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System with time-reversal symmetry breaking
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We consider a system composed of ferromagnetically aligned localized spins embedded in a simple
metal with a spiral spin-density wave. The localized spins and the spins of the extended electrons in-

teract via an exchange interaction. The mean-field Hamiltonian is not invariant under any symmetry
operation containing time reversal. There is no spontaneous current, although it is allowed by symme-

try. The ultrasonic attenuation in the superconducting phase does not have the usual exponential tem-

perature dependence and might have a peak just below T„as observed in several heavy-fermion com-

pounds.

I. INTRODUCTION

Eliashberg' and Tavger stated that it is possible for
electric current j to flow in thermal equilibrium if sym-
metry permits it. In particular, time-reversal symmetry
( T) should be broken. Blount3 argued that such a current
is forbidden by the nature of equilibrium and showed that
for periodic systems j=0.

Halperin, March-Russell, and Wilczek studied the
consequences of T and mirror-symmetry (P) violation in
models for high-T, superconductivity. The anyon mod-
els ' predict that these symmetries should be broken.

The possibility that a free-electron metal could have a
spiral or linear spin-density wave has been considered by
Overhauser. In addition, Overhauser and Daemen
solved the anisotropic equations for the superconducting
gap h(k}. Here we consider the spiral spin-density wave
(SSDW) interacting with ferromagnetically aligned local-
ized spins. Although we do not pretend that this model
represents a real system, the physics involved has certain
similarities with heavy-fermion U compounds: b(k) is
highly anisotropic, as is the case in UPt3, ' UBe», ' and
(U,Th) Be,3 (Ref. 11) according to ultrasonic attenuation
measurements. The specific heat of superconducting
UBe&3 looks very similar to the theoretical predictions for
a SSDW. A small localized magnetic moment is present
in the superconducting phases of UPt3 (Ref. 12) and
UBe&3.' Note that in contrast to Ce systems, a magnetic
ground state is expected for dilute Tm, Pr, and U sys-
tems, according to recent exact-diagonalization stud-
ies. ' ' In addition, if the T-breaking field is strong
enough, the ultrasonic attenuation should develop a peak
slightly below the superconducting critical temperature
T, . This fact, which was not included in the study of
Ref. 4, is explained in Sec. IV and is in qualitative agree-
ment with the observations in the above-mentioned
heavy-fermion compounds " and in high-T, sys-
tems, ' ' although several alternative explanations were
given. In Sec. III we show that j=0, in agreement with

Ref. 3. Section V contains a short summary and discus-
sion and we explain the model in Sec. II.

II. MODEL

We consider a free-electron gas with a SSDW with its
axis along the z direction and a homogeneous ferromag-
net magnetized along the same direction. The spins of
both systems interact via an exchange interaction. In the
Hartree-Fock approximation, the effective one-particle
Hamiltonian for the itinerant electrons takes the form

[H, Tt(zm /Q)] = [H, TR, (n. )]=0, J=0, (2)

where t (v) translates the system in a vector v and R, (P)
is a rotation of angle P around the z axis. As a conse-
quence, no anomalous behavior in the transport proper-
ties exists for J=O. If ~g) is an eigenstate of H,
Tt (zm /Q) ~P) is also an eigenstate with the same energy,
and the contributions of both states to j have equal mag-
nitude and opposite sign. For JAO, H does not commute
with any symmetry operation containing T.

H= g cz cz —G g (cz+&&czt+H. c. )
k, n m k

1—
—,JS g (cz&cz &

—c z&cz& ) .
k

ck creates an electron in a plane-wave state with
momentum k and spin cr. The first two terms are the
second quantization version of Eq. (1) of Ref. 7. 2n/Q is
the wavelength of the SSDW. The vector Q maps the
point of the Fermi surface for 6 =0 and spinup with
minimum k, (k, = —kFt, k, =k„=O) to the correspond-
ing point for spindown and maximum k,
(k, = kF&, k„=k» =0}(see Fig. 1). 2G is the magnitude of
the SSDW gap at these two points. ' S is the mean value
of the z component of the localized spin and J the ex-
change interaction. T alone is not a symmetry of H, even
if J=0. However, in this case,
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The energies of the one-particle eigenstates of the
predominantly up spin are given by

Et(k)= (k„+k )+Ft(k, ), (3)
2m

f2
Ft(k, )= (k, +Qk, +Q2/2)

fi—sgn(k, +kF t ) (Qk +Q2/2)
2m

' 1/2

+—,
' JS +G (4)

g-G

where

Q=(0,0, kFt+kFt},
A kF1 fizkFzt

p= ——'JS= +—'JS,
2m2m

(5)

and p is the chemical potential. The dispersion relation
is discontinuous at the plane k, = —kF and the Fermi
surface has a hole of radius (2mG}'» /A centered at
(0,0, —kF t ). A similar situation occurs for states of
predominantly down spin, replacing kF t with —kF t. The
dispersion relation of these states is

2Et(k)= (k„+k )+F1(k,), (7)
2m

Ft(kz)= (k, —Qk, +Qz/2)
2m

$2
+sgn(k, kFt) —(Q I2 —Qk, )

——'JS +G

The E (k) for k„=k =0 are represented in Fig. l.

