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Vortices in layered superconductors vrith Josephson coupling
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Strongly anisotropic layered superconductors are considered within the Lawrence-Doniach model.
The differential finite-difference sine-Gordon equation is derived for the order-parameter phase dif-
ferences; boundary conditions are formulated for a vortex lattice. The structure of a tilted vortex is
considered. The line energy of a single tilted vortex and the free energy of a tilted vortex lattice in
moderate magnetic fields are calculated. Deviations from the three-dimensional London theory are
substantial for field orientations close to the layers. As the applied field approaches the ab plane, the
orientational lock-in transition (tilted-parallel lattice) occurs provided A J & A b, here Ag = ys is the
Josephson length, p is the anisotropy parameter, and s is the interlayer spacing. If AJ A b, the
tilted lattice transforms first into a new type of vortex arrangement that consists of sets of coexisting
parallel and perpendicular vortices (combined lattice). Then, as the field further approaches the ab

plane, the combined lattice goes over to the parallel one. The angular dependence of the torque is
evaluated for tilted, combined, and parallel lattices, which allows one to experimentally distinguish
these phases.

I. INTRODUCTION

Magnetic structure of vortices and vortex lattices
in strongly anisotropic superconductors (for example,
NbSe2 or high-temperature superconductors, HTSC) is
still the subject of intensive discussion. There are few
distinct approaches to the problem. The simplest concep-
tually is the three-dimensional (3D) London theory, '
which simply introduces a tensor in place of the squared
penetration depth of the isotropic London theory. The
London theory works well in describing magnetic proper-
ties of uniform bulk materials provided the penetration
depth A )& (, the coherence length, and ( is much larger
than the scale of intrinsic inhomogeneities. In layered
materials, this scale is the interlayer spacing s, which,
therefore, should be small with respect to the coher-
ence length (,(T) in the direction perpendicular to the
layers; then the layered structure is irrelevant. Hence,
within this approach, a superconductor is considered as
anisotropic but uniform. In particular, the quantized
magnetic vortices are continuous lines oriented along the
local magnetic induction B. Dichalcogenides of transi-
tion metals, among which NbSe~ is best studied, repre-
sent layered compounds for which the London approach
is good due to relatively small T, and consequently large

(, 's.
However, many anisotropic materials (HTSC's are

most prominent in this family) consist, of the two-
dimensional (2D) layers (Cu-0) where the superconduc-
tivity presumably resides. These are made into a 3D
superconductor by a weak Josephson coupling between
the layers. For most of these materials (, & s in a broad
temperature range, and the anisotropic London theory
should give way to the Lawrence-Doniach (LD) model.
The latter is not easy to implement due to its com-
plicated formal structure (a set of nonlinear difference-

differential equations for the order parameter and the
magnetic field). In fact, up to now, only vortices par-
allel to the layers have been considered within the LD
framework. In this case, the normal core is absent as
in well-studied Josephson vortices, while at large dis-
tances from the vortex axis the LD description converges
with that of London.

For an extreme anisotropy, as in Bi- and Tl-based com-
pounds, a very weak interlayer Josephson coupling had
prompted studies in which vortex lines are represented
by stacks of 2D vortices residing in superconducting lay-
ers (so-called 2D pancakes) interacting exclusively via
the magnetic field created in the interlayer space.
In other words, within this approach, the Josephson
coupling and the interlayer currents are disregarded al-
together. However, without these currents, tilted vor-
tices cannot be formed in a tilted external field. In this
model, the field component parallel to the layers pen-
etrates the superconductor unperturbed, while the per-
pendicular component is responsible for the perpendicu-
lar vortices.

Clearly, both models (the 3D London and the 2D
pancakes) are deficient as far as the description of real
Josephson-coupled systems of 2D layers is concerned.
The London model allows the currents to grow with-
out limit when approaching the vortex, core, whereas the
actual Josephson currents are bound by a critical value
which is further suppressed in the core. On the other
hand, except for vortices along the c axis, the pancake
model fails at large distances from the core, since Joseph-
son currents are neglected in the domain where they are,
in fact, comparable in value to the in-plane persistent
currents. The failure of the pancake model to describe
tilted vortices is a serious shortcoming to deal with in a
better theory.

The idea of vortex kinks emerged in order to correct
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deficiencies of the London theory. As applied to the vor-
tex dynamics and fluctuation phenomena, the kinks were
considered by Doniach ef aL 6 In our work, however,
we deal with equilibrium properties for which thermal
fluctuations are irrelevant. Feinberg and Villard sug-
gested that, instead of being straight (along the direction
of the magnetic induction B), the vortices are slightly
wavy to take advantage of the lowest energy orientation
along the layers. The model predicts that vortices will be
locked in the orientation parallel to the layers for exter-
nal fields close to the ab plane. Although pertinent, the
prediction is not reliable quantitatively. As formulated,
the model is able to treat only vortices with the radius of
curvature exceeding the penetration depths, thus putting
sharp kinks out of reach.

