier. Because e q

—e„can depend on k, and
(for large p) p„ the t term does not correspond to a
rigid acceleration of the vortex core except in the limit of
low temperature and strong mass anisotropy, m, )& m~.
There e„q —e„= 2b,p/k~v~ (independent of p) and
making the identification with a rigid displacement leads
to an acceleration

corresponds to the Lorentz force.
At high temperatures higher-energy levels become im-

portant. The level spacing decreases with increasing en-
ergy so higher-energy quasiparticles have a smaller ac-
celeration and lag behind the core. The term s„q —e„
contains a factor (1/cosz e) that is the k, dependence.
This factor is not actually divergent. Expression (4) for
the energies is valid only for small energies. . The e„are
bounded by Ap, and so e„q —c„must go to zero as
0 ~ vr/2. In real materials such as NbSe2 the Fermi sur-
face is open, which restricts cos e. Below, for simplicity,
we assume that the system has an anisotropic mass and
that the lack of rigid acceleration is not important.

Assuming rigid motion we see that the applied field,
instead of causing dipole transitions, causes the density
matrix to evolve off-diagonal elements corresponding to
vortex motion (after applying the gap equation). In the
new displaced set of basis functions the density matrix is
again diagonal. The vortex does not stand still and allow
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a dipole transition to take place, as does the core of an
atom. The vortex is a seLf co-nsistent potentiaL

The moving vortex itself affects the density matrix.
Suppose the vortex has velocity vt, at an angle Pp to x.
The matrix element

( 0 6Z (t)~
l

e„„= r „r, 0 „r

may be rewritten using Galilean invariance. Let 6$„(r)
be the change in g„(r) upon displacement of the vor-
tex by 6rp. Then substituting 6g and 6h into the
BdG equation, subtracting the undisplaced piece, keep-

ing terms to first order in &p, and integrating by parts
results in W&„——(e„—e&) f dr@„(r)6$„(r). Writing

6$(r) = tvt, V@(r), and using standard identities,

This produces a contribution —(1/w)vL, to the vortex ac-
celeration. Collecting terms, the equation of motion is

6p „j.
vL, = vs + (VL, —vs') x z ——vL, .

hEF 7" (16)

In the above derivation we applied vz instantaneously
to a vortex stationary for t ( 0. That produced vt. = vs
at t = 0, which is an insufficiently general initial condi-
tion. We now show that Eq. (16) is valid at all times.
We begin at t = 0 in a well-defined state, vL, = vs = 0,
and displacement rp = 0. Given the Taylor expansion
of vs, we may calculate, using the above technique, the
displacement to any order t" because we need know only
vs to order n 1a—nd vt, to order n 2. Th—e gap equation
applied to the order n displacement of the quasiparticles
gives vt. to order n 1an—d thus continues the calculation.
The result to fourth order is

vgtIGF J g .
(p + ~

)W„„=— 6„„~i(g„—e„)e '
2i (12)

Treating this to linear order and integrating from 0 to
t gives an acceleration ( 2r6/pt ) = (vg/h)(e, —e +i) =

(6p/EFh)vr, in a direction at an angle +or/2 to vi, .
This together with Eq. (10) gives an acceleration

(hp/hE~)(vt, —vs) x z corresponding to the Magnus
force given in Ref. 4 as (hn/2)(vs —vg) x z, where n is
the (superfluid) electron density. Taking n = kzzks, /ir
and the in-plane coherence length L = hvF~/xb„one
may extract a "mass" of the vortex M mg(kF~(g)
per unit length A,&, . This expression is perhaps a mi-
croscopic justification for a "normal core" of size (, even
at low temperatures when there is a gap in the single-
particle density of states. This mass should be contrasted
with the very different definition of mass discussed re-
cently by Duan and Leggett. is Here the mass corresponds
to the inertia of the electrons in the core of the vortex.

To treat dissipation we assume that core states main-
tain equilibrium with the lattice and that the linear-in-t
change in the single-particle states (in the lattice frame
of reference) also decays as an exponential exp ( t/7). —
~ is related to the transport lifetime, although there are
differences in matrix element and phase space that can
be elucidated in a microscopic theory. Given the velocity
vL„ then to linear order in t the off-diagonal component
of the density matrix is, in a basis fixed to the lattice at
1=0,

rp(t) = -vs(0)t + —,[v&(0) —r v&(0)]t

1+—(—~ 'Ap[vs(0) x z]4'I

v's(0) + y vs(0))t4 +

where Ap
—= 6&~/hE~ This ca.lculation is fully consistent

and equivalent to taking the derivatives of Eq. (16) and
evaluating them at t = 0. Since the equation is linear
and velocities can be calculated to all orders in t, this
equation is valid for all t ) 0.

Equation (16) at zero frequency was introduced by
deGennes and Matricon. i4 The dissipation acts on vL,
rather than vs as in the NV equation. This has the draw-
back of not allowing for small conductivities observed in
experiments on flux flowis (not to mention that there
has never been a satisfactory explanation of the Hall ef-
fect). The present derivation is valid in the clean, low-
temperature limit where the levels are clearly separated.
Our result agrees with the NV equation of motion in that
limiti but cannot be extended to the dirty limit.

It is easily verified that the homogeneous solution of
(16) corresponds to the circular motion, with a definite
handedness, at frequency Ap and decaying on a timescale
r. To obtain a prediction for the surface impedance, con-
sider the particular solution for vs(t) = vs(0) exp (Gut).
It is

Vt& —Vg& = Bp7 vsz —(1 + i&de )vs&

(1+ i(u7-)~ + (Qpw)2
(19)

The result is an additional contribution to the second
derivative of the oK-diagonal element,

d
~ (p„p„ i) = — (p„p„ i) + (previous —term—s).

and another equation with x, y interchanged and Ap ~
—Ap.

There are two contributions to the surface impedance.
The Erst is transverse vortex motion in phase with
the supercurrent. For clarity let vp„= vp expi8 =
vs/~2. There is an induced voltage per vortex z x
vt. (h/2e). The supercurrent density vsne gives dissi-
pation N„(hn/2)Re(vi vs& —vr'„vs ), where N„ is the
vortex density. Using Eq. (19),
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I —(~r)z + (Apr)z

[I —((ur)z + (Acr)z]z + 4(~r)z
1+ (~r)z —(Opr)z

[I (~r)2 + (IIOr)2]2 + 4(~r)2.

The first term has an (anti)resonance at (ur)z
(Ocr) + 1, while the second, polarization-dependent,
term has a resonance there.

The second source is the current due to vor-
tex motion, which is in phase and parallel with
the applied electric field. A straightforward calcu-
lation gives the average current density due to vor-
tex motion as 2vt, (k~, /vr)(E~/b) N„e. With the
electric field E = —(m/e)vs the dissipation is

2m(kp—,/vr)(EF/b) N„Re(vt„i~vs„+ vt~iurvg, ). Us-

ing Eq. (19),

Re(vr', „i~vs„+vr' Advs, )

I

ization dependent. By letting Ao ~ 0, this term becomes
simply the Drude expression for dissipation.

The expected polarization-dependent absorption is dis-
tributed, due to states with different k„over a range of
frequencies. Precise details depend on the Fermi-surface
shape. The temperature dependence should be weak.
The current due to quasiparticles moving in and out of
the vortex core can be neglected at low temperature be-
cause there is a discrete energy cost to make charge fiuc-
tuations in the core. The considerations of this paper
may be valid even for pinned vortices. If some parts of
a line are pinned, other parts between pins can move,
provided they are excited at high enough frequency.

This has a peak at (~r) (Qor)z + I and is not polar
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