III. ABSENCE OF A SPONTANEOUS CURRENT

It can be easily seen that

[H, t(zn/Q)R, (m )]=0=j„=j =0 .

Thus, we need to concentrate on the current in the z
direction:

V BE.(k)
j,= — g I f(E (k))d k . (10)

j ——— E E g
4

with

This expression is analogous to that given in Ref. 3.
However, in this case we do not have periodicity in k
space. Expressing the integral for each o. in cylindrical
coordinates with axis k, and changing the variable nor-
mal to k, by E (k) we can write, after some algebra,

FIG. 1. Dispersion relations for the one-particle eigenstates
of the system in the normal phase [Eq. (1)] for k„=k» =0. Full
line: energies of eigenstates of positive mean value of the z pro-
jection of the spin s, [Eqs. (3), (4), and (13)]. Dashed line: the
same for s, &0 [Eqs. (7), (8), and (14)]. Dotted lines: energies for
6 =0 and the same chemical potential p. The wave vector of
the spiral spin-density wave Q is also shown. Thin lines are
guides to the eye. E and k, are given in arbitrary units. Param-
eters are 6=0.3p, JS=0.4p.

BE (k)
g(E)= g I dk,

=g[F (k ) —F (k, )]

+2G[8( —k t
—k, t) —8(k t

—k t)], (12)

where Eqs. (3) and (7) were used and k (k, ) is the
greatest (smallest) value of k, for which the equation
E (k}=E can be satisfied [if E (k}=E cannot be
satisfied for any value of k, one can take k =k, =0].
The discontinuities of F (k, ) originate the last term in

Eq. (12). 8(x) is 1 for x & 0 and 0 otherwise. Using Eqs.
(3)—(8), one sees that the problem can be separated into
three cases according to the value of E (see Fig. 1).

(a) E&)M—G. In this case ~k, t~ &kFt, k
& &kFt, and

F (ks )=F (k, )=E. Thus, g(E)=0.
(b) )Lt

—G & E &)I+6. In this region k, t
= —kF 1,

kst=kF&. Thus, Ft(k, t)=F1(k t)=p —G, while

Ft(kst }=F1(k,t)=E. The contributions for both o can-
cel each other and again g (E)=0.

(c) E &p+G=- —k, t & kFt, k«& kFt. Then
F (ks~)=F (k, )=E and g(E)=0. Therefore, for all
energies g (E)=0 and then j,=0.

IV. THE SUPERCONDUCTING PHASE

Theoretically, it has been found that ferromagnetism
can coexist with superconductivity in some cases. ' For
dilute magnetic impurities, it has been argued that the
Ruderman-Kittel-Kasuya- Yosida (RKKY) interaction
vanishes in the superconducting phase in the absence of
impurity scattering, because in the simplest BCS case the
spin susceptibility vanishes. ' This is not the case for our
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az& =(cos9&&)cz&+(sin9&t)cg+q)

a z& =(cos9 z~)c z&+(sin9 z))c

(13)

(14)

system since, as it will become clear later, the supercon-
ducting phase is spin polarized for JSWO. Also, super-
conductivity can coexist with other types of magnetic or-
der that spontaneously break T and T combined with
primitive translations. For these cases, our discussion is
qualitatively valid. For J =0, the superconducting phase
has been studied in Ref. 7. Extending these results for
JWO, the eigenstate of Eq. (1) with energy E& (k) is paired
with the eigenstate of energy E&( —k). The operators
that create an electron in these states can be written in
the form

H, p„y——g„qc„',q.c„.(eq+b' q) .
k, q, cr

(19)

Note that the interaction for opposite spins is different,
since the Fermi surfaces are different. This is a conse-
quence of T breaking. ' In terms of the eigenstates of H,
H pp has a similar form for q~0.

H, pq= g g[qa), +q~a),~(bq+b ), q~O,
k, q, o

(20)

lute value of both angles is at most m. /4, and the limiting
values are obtained for different values of k, if
JAO, b (k)WO for all k in this case.