A more quantitative approach has been employed by
Ivlev, Ovchinnikov, and Pokrovskii, who assumed the
vortices to form a staircase with a piece of the London
vortex along c and another piece of a parallel London vor-
tex in the ab plane. The authors obtained the London
energy of a lattice of kinked vartices, which cont, ains-
in addition to a part corresponding to straight vortex
lines —an extra contribution attributed to kinks. Being
justifiable qualitatively, the kinked lattice is, in fact, im-
planted into the London theory. The results, if correct,
should follow from minimization of the free-energy func-
tional which models properly the highly anisotropic lay-
ered compounds. The LD model for layered Josephson-

I

coupled superconductors provides such a free energy.
For layered materials, the most interesting angular re-

gion is situated near the ab plane. In this domain, de-
viations from the London model are the strongest. On
the other hand, with the existing experimental accuracy
of, for example, the intrinsic torque measurements,
this angular regian can well be probed. The data
available ~ show deviations in the measured torque
from the 30 London prediction. 2~

In the following we develop an approach within the LD
model, which yields equations similar to the sine-Gordon
formalism of Josephson junctions. Solving the linear ana-
log of these equations we obtain the line energy and the
free energy of the fiux-line lattice (FLL) for any orienta-
tion of vortices. We then compare difFerent FLL struc-
tures. We argue that in compounds with extremely large
anisotropy (as Tl-based HTSC) or in strong fields, a com-
bined lattice made of coexisting sets of perpendicular and
parallel vortices should occur for applied fields close to
the ab plane. The idea about an independent response of
layered superconductors to the parallel and perpendicu-
lar field components has been proposed by Kes e] al. and
later by Theodorakis ' but the physical conditions for
such a behavior have not been clearly formulated.

II. BASIC EQUATIONS

The LD free-energy functional has the form

H2s 2

E(4„( ), A(R)] = ' ) dr (,b iQ+ —A„( @—„—(@„( y -'(@„(
4~ - 'b

0n

2

+in(l~. I'+ l~.+il' - ~.~."„~-'"--+ -~„~.+,.'"- -+ ) + fm

(2.1)

Here A„= (A„~,A„&) = [A~(r, z = ns), A&(r, z = ns)],
h = curlA, and

(n+1)s
gn n+1 — dz Ag .

40

Further, 4„(r) = (4„(r)( exp[iC „(r)] is the order param-
eter in the layer n (z = ns), r = (z, y), R = (r, z),
7 = cf/cfr, the z axis is perpendicular to the layers, H,

is the bulk thermodynamic critical field, (,b is the coher-
ence length in the ab plane, and Po —irhc/(e(. Supercon-
ducting layers are assumed to have a negligible thickness.

One can derive the usual 3D Ginzburg-Landau free
energy by replacing finite difFerences in Eq. (2.1) with
derivatives 0/Bz. The coherence lengths and the pene-
tration depths so obtained are given by

(, = s p/2, A, b
—Po/8x H, ( b (2.2)

and by A, /A, b = g,b/g, = p, where p is the anisotropy
ratia.

In the free energy (2.1), the dimensionless parameter
p (( 1 characterizes the 3asephson coupling between the
layers; higher order terms in p are omitted (interaction
with the next neighboring layers is proportional to p ).

I

The condition p (& 1 assures that the energy of the inter-
layer coupling psH, /4n' is small relative to the condensa-
tion energy sH2/8' (per unit area). Under this condition
we have (, &( s, the length of inhomogeneity of the order
parameter 4 in the c direction. In other words, the in-
terlayer supercurrents are limited and weak, so that they
cannot suppress the value of (4'( in the layers.

In the following, we consider vortices oriented arbi-
trarily within the crystal. VVhen they are parallel to the
layers, the normal cores are absent. o For any other ori-
entation, a disclike normal core is created in each layer
crossed by the vortex. The condition p (( I has then an
additional implication. It can be written, with the help
of Eq. (2.2), as p = 2(,b/s2y2 = 2(2b/A2J &( 1, where
Ag ——ys is the Jasephson length. Regions near the vor-
tex center in each layer, where the Josephson nature of
the interlayer currents is important, have the size AJ.
The core size g b is much smaller than all other lengths
of the problem: AJ, A~b, or A, . Hence, p = 2g, b/AJ && 1
means that narmal cares with suppressed order parame-
ter constitute only a small fraction of the total volume,
i.e. , one can set (i'( = 1. Thus, only the phases vary
in 4' = (4(e', and we have, instead of Eq. (2.1), the
free-energy functional with respect to the phases
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X(4„(r),A(R)] =
& ) dr

~

9'4„+—A„+ 2- [1 —cos(4„—4„+q —y„„+y)] + dR—.y'ps ( h~

32m.s A~
s I, Pp A2~ 8x

(2.3)

It is worth noting that as written the functional (2.1) is
valid only near T, . The validity domain of the functional
(2.3) is broader. Actually, the energy of inhomogeneity
given by the first term in square brackets is correct if the
inhomogeneity scale exceeds f,s(T = 0). This condition
is always satisfied out of normal cores for applied fields
H„ far from the perpendicular upper critical field. As
written, the Josephson term in Eq. (2.3) is valid at any T
Thus, functional (2.3) can be used at all temperatures,
the situation similar to the London equations which are
applicable beyond the Ginzburg-Landau region.

Minimization of X with respect to A(R) and 4„(r)
yields the system of equations for phases and fields in
equilibrium. Varying A we obtain

(curl curlA)

4~
/CD

C

) ~

'VC„+ —A„~ b( — ), (2.4)
&ps . ( 2m

'7 'V„4„—7'„T 4„=2n ) b(r —r„„). (2.9)

Writing this for n and n + 1 and subtracting we obtain
the boundary condit, ion for p„„+i ..

„+i —V'y V' p„„+i

I

For vortices parallel to the layers, this equation has al-
ready been considered in Ref. 10; also, it was proposed in
Ref. 25. The very fact that the phase differences y„,„+q
satisfy a single (be it finite-difFerence differential sine-
Gordon) equation, which does not contain the field, is
a remarkable simplification that makes further progress
in determination of phases and fields possible. One, of
course, can obtain this equation using a general gauge.

