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Dynamic structure factor of a Fibonacci lattice: A renormalization-group approach
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We present a real-space renormalization-group method for evaluating the exact dynamic structure fac-
tor S(q, co) of a quasiperiodic Fibonacci chain. Contrary to earlier work that takes account only of the
global aspects of the symmetry of the chain, our method additionally takes care of the local environmen-
tal aspects of the symmetry by separating the original lattice into a finite number of self-similar inter-
penetrating sublattices, followed by elimination of the coupling between them. Our method also yields
correctly the positions of the Bragg peaks of the Fibonacci chain. Moreover, the present method allows
the sites of the chain to be grouped into classes following a "genealogical" classification, the members of
a given class being equivalent up to a certain length scale. Based on this classification, the proof of the
existence of a key site, which has only been conjectured in our earlier work using numerical search, has
been given.

I. INTRODUCTION

Quasiperiodic crystals have become a well-known sub-
ject of interest during the past few years after the
discovery of the icosahedral symmetry in a rapidly
quenched alloy of Al and Mn by Schechtman et al. '

Quasiperiodic systems in one dimension are currently be-
ing investigated quite exhaustively. ' Growth of quasi-
periodic superlattices has presented an experimental
realization of quasicrystalline lattices even in one dimen-
sion and the interest in one-dimensional quasilattices has
increased after this success.

In this communication we present an idea relying sole-
ly on the real-space renormalization-group (RSRG)
method' ' to evaluate the exact dynamic structure fac-
tor S(q, to) of an infinite Fibonacci chain in which both
the global and local symmetry aspects of a Fibonacci
chain are taken into account correctly. Ashraff and
Stinchcombe (AS) have adopted a generating-function ap-
proach" together with real-space decimation to calculate
the dynamic response S(q, co) of a Fibonacci quasicrystal.
However, the fact that in a quasiperiodic chain every site
sits in a different environment has been considered only
in an averaged sense, as in their previous work on density
of states. In our formalism, apart from being able to cal-
culate S(q, co), one can also compute the local and aver-

age densities of states (LDOS and ADOS). However,
another aspect of the present method is that it provides a
way of classifying the different sites of a quasiperiodic
chain, which we call the "genealogical" classification, for
reasons to be explained later. This classification enables
us to group the sites of a chain into "families, " the size of
the families depending on the length scale chosen. It fol-

lows that, in the limit of infinite length scale, each site
constitutes its own family, which is clearly in accord with

the quasiperiodic nature of the chain. A similar
classification in the context of energy spectrum of
hierarchical lattices has recently been given by Niu and
Nori.

The method can be easily applied to periodic and other
non-Fibonaccian lattices' that have self-similar struc-

tures. However, in this work we shall confine ourselves
to the Fibonacci lattice. We develop our scheme by com-
puting the dynamic structure factor and later explain
how the LDOS and ADOS result from the same scheme.

II. RSRG SCHEME TO CALCULATE S (q, to)

A. The Fibonacci chain

Gz(q, to)=(l/N) g [expiq(r& rt, ) jG&t.(co—) (2)

I'1 being the position of the 1th site and N the number of
sites. Here Gtt (co) are the single-site Green's functions
which satisfy the equations of motion

g k, I
—I;co G; (co)= —6; + g kkGk (to) (3)

1&i kWi
(il ) (ki )

in the harmonic approximation. In this method we split
the original lattice into two sublattices, each of which is a
scaled version of the original Fibonacci lattice. The sum
in Eq. (2) over the original lattice points is then expressed
as a combination of two independent sums over these two
sublattices. The terms connecting the two sublattices in
the original sum of Eq. (2) are eliminated using Eq. (3).
Each sum now runs solely over the lattice points of one
sublattice and is similar to the original sum correspond-
ing to a renormalized lattice. For convenience in imple-
menting the RSRG scheme, we rewrite Eq. (2) as

The lattice under consideration consists of two types of
bonds, long (L) and short (S), arranged according to a
Fibonacci sequence and three types of atoms of masses
m, m&, and mz situated at the L-L, L-S, and S-L ver-
tices, respectively. The spring constant takes two
different values, kL and ks, depending on the nature of
the bonds. The dynamic structure factor is defined by"

S(q, co)= lim lim ImG&(q, to i6), —
$~0 &~ oo

where

46 3660



46 BRIEF REPORTS 3661

GN ( q co ) ( 1 /N ) XFI Q n ( q co ) (4)

where

&n (q co) = [exPIq(rI r, , ) ]Gn (co) .