The electron-phonon interaction for plane waves (the
eigenstates of H for G =0) can be written in the form

9&& (9&&) is discontinuous at the plane
k, = —kF&(k, =kF(). All angles lie in the interval
—m /4 ~ 9 ~ ~/4 and

with

gkq cos ~k gkq +sin 6k gk+ Q, q
(21)

~k+Q) Ok f (15)

We remind the reader that the spin index has meaning
only as a label in ak, k, is the quasimomentum projec-
tion in the z direction, while k, and k are real momen-
tum projections. Thus, each pair has total momentum
equal to zero in the x and y directions, but not in the z
direction. The z component of the total spin is also
different from zero. The eigenstates of Eq. (1) that form
the pair are not degenerate states [compare Eqs. (3) and
(4) with (7) and (8)]. This indicates that JS should be
smaller or of the order of magnitude of the superconduct-
ing order parameter b, (k) in order to have superconduc-
tivity. Also, the excitation energies that are obtained
after the usual Bogoliubov transformation to the mean-
field pairing Hamiltonian are rather unusual:

A,(k) = Et(k) —Ei( —k)

1/2 '

[Et (k)+E) ( —k) —2p]+ +b, (k)
4

(16)

If b, (k) =0, then one A(k) =0 if also E
1 (k) =p or

E&( —k) =p. It is also possible to have low-energy exci-
tations even when b, (k)%0. This fact has important
consequences for the temperature dependence of the
specific heat and ultrasonic attenuation. Using Eqs.
(13)—(15), the reduced BCS interaction

guq~" a g —v, q~va~ (22)

where uk and vk are the coefficients that relate the
eigenoperators of H+H;„, [Eqs. (1) and (18)] in the
mean-field approximation, with those of H. ' As a result
of the fact that g& zing z z for q~O, M f is not propor-
tional to the coherence factor ~uz~

—
~U&~ as is usual

in T-symmetric systems. If the change in the coherence
factor is large enough and the last term of Eq. (16) dom-
inates (as for q Q=O), az has a peak below the supercon-
ducting critical temperature. ' We have not attempted a
numerical calculation, because it is difficult to perform
the sums over wave vectors even for J =0. aq for J =0 is
shown in Ref. 23. However, it is clear that for JWO, not
only a departure of the usual overall exponential behavior
of a, but also a peculiar temperature dependence near
T, is expected.

We have neglected terms in Eq. (20) that connect elec-
tronic states of different energies for q~O. The q depen-
dence is retained in Eq. (21) for q~O, because g fs is pro-
portional to &q. ' It would be more correct to derive
the electron-phonon interaction directly from the eigen-
states of H instead of using Eq. (19). However, only the
symmetry properties of gk are of importance in the
present discussion.

It can be shown that the contribution of wave vector k
to the attenuation of a longitudinal sound wave of wave
vector q~Oa is proportional to the square of matrix
elements of the form '

int
—V g CktC kLC k hack t

k, k'
(17) V. SUMMARY AND DISCUSSION

Xakta —kla k lak (18)

The interaction takes a factorized form as for J =0. In
this case 0k& =0 kl and the result of Ref. 7 is repeated.
b, (k) vanishes when 9&&+9 z&

=+n/2 Since the abso-.

takes the form [neglecting states of the form
az & a &, which are irrelevant for G))b, (k)]

H;„,= —V g cos(9gt+9 g()cos(9g )+9 g ))
k, k'

We have studied a simple system in which time-
reversal symmetry combined with any translation is bro-
ken. The difference between this system and a system
with SSDW in the presence of a magnetic induction 8 is
that in the former case, the orbital angular momentum is
not coupled to the symmetry-breaking field and no shield-

ing currents flow in the superconducting phase for B =0.
Although a spontaneous current is allowed by symmetry,
it does not occur, in agreement with the assessment of
Blount, that such a current is forbidden by the nature of
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equilibrium. In Ref. 4 a Hall conductance even for B =0
is predicted for a system with T and P broken sym-
metries. For our system the Hall conductance vanishes
for B =0 because the system remains invariant under a
mirror symmetry through a plane parallel to the SSDW
axis acting on orbital variables only. This symmetry is
broken if spin-orbit coupling is included.

For large enough electron-phonon interaction (or
another pairing mechanism), the system becomes super-
conducting in the presence of magnetic order, and as a
consequence of time-reversal symmetry breaking, the

usual coherence factor entering in the expression of the
longitudinal ultrasonic attenuation is changed, and a
structure or a peak in the attenuation slightly below T„
similar to that observed in some heavy-fermion '" and
high-T, systems, ' ' is expected.
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