Boundary conditions for Eq. (2.8) are determined by
positions of topological singularities (vortices). The sin-
gularities in phases C„(r) at each position r„„are in-
troduced as usual by curl, V'4„= 2zb(r —r„„),which
reads

4x
(curl curlA), = —j,

C

2' A2 s )»n(p~, ~pg) f~,„+g(z), (2 5)

O7 (A„+y —An) =
2 sin pn, n+g.2+%~

(2.7)

The left-hand side (lhs) here is expressed in terms of
phase differences p„„+, with the help of Eq. (2.6) with
the result

2 2 2 2
A 1 7 p„ f4+] (A J/Aq) sin p„„+]—2sm&p„„+j

+ sin y„+y „+g + sin p„y „=0. (2.8)

where n = z, y and the gauge invariant phase difference
O'„—4 „+i —y„„+i is denoted as p„„+i . The factor

f„„+q vanishes everywhere except for ns & z & (n+ 1)s,
where it is unity. Minimization of T with respect to 4'„
yields

2r 1
@ti + + ' AA —

g (s~n pfi, o+y

smyth

—j,o) ~

p J
(2.6)

Here V' and V' A„are the 2D Laplacian and 2D diver-

gence in the z y plane.
Equations (2.4)—(2.6) form a complete system for the

vector potential and the phases 4„, both of which are

gauge dependent. Now we obtain an equation for phase
differences p„„+i,which is decoupled from equations for
phases and fields. The gauge A, = 0 provides a short-
cut, to obtain such an equation. As an immediate conse-

quence of A, = 0 we have y„„+i ——0. After integration
of Eq. (2.5) over z from ns to (n + 1)s, we obtain

= 2n ) [b(r —r„„)—b(r —r„+q,„)]. (2.10)

Note that for vortices perpendicular to the layers (r„„=
r„+q „) the singularities in p„,„+q are absent.

For a vortex lattice, the boundary conditions imposed
on p„„+i lead to certain relations between the magnetic
induction B and averaged gradients of p„„+i . The in-

plane currents

/

7'e„+—A„cyp ( 2z
(2.11)

and the field h are periodic in space. Writing Eq. (2.11)
for n and n+ 1, subtracting, and taking into account that
the average value of j over the unit cell is zero we obtain

2x „A~
and a similar relation for (0/Dy(4„—4„+q)). Making
use of hz

—BA~/Bz, we have

+v = (hs) = (~p/2u's)(+ &„, +&)

(2.12)

B = (h ) = —(Pp/27rs)(V'„p„, „+g).

For vortices parallel to the layers, Eqs. (2.12) consti-
tute boundary conditions for p„„+i because the sin-

gularities in z, y dependence of p„„+i are absent for
this orientation. It is worth noting that Eq. (2.8) and

boundary conditions (2.12) are similar to those of the
classic problem of a single Josephson junction, the dif-

ference being that in the multilayered system we should
solve a Pnite-difference sine Gordon equation ins-tead of
the usual sine-Gordon equation of a single junction; see,
eg. , Ref. 1 1 .
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h dR = s) (A j„)b(z —ns)drdz
4x

= s) (A„j„)dr.
n

(2.13)

This yields the free energy per unit volume in the form

F = s) dr — j„V'4„
4xc

n

+ (1 —cos &p„„+i) . (2.14)16xss2A2 "'"
)

The general scheme of our approach is as follows. We
first solve Eq. (2.8) for phase differences. Then we solve
!inear equations (2.4) and (2.6) where the rhs of Eq. (2.6)
depends only on the already known p„„+i (the linear
relation between V'4„and A„ is established in Appendix
B). Given the phase gradients and the vector potential,
we can calculate the equilibrium value of the free energy

We conclude this part obtaining a more convenient
form for the equilibrium free energy F. Here we can fur-
ther benefit from the gauge A, = 0. To this end we
transform the magnetic part of (2.3):

Hereafter we denote rpn i(r) as p(r); its 2D Fourier trans-
form (FT) is defined as

pg —— drexp —ikr p r . (3.2)

Let us further introduce the FT of 7'p(r), i.e. , (7'rp)k.
Performing the FT of Eq. (2.8) one can write (7' y)n ——

ik (7' ia)i, + ik„(V'„p)i, . The FT of Eq. (3.1) reads

(& p)i = ik I'i

4x. ka
(Vvp)i, = ikyiai, + —sin

2

(3.4)

Note that ('7p)i, is regular as k ~ 0. Substituting
(V p)~ and ( 7&p)i, in the FT of Eq. (2.8) we have for

k ak.(V„p)i, —k„(V'.p)i, —4xsin
2

'

Due to the condition (3.1), the function y„„+iis singular
and multivalued, so that there is a line (or lines) in the
zy plane where the function experiences a jump of 2x.
We choose it to be a straight line connecting the points
r„and r„+q. Then

III. SINGLE TILTED VORTEX
(Q 1) .k„. k akyi+l, + —,l~i, =4«—"»n

A,') k. 2
(3.5)

Let a straight vortex lie in the z, z plane, contain the
origin, and form angle 0 with the c axis of the crystal;
by this we imply that a discrete sequence of phase singu-
larities situated in the layers form a straight line. In the
layer n, the vortex center is at z = (n —1/2)a, y = 0,
where a = s tan 8 (see Fig. 1). The condition (2.10) then
assumes the form

(V,V'„—7'„7'~)p„„+i—2s [b(z —na+ a/2)
—b(z —na —a/2)]b(y) .

(3.1)

Equations (2.8) and (3.1) suffice for determination of
phase difFerences p„„+i. According to (3.1), function
p„„~i(r) depends on z and n via the combination
(x —na). Therefore, given po i(z, y), one finds p„,„~i
by simple displacement: p„„+i(z,y) = po i(z —na, y).

where

Q = —2(1 —cosk a), W& = [sing(r)]i,2=2 (3.6)

and u'
Now we can express the currents j„and the phase gra-

dients TC„ in terms of p„„+i(r);see Appendix B. Then
we substitute them in Eq. (2.14) to obtain the equilib-
rium free energy (per unit length):

P2Ocos8 1+ A, &Q
128m. s A k

Po cos8+» 2 dr[1 —cosy(r)],

(3.7)
P~o cos 0 k~ + Q2

k2[l + P2 (k2+ Q2)]

s tan e

FIG. 1. The vortex axis (tilted line) is shown with respect
to the layers (horizontal lines).