It should be mentioned at this stage that, as the process
of decoupling of the sublattices is carried out by eliminat-
ing appropriate Green s functions using Eq. (3), an addi-
tional factor Fl is generated in front of each term in the
summation at every stage of renormalization. In order to
take care of the situation, we introduce beforehand a fac-
tor F& as a coefficient to every 5'n (q, co) inside the summa-
tion. All Fl's are equal to unity at the beginning and
grow during the process of renormalization. We have
been able to derive recursion relations for these Fl's
which play the key role in the present RSRG scheme.
The dependence of Fl on the index l only follows from
Eq. (3). At any length scale, F&'s are not all distinct but
can have three values only, viz. , F, F&, and F~, depend-
ing on the local symmetry of the sites in the renormalized
lattice.

To implement the scheme, we split the original Fi-
bonacci lattice into two sublattices, which we call 0 and
I, using the transformation LS~L and L ~S as shown
in Fig. 1. The I sublattice is formed by the P-type sites,
whereas, a and y sites form the vertices of the 0 sublat-
tice. The scale factors for the 0 and I sublattices are ~
and 2, respectively, where, r=(&5+1)/2 is the golden
ratio. The self-similar structure of the Fibonacci lattice
and the fact that it can be split into a finite number of
similar sublattices is crucial in implementing the RSRG
scheme. We now partition the sum in Eq. (4) as

GN(q, co) =(1/N) g Fi Qn'+ g F&Qn

+ g FI&n+ g FI&n
leQ leI
1'el 1'e0

(5)

Equation (5) shows that the last two sums involve inter-
sublattice connections which are finally eliminated and
can be expressed as

Gz(q, co) =p„(1/Nn ) g (Ft )nQIr
I, l'eO

lattice and pz=~ —1 and p&=2 —~. Now, the sum
within each parenthesis is similar to the original sum if
we use appropriate renormalized parameters. Since both
0 and I maintain the Fibonacci character, we can again
split each of the sums into two parts using the above idea
and this process can be continued. We evaluate each sum
in the limit when both kL and ks flow to zero under re-
normalization. The recursion relations for the 0 sublat-
tice are given by

s =er+wp(kL +ks), ep —er+wpks, er=e +wpkr

kL, =w&kL ks ks =kL,

F' =Fr +F&w&[kL exp(iqaz )+ksexp( iq—as )],
Fp

=Fr +Fpw pksexp( iqas—)

F' =F,+F&w&kr exp(iqaL ),
I

aL =«L, , as =«s .

Here,

g =m co —2kL,

En marco
——(kr. +ks—),

e =m co —
(kL, +ks),

w,. = —I /e;,
where i =a, p, or y. aL and as are the long and short
bond lengths, respectively. A similar set of recursion re-
lations has also been obtained for the I sublattice.

In the limit kL and ks ~0, the sum typically looks like

[x (co—s') '+x&(co—s&) '+x (co —er') '],
where x, x&, and xr are the concentrations of the a, P,
and y sites and c,,

* is the corresponding renormalized on-
site term in that limit. We would like to emphasize that
the bond lengths aL and as have to bear the ratio ~ for a
uniform scaling of the entire Fibonacci chain. This im-
plies that the structure factor of an ordered chain cannot
be obtained from the recursion relations listed above by
merely taking the periodic limit. However, the above re-
lations yield results for an ordered lattice only in the limit

q ~0 because, in this long-wavelength limit, the response
becomes insensitive to the lattice structure. In this limit,
as expected, one finds that the structure factor agrees well
with the analytical result for an ordered chain.

+Pr (1/Nr) g (+&)r&n' (6)
B. The case of an ordered chain

where (F&)n and (F&)r denote the "new" coefficients in
the decoupled sums for 0 and I sublattices, respectively.
In Eq. (6), No~ r ~

is the number of atoms in the 0( I') sub-
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FIG. 1. Section of an infinite Fibonacci chain illustrating the
sublattice splitting.

As an elementary illustration of the present approach,
we have looked at the expression for S (q, co) in the case of
an equispaced linear chain of atoms of mass m and cou-
pling constant ko. In this case, the chain trivially decom-
poses into two identical linear chains under a scale factor
equal to 2, leading to the following analytical form of
S(q, co):

S(q, co)=Im lim lim(1/e') g [1—2k„cos(qa„)/s„],
Pf~ oo Q~O n=0
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where co=mao —2ko, and the recursion relations are
given by

and

e„+i
=e„2k„/e„

k„+,= —k„/g„,

S(q, cu) =1m[mrs —2k(1 —cosqa) j (10)

The numerical performance of the RSRG expression (9)
has been compared with that of Eq. (10) and the results
are in excellent agreement.

III. RESULTS FOR THE FIBONACCI CHAIN

Our RSRG method can be easily employed to obtain
the ADOS given by the equation

$(co)=( —I/m)lm ( I/N) g Gl&(a&)
1

of a Fibonacci chain. Since this sum does not involve any
off-diagonal matrix element of the Green's function, the
splitting procedure is simpler here. All the F&'s are equal
to unity at all stages of the RSRG transformation and

tD
O

a„+&
=2a„,

and c.* is the fixed point for c. This expression may be
compared with the well-known formula

only the recursions of the c's and k's are relevant for both
the sublattices.