Here eEM is the free energy of the tilted vortex in the
pure electromagnetic (2D pancake) model (A, = oo), i4

whereas other terms describe the eA'ect of Josephson cur-
rents.

In closing the section we note that our formal proce-
dure is similar to the usual London approach, in which
a linear equation for the magnetic field is complemented
with a singular rhs (see, e.g. , Ref. 26). Here we have a
nonlinear equation (2.8) for phase difFerences; our proce-
dure to solve it under boundary condition (3.1) is equiv-
alent to introducing a singular rhs

s.b'(y) [sgn(z —na + a/2) —sgn(x —na —a/2)].
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IV. LINEAR APPROXIMATION

The London approximation can be obtained from our
equations in two steps. First, sin p„„+q is approximated
by y„„+q, then finite differences are replaced by deriva-
tives

pn, n+i ——8&zp+ ps 7zp1 2 2 (4.1)

As has been mentioned, the function p depends on z and
n via the combination (z —na). Hence, the expansion
(4.1) corresponds in the Fourier space to the expansion
cos k a and sin(k~a/2) up to the second order in k a.

We will use the first step to obtain an approximation
for the LD problem. Replacing sin p„„+&by p„„+& but
keeping the finite-diff'erence character of Eq (2. .8) pre-
serves the main feature of the LD model, namely, the
limit, jo —cgo /8z' sAz, , imposed upon j, by the Joseph-
:on character of the interlayer currents. " Evaluating the
energy in the linear approximation we will keep loga-
rithmically large terms, e.g. , In(AJ/(, i, ), but neglect the
terms of the order unity along with higher order terms in
the small parameter (,s/AJ. In the exact LD approach,
t, he maximum interlayer current is jo instead of 7rjo of
the linear approximation. This difference, however, can-
not change the logarithmically large contributions to the
energy, thus making the results obtained within the linear
approximation being valid with the logarithmic accuracy.

In the linear approximation, Wk of Eq. (3.5) coincides
with pk and we obtain

47ri(k„/k ) sin(k a/2)
k2+ 2Aq (I —cosk a)+ A,

(4.2)

The current j, is proportional to p; the restriction upon

j, is, however, lost after the expansion of &pk in k a.
Substituting (4.2) into (3.7) (after the replacement of

cos &p with 1 —p2/2) we obtain the vortex free energy per
unit length

Po cos0
32~' 2(( 2

d k f(k, k„),

(4 3)

k.'[1+ A,'(k'+ Q')] + Q'[1+ A'. ,(k' + Q')]
('- ")=

k, (1+'A,Q +A, k)[1+A,('k +Q)]

The 3D London expression for the free energy2 is ob-
tained from this equation expanding Q2 in k~a.

According to Eq. (4.2), there are three relevant length
scales, a, A~, and A, in the coordinate dependence of
the phase difference and hence of the interlayer currents.
The fourth length is (,b which determines the size of the
normal core. Note that a = s tan 0 can take any place in
the hierarchy (ab « Ag « A„depending on the angle.

For all angles 0 at the vortex periphery the currents are
weak and the 3D anisotropic London approach is valid.
In the vicinity of the core, the limitation imposed on
the interlayer currents becomes important. We will see
that the main contribution to the free energy of a single
vortex still comes from the 3D London region, but the
corrections to the London energy are strongly angular

dependent.
To separate domains of the ab plain with different be-

havior we write Eq. (4.2) in the real space. Integrating
over kv and denoting u = k a/'2, we have

p(r) = —2 sgn y
du . 2zu l'

(y~—sin u cos exp
~

— Y(u) ~,0 a ( AJ

(4.4)

A u s
Y(u) = 2 + sin2 u+

a2 442

%e see that the scale for the z dependence of p is a, while
the scale for y depends on the ratio A&/a = p/ tan 8. As
we mentioned above, the London approach corresponds
tok a/2=u« l.

A. Angular interval tan 8 & g~s/s

In this interval, a « f,b, the main contribution to the
integral (4.4) comes from u & a/z [due to the oscillatory
cos(2zu/a)] or from u & a/y (due to the exponential
factor). At least one of the two quantities, a/z or a/y,
is small since the point (z, y) must be out of the normal
core and a & (,b. Thus, one can set sin u u, and we
conclude that in this case the 9D London theory is valid
everyivhere out of the normal cores

B. Interval g s/s (( tan 8 « p

, z —a/2, z+a 2
p(r) = tan —tan ' (4.5)

For this reason we use for the domain ( s & r « a the
term 2D core. Qualitatively, the size of the 2D core
can be estimated within the London theory by deter-
mining the curve in the zy plane, where the London

j, reaches the critical Josephson value jo, see Appendix
A. The physical relevance of the 2D core is stressed by
Feinberg.

Notice that in this region y is not small, and there-
fore the linear approximation breaks down. On the other
hand, the in-plane currents here are much larger than
the Josephson currents (which are limited), making the
contribution of the latter altogether insignificant. The
distribution of the intralayer currents within the 2D core
is the same as that obtained within the electromagnetic
model; this distribution coincides with that of the
8D London approach. Both 2D and 3D London regions
are shown in Fig. 2.

Here (,b (& a (& Ag, and we obtain again the Lon-
don result provided either z or y exceeds a. For shorter
distances the main contribution comes from the domain
u & 1 due to the factor sin u/u. Then, Y/Aq 2u/a, i.e. ,

both A~ and A, drop off from Eqs. (4.2) and (4.4). This
is a characteristic feature of the model with purely elec-
tromagnetic interaction between 2D pancakes. In fact,
in this situation one can integrate in Eq. (4.4) to obtain
the difference of two azimuthal angles:
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50 London 30 London

Josephson string

erg

s tane

FIG. 3. Normal cores, 2D cores, the Josephson string, and

the 3D London region are shown schematically for a tilted
vortex in the angular domain p ~ tan 8 && A, /s.

V. EVALUATION OF INTEGRALS

FIG. 2. Regions of different qualitative behavior of the
phase difference (or of the interlayer currents) for the angular
domain f,q/s ~ tan 8 ~ p. The normal cores (E), 2D and
the 3D London regions are shown schematically. The size of
the 2D region is of the order s tan 8. The positions of normal
cores correspond to the two pancake centers in the adjacent
layers.

In this section we calculate the line energy (4.3) with
the logarithmic accuracy; the reader may be referred di-
rectly to the next section for the results of this derivation.
To calculate the integral in (4.3), which is logarithmically
divergent at g, y -+ 0, we replace the region of integration
k & g, &

by the infinite strip parallel to the ks axis of the
width 2g, q

.

dk k =4 dk
ob

dk„ f(k) . (5.1)

C. Interval p « tan 8 « A /s

In this most interesting interval of angles, a )) Ag,
and for z » a or y » AJ, the main contribution to the
integral (4.4) comes from u « 1. One then has sin u u,
in other words, z a and y A J give the internal
boundary of the 3D London domain shown schematically
in Fig. 3; this estimate can also be obtained from the
London j„see Appendix A. Inside this boundary, within
circles r « Ag centered at two singularities, we again
have the 2D regions where the phases 4„(r) are given by
the corresponding azimuthal angle.

There is yet another region of a different behavior be-
tween the 2D circles which we call the Josephson string,
see Fig. 3. We notice that according to (4.4), p has a dis-
continuous jump of 2rr when one crosses the line connect-
ing the centers of two 2D vortices. zs It is this jump which
causes the anomalous behavior of the Fourier transform
in (3.4), (7'rp)i, g ikv pk The jump . is introduced by
the boundary condition (3.1).

Such a replacement is possible because in the direction
k the function f(ks, kr) decreases faster than in kv as
k increases. In fact, after the expansion of Q2 in ksa in
the denominator of Eq. (4.3) we have

I+ ) 2 Q2+ P2k2 ~ I+ (P2 tan28+ P2)k2+ P2k2

(5.2)
1+ &2&(Q2+ k ) 1+ A, b(k sec 8+ kv) .

Note that integration over a strip oriented along k„yields
a different result due to the anisotropy of f(ks, kv), see
Appendix C.

Next, we substitute k with (u+ 2@m)/a, where m is
an integer. Then, integration over k is replaced by the
integral over u in the interval [0, 2x] and the sum over m,

Ppcos8 . ~.i (u+ 2sm
du dk„ f i , ky

32m a p p

(5.3)

The sum is evaluated with the help of Eq. (B6). We
obtain as a result

—1
sii'sing f"0

16+3 1+A' Q'+ A'k' I, 1+A' Q'
1 5 Q2sinhX,

1+ A2&Q2 + A2k2p X,(cosh X, —cos u)

sinh X,
A &(1+ A2&Q2)X~(cosh X~ —cos u)

(5 4)
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where Q = 2s (1 —cos u) and

X —aA '(1+ A' Q' + A'k') '~'

X.=.A.—,'[I+ A'. ,(q'+ ~„')'~'].

The first term in square brackets yields

$0 sin 0 A, b
1 ln

16x2A, gA, s
(5 5)

[(1+rI ) ~ —1] ln —+ —ln(1+ rI )
$20sin 0 2 1 2 2

Q
2

(5 6)

Terms of the order unity are neglected with respect to
the large In(A~s/s).

To evaluate the remaining integrals we divide the in-
tegration interval over k& in two. In the first k& &.- a
both X, & 1 and X & 1, and the integrand can be
expanded in X, and X, . In the rest of the integration
domain, a i & kv ( (,&, both X, and X, are large and
one can set sinh X, , /(cosh X, , —cos u) = 1.

For tan 0 & (,i, /s the result from the region 0 & k& &
Q ls

Ps2 cos 0
scare(8) = (,s cos 81n C4 —

2 ln C4,
4m 16x2A2 (6.2)

where InC4 ™0.5. For tan8 » p (rI « 1), the sec-
ond term in (6.1) has the same prelogarithm factor as in
Eq. (6.2). Then, one can incorporate the core correction
into the line energy by adjusting the constant Cz.

As is seen from (6.1), the contribution of the 2D core
(the second term) vanishes for tang « (,q/s. In the
angular interval (,b/s « tan 0 « p we obtain

3D London region, and the logarithm's argument is the
ratio of the upper and the lower boundaries of this re-
gion in the ab plane. The second term is due to the 2D
core limited by the circles with radii (,i, and Az. As we
have mentioned, the character of large logarithmic terms
should be the same in the exact LD. Thus, the expression
(6.1), obtained in linear approximation, provides the LD
free energy with logarithmic accuracy. In other words, in
the exact LD free energy, only the values C~, C2, and C3
diA'er from those obtained in the linear approximation.
To calculate the constants, we have to solve Eq. (3.5)
beyond the linear approximation. In principle, this can
be done numerically. In fact, e(7r/2) has already been
evaluated; it gives ln(Ci /C3) —1.12 .

The total vortex energy should contain the contribu-
tion of the normal core:

where

g = p cot 0.