In order to calculate the LDOS at an arbitrary site of
the Fibonacci chain, we follow the sequence of sublattices
0, I, etc. , to which the site successively belongs during
the process of renormalization. At every intermediate
step we use the appropriate set of recursion relations de-
pending on whether the chosen site happens to belong to
an 0 or I sublattice at that stage. The local Green's
functions are obtained in the limit kL and kz ~0, and are
given by Goo = 1/E', where e' is the renormalized on-site
term in that limit.

We have computed the LDOS at an arbitrary site and
also the ADOS of a 30th-generation Fibonacci chain.
The LDOS and ADOS reAect the familiar three subband
splitting corresponding to the transfer model which is
now quite well understood.

The surface plot of S(q, tu) has been presented in Fig.
2. It exhibits a highly complex structure in which the
zero response corresponds to the gaps in the density of
states. The dispersion relation for the Fibonacci chain
can also be obtained from the nonzero values of S (q, co).
In Fig. 3, we have plotted energy (co) against the wave
vector (q) for S(q, ru))0. 5. For elastic scattering, the
Bragg peaks occur at'

q„~=[2m./(I+r ))(n +m/r),
where n and m are integers and the q values correspond-
ing to co~0 as obtained from Fig. 3 are in complete
agreement with the above expression. If we look at the
location of the Bragg peaks using the results of Ashraff
and Stinchcombe, " we do not find agreement with q„
mentioned above. The reason for this, as we mentioned
in the Introduction, lies in the fact that the local environ-
ment effects have been included in an averaged manner in
the AS theory. These effects turn out to be of crucial im-

portance in fixing the values of q„aswe find from the
present calculation.
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FIG. 2. Surface plot of S(q, co) in arbitrary units for an

infinite Fibonacci chain with m =m&=m~ =1, k~/kL =2, and

aL /a+ =r. co and q are measured in units of Qki and as ', re-

spectively.
FIG. 3. Dispersion relation for the Fibonacci chain. Here

the parameters of the system are the same as in Fig. 2.
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IV. THE GENEALOGY OF A FIBONACCI LATTICE

In our approach, the sites in the original Fibonacci
chain get grouped into Q and I branches after the first
step of renormalization. In the second step we have four
branches, one Q-I pair originating from the Q branch
and the other from the I branch. The continuation of
this process gives rise to a treelike structure which may
be called the genealogical tree for the Fibonacci lattice.
If we continue the branching procedure for an infinite
number of steps, we find that every site percolates down
one particular branch, uniquely specified by the infinite

sequence (a, a', a", . . . ), where, a, a', a", etc., can be Q
or I. Interpreted in terms of the original Fibonacci
chain, this result implies that every site is unlike every
other site, a feature characteristic of quasiperiodic lat-
tices. On the other hand, if the iteration is carried out a
finite number of times, say n, then the sites are found to
be divided into groups, each group now being labeled by
a finite sequence of indices (a, a', a", . . .,a"), where each
a, a', etc., can again be either Q or I . All sites that are
characterized by the same set of indices follow the same

path down the genealogical tree during the process of re-
normalization. They may be considered as being
members of the same "family" up to a length scale ~'+
where l is the number of times the index Q appears in the
sequence and m =n —l. Again interpreting in terms of
the original Fibonacci lattice, this means that all sites
that are members of the same family may be considered
as "equivalent" as far as the environment is considered

up to this length scale.
We now make an important observation. Among all

sites there will be one which throughout follows an

infinite periodic sequence of Q and I branching under
successive renormalization. The existence of a periodic
sequence (QI QI . . . to OD) indicates that the local envi-
ronment around that particular site is exactly restored
(up to infinite distance) to the starting environment after
every alternate branch. Now, one can easily identify that
the transformation QI corresponds the composite trans-
formation I-II-I in the language of Ref. 7 (where I is
LS~L' and L ~S', and is II is SL ~L' and L~S').
Thus, the site following the infinite periodic sequence of
branching (QI'QI. . . ) is actually the key site discussed
in Ref. 7. This method thus provides proof of the ex-
istence of a site of special symmetry in an infinite Fi-
bonacci chain which had been only conjectured earlier,
based on numerical search.

V. SUMMARY

We have developed a renormalization-group method to
evaluate the frequency-dependent response of the quasi-
periodic Fibonacci chain. The method brings out the re-
quired features of S(q, co) and the correct location of the
Bragg peaks corresponding to the case of elastic scatter-
ing. The present method also provides a way of classify-
ing all the sites of an infinite quasiperiodic chain into dis-
tinct families depending on the length scale of observa-
tion and gives proof of existence of a site of special sym-
metry conjectured elsewhere.
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