The contribution of the region k& & a is

$0 cos 8 A J [(1 + g ) '~ —rj]3= ', , ln
16X2A2b (.b

(5 7)

(5.8)

Pc cos8 A, i, CiCz tan 8 A, i, Ci l
ln + ln

16xzAz 2(, i, cose 2yz stan') ' (6.3)

where the first term coincides with the corresponding
London result ~

It is instructive to compare the line energies within
London, LD, and purely electromagnetic (EM) [p = oo
(Ref. 14)] models for high angles tan 8 » y:

VI. ENERGY OF TILTED VORTICES
—+ —y cos 0 ln

16+zA, ~ p 2 (,y
' (6.4)

A. Line energy

Collecting all contributions to ~ for tan 8 & (,s/s, Eqs.
(5.5), (5.6), and (5.8), we obtain the line energy

16nsA, iA, ( Ag

A JCz [(1+g')'i" —rI]'
+q ln

Cs~
(1 + r12)1/2 )

(6.1)

The constants Ci, C2, and C3 of the order unity represent
corrections to the logarithmic terms. They are included
because their contribution may not be small in compari-
son with bare logarithms; we will see that the constants
are relevant for determinatian of the vortex lattice struc-
ture. Within the linear approximation we have found
numerically that ln(Ci/Cs) = 2.06 and ln Cq ——0.9 in
the limit g (& 1.

We note that the first term in (6.1) comes from the

&LD =
~

—In
' + cos &ln, (6.5)

Ag

ab

GEM =
~ 2 Cos 01il

A, b (6.6)
a$ cos

where the factors C are omitted. The London model
overestimates the line energy of parallel vortices, while
underestimating the tilting energy (cos2 8 instead of LD's
cos 8). Within the EM model, the energy of parallel vor-
tices is zero (the parallel field penetrates unperturbed);
the tilting energy is overestimated due to the absence of
the screening by interlayer currents.

As was mentioned above, the second term in (6.5)
comes fram the 2D core. We obtain now this term using
qualitative arguments. The currents in the ab plane are
given by Eq. (2.11), and the energy due to these currents
is proportional to I j~~dz dy . The value 74„decreases
as 2s/1 because $ 7'4„- dl = 2ir for a path round the
point r = 0. Then the spatial variation of j~~ depends on
the behavior of the vector potential A„.

In a perpendicular vortex, for r ( Aeg, ~A~ is small
relat, ive to j~~ oc Po/A &i; at larger r 's, the current j~~ is
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exponentially small (the term T@„in j~~ is compensated
by A„. Thus t e energy per pancake is proportional to
Pp2sA,

& In(A, b/g, y) as in the London case
For a single pancake in a multilayer system, due to the

screening of the magnetic field by all other superconduct-
ing layers, the vector potential is small everywhere; it
cannot change the 1/r dependence of j~~ at any distance.
The cut-oA' or magnetic energy is determined by the sys-
tem size or, in the presence of other pancakes in the case
of tilted vortices, by the length A ga/s [Eq. (6.6)]. In the
Josephson coupled systems, in the region r & rp where
j, does not exceed the critical value jp we have the 3D
London behavior. Comparing j, oc Pp/A, &pr (j, oc j~~/7)
(see Appendix A for details) with jp for tan 8 & 7 we
obtain the radius of the crossover region: rp ——ys = Ag.
The energy contribution of the 2D region g, b & r & Az
is proportional to $2&sA

& In(Ag/(~g) per pancake which
gives (6.5) for the line energy.

H ((, Hp-Ho 4o
sin 8

(6.8)

This condition also assures that the 2D cores do not over-
lap in the y direction. Thus, implementing the rule (6.7),
we can use Eq. (4.3) for the line energy, obtained in the
linear approximation. The reciprocal lattice vectors g in
zy plane are

The integral over r in Eq. (3.7) is restricted to the lattice
unit cell; the prefactor $2p is replaced with PpB.

For the sake of simplicity we consider hereafter rectan-
gular lattices. In moderate fields, H, q (( H (( H, p, we
can utilize the linear approximation, as long as the lat-
tice size in the z direction, l~7 / cos 8 (I& —pp/B),
exceeds a, the size of the Josephson string in which the
approximation fails. This condition is fulfilled in applied
yields

B. Energy of the vortex lattice

1

(2z.)2

B cos8&-
2

0p
(6.7)

For a vortex lattice we should solve Eq. (2.8) under
boundary conditions (2.10), in which the core loci are
periodically arranged.

Due to the periodicity of the vortex lattice, the Fouj. ier
components yg are nonzero only for k coinciding with
vectors of the reciprocal lattice g in the ab plane. There-
fore, to obtain the lattice free energy density, we replace
the integral over k in Eq. (3.7) by the sum over g trun-
cated at (g( ( &'.

g = gp p, gp
—2slB'(cos8)'/ (1+ r/ ) '/,

(6.9)

gs = gp q, gps = 27I'l~ (cos 8) / (1 + rl )'/

where p, q are integers. The term p = q = 0 in the sum
over p, q yields B /8n. Evaluating the rest of the sum,
we replace summation with integration, thus obtaining
the same integral as in Eq. (5.1) but now with lower
limits of integrations over k and k given by gp and
gp&, respectively.

We then obtain the free-energy density of a tilted lat-
tice for tan 8 & (,b/s:

F(B,„)= B y~ B 81(l+„2),/ 1
l "1 7 ' C,'+

1
AgC2'[(1+„) —

11 I„'7C' l~, (6.10)8s 16' 2A.2,7 q s(1+ r/2)~/4 (aS (1 + r12)1/2)

if rl » s7~/2/l~ ——(B/Hp) ~/2 For rl && 1,. the main loga-
rithmically large term coincides with that of the London
model. Note that the angular domain for Eq. (6.10) is
quite broad: tan 8 « 7(Hp/B)~/2. In the opposite limit,
tan 8 » 7(Hp/B)~/2, we obtain

B2 ypB sin 8 laC, AJC2 l

(6.11)

The energy (6.11) in the interval g « s7 / /l~ coin-
cides with the results of the kink model, in which the
vortex is made of London segments of the length s tan 0
parallel to the layers, separated by short London kinks of
the length s parallel to c. It is worth noting that the kink
model reproduces correctly the 2D core contribution [pro-
portional to r/ in (6.11)], the leading one as far as OF/00
for 8 ~ s./2 is concerned. In particular, this term is
responsible for the lock-in transition and an anomalous
torque at large angles, discussed in following sections.
This term in the kink model comes from the short pieces

I

of vortices along c. Thus, these pieces account properly
for the contribution of the 2D cores where the currents
are mainly in the cb plane, as it is for perpendicular Lon-
don vortices.

VII. PHASE DIAGRAM

Due to the normal and 2D cores, the tilted vortex be-
comes energetically unfavorable at high angles, and the
phase transition from the tilted to the parallel vortex lat-
tice (the lock-in transition) may occur. ~~ s~ ~s s2 We will
show that in fact this takes place if Ag & A, q. The situ-
ation is more complicated if A J & A, b.

The applied field H at which the lock-in transition
takes place, depends on the sample shape; it occurs
at small H, where the magnetization I, is compa-
rable with H, ~ We consider the sample as a rota-
tional ellipsoid with demagnetization factors n~ = n&
and n, = 1 —2n~. Usually available samples are thin
platelets with the c axis perpendicular to the plate so
that n (( 1. The proper thermodynamic potential for a



374 L. N. BULAEVSKII, M. LEDVIJ, AND V. G. KOGAN 46

given H is G(Hs) = F(B)—B~/8m+ (B —H )M/2. ss

Magnetization M is related to the applied field via H, ; =
B; —47rM;(I —n;) with i = z, z; therefore

G(H, ; B) = F(B)— + +
8m 87r(1 —n ) 8x(1 —n, )

(7.1)

The conditions OG/OB = OG/O8 = 0 determine the mag-
nitude and the orientation of B in equilibrium at a given
H, .

A. Boundary of the Meissner phase

HC IZ{
L2

H J(l-n.,j ———

FIG. 4. Phase diagram in the plane (H, H, ) for Hq (
H, r g. Domains of the Meissner state (M), of the tilted vortex
lattice (T), and of the lattice locked in the parallel orientation

(P) are shown schematically.

dH, /dH = —tan 8. (7.4)

Equations (7.2)—(7.4) are quite general. In our case the
line energy e(8) is given by Eq. (6.1) for tan 8 & ( b/s and

by the London result (A9) for smaller angles. Particular
values we need for our analysis are e(0) = PpH, r ~/4x
and e(n./2) = PpH„))/47r with

0o &.s 4o
H, i ~ ——

2 ln, H, i
~~

—— ln
47rA, ~ (,g

' ' ' 4s.A, sA, s
(7.5)

(the constants C are omitted for brevity). Also, e'(0) = 0
and e'(7r/2) = PpH~/4' with—

For B ~ 0, F = e(8)B/Pp. It is convenient in this
situation to work in terms of the internal field H
4x(OF/OB), with components H = H, /(I —n ) and
H, = H„/(1 —n, ). While differentiating F with respect
to B, we use 8 = tan '(B /B, ) to obtain

(Pp/47r)H = e'(8) cos 8+ e(8) sin(8), (7.2)

(Pp/4x)H, = —e'(8) sin 8 + e(8) cos(8) . (7.3)

The minimum value of H = (H2 + H2) t determines
the Meissner boundary in the plane (H, H, ); the an-

gle 8 can be considered as a running parameter for t;he

Meissner curve. In general, for a given orientation
rr of H, there are more than one points on the curve
H, (H ) [H(n) is multivalued]. Writing the variations
dH and dH, due to a small change d8, we obtain the
slope of the Meissner boundary H, (H ) being negative
everywhere (except 8 = 0):

The phase boundary is shown in Fig. 4; the part of the
curve between Li and L2 can be evaluated numerically.

When one moves along the Meissner boundary from
L~ to L~, 0 increases. At point Lg, the vortices reach the
parallel orientation, while the applied field is still at an
angle a, such that

1 Az Hc]
tan o., =

1 —n, Hg
(7 7)

2. Hcg, i & Hg

In this case, point Lz is situated above Lr (see Fig.
5). Since the phase boundary (starting at L~ with zero

H

For o. ) a„vortices stay parallel. To see that this
is the case, one finds the Meissner boundary for parallel
vortices using F = e(x/2)B /Pp. H = H, r

~~

for any
H, . On the phase diagram, Fig. 4, this is a vertical line
terminating at L2. This line goes smoothly into the curve
L~Li, When one crosses L2, moving along the Meissner
boundary, the parallel phase goes over to the tilted one in
a continuous manner, which corresponds to the second-
order phase transition. This type of the phase diagram
has been considered in Ref. 32.

4o
HJ = „ ln (7.6)

Let us consider two cases.

H g, ~&Hg

Equations (7.2) and (7.3) yield two points, Lr and L2,
at the boundary between the Meissner phase and the
mixed phase of tilted vortices (e for a tilted vortex is

used):

8=0, H =0, H, = H, r i, dH, /dH =0;
8=+/2, H =H t'ai, H, =Hg,
dH, /dH = oo.

Hcxll{l-n ) H

FIG. 5. Phase diagram in the plane (H, H, ) for Hq

H, q ~. Domains of the Meissner phase (M), of the tilted vor-

tex lattice (T), of the lattice locked in the parallel orientation

(P), and of the combined lattice (C) are shown schematically.
Tilted lattice does not exist below the line H = H J(1 —n~)
for H » H, r [[(1 —n~)
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slope) has a negative slope [see Eq. (7.4)j, point L2 is out
of the phase boundary .The curve reaches the boundary
of the parallel vortices at point I, which corresponds
to the angle cr slightly larger than tan (H, i II/H, i i).
One can show that when a moves from Li to L, the
angle 8 changes from 0 to about I/7 « 1. Therefore,
when crossing point L along the boundary, the direction
of nucleating vortices jumps from 8 I/7 to s/2. This
is a first-order phase transition.

The solution for parallel vortices (along z axis) is given by
z independent y„„+» i.e. , both V'~4„and j„,~ vanish.(II) (II)

In the Fourier representation j~ z and V'y@„are pro--(II) (II)

portional to b(k~) Fo.r perpendicular vortices we have

(V„C( ))i, = —
2 ) exp(ik r„),

k

(7.11)

B. Boundary of the tilted lattice

As the next step we determine the boundary for the
ezisteace of the tilted lattice in fields Hp » H,
Pp/A &tan8. Minimizing G of Eq. (7.1) relative to B
with E(B) of Eq. (6.1), we obtain 8 H, and
Bg H~g HJ(1 —Ag ). Thus in large fields close
to the ab orientation, the line K~, Hg(1 —n, ) sets
the boundary under which the tilted lattice cannot ex-
ist. For Hg & H, i i this line starts from point L on
the Meissner boundary. Then the phase diagram of
Fig. 4 is possible where all boundaries are lines of the
second-order phase transition. The potential Gi(H, ) for
the tilted lattice in equilibrium near the boundary, for
8, = H~, —Hg(1 —n, ) && H,~ /Hp 7, is obtained from
Eq. (7.1):

where higher-order terms in (1 —a, ) and 8/ H«rae
omitted. In the interval rl = H, 7/H, » 1 the result is
similar to the London one:

I I
as 4'p

l
c2,i

(7 9)32z2Az H

Again, the factor CiC2 may be different from that of
London due to the contribution of 20 cores.

For Hq & H, i i in the interval H, i i(1—ri, ) & H„&
Hg(1 —ri, ) the tilted lattice is impossible. However, the
parallel lattice does not correspond to equilibrium be-
cause creation of perpendicular vortices lowers the en-
ergy. We conclude that a new type of vortex arrange-
ment should occur for Hg & H, i i which consists of co-
existing parallel and perpendicular vortices. We call this
arrangement the combined lattice. The transition from
the parallel to combined lattice is of the second order;
as H„ increases, on the line H„= H, i i(l —n, ), the
perpendicular vortex lattice develops starting from zero
density. The boundary between combined and tilted lat-
tices is the first-order transition line. To find this line
one should know the free energy of the combined lattice.

C. Combined lattice

Let us show first that the interaction energy of parallel
and perpendicular vortices is zero. For this purpose we
use Eq. (2.14) and find the interaction term:

F, , o ) f g~. {&((l)~@(»y&(&)~o((D)

(7.10)

To obtain the free energy for a dense perpendicular
lattice we should replace the last term by Bz/87r +
(8,4p/32m Az, ) ln(H, 2 i/8, ).

Minimizing G(B;H ) with respect to 8 gives 8
H . While minimizing relative to 8, , we should take
into account that 1 —n, (& 1. Then we obtain for the
combined lattice with a dilute perpendicular part:

G,(H, ) = H 4«p (Hp H„H, i i
H2, + H2, i(1 —n, )

8' (7.13)

Comparing Gq(H, ) of Eq. (7.8) and G,(H, ) just ob-
tained, we see that for low H, and Hg & H, ~ g the
combined lattice has lower energy. For smaller angles,
tan8 « p, the main logarithmic terms of Gq(H ) and
G,(H ) are the same. However, the linear approxima-
tion used so far is not sufficient to provide the higher-
order terms In the in. terval of angles tan 8 « g,b/s, the
London model applies and therefore the tilted lattice has
lower energy, see Appendix A. Thus the location of the
erst-order transition line can be limited only by inequal-
ities sH«/(~s & H~, —H~(1 —n, ) & H, /7 The phase.
diagram for the case Hg & H, i ~ is shown in Fig. 5. It
describes correctly the limit of decoupled layers (p = 0),
in which the tilted lattice cannot exist. In this limit, for
H, & H, ~ g, only the parallel lattice exists, while for

A s 16xs 1+ A2bk2

All remaining terms in (7.10) vanish since k b(k ) = 0.
Now, starting from the parallel lattice in the parallel

field and turning on H„, one can create new perpendic-
ular vortices (the cost in energy is PpH~i i/4n per one
vortex). The alternative is to tilt the existing parallel
lattice (at a cost of /pe/4n'). For Hg & H, i i the tilt-
ing is favorable, while for Hg & H, i i formation of the
combined lattice takes place.

Taking into account that within the combined lattice,
perpendicular and parallel vortices form independent sys-
tems, we conclude that at given B~ and 8, the compo-
nent 8, determines the density and the structure of the
lattice of perpendicular vortices, while the Bs compo-
nent is responsible for the parallel lattice. The free en-
ergy of the combined lattice for high H, && H, i ~I

and
Ho, « Pp/A~s (high density of parallel vortices and low
density of perpendicular ones) is

B
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H, ) H, i ~ we have the combined lattice (at p = 0, z-
component of the field penetrates unperturbed whereas
H, results in perpendicular vortices). HciL

4m

D. High field regime

VIII. MAGNETIC MOMENT AND TORQUE

The magnetization M and the torque density T are
evaluated according to

M = —c)G/i9H„T = M x H, . (8.1)

The component M is very small in fields H && H, q

for systems of interest here; the essential quantity is M,
which gives T& ——M, H~~.

I Z H =Ho
f= tang

Air

4L

4L lL

s tang

4L

FIG. 6. Arrangement of phase singularities for the tilted
(dashed lines) and perpendicular lattices (solid lines) in the
field H = Ho ——itip/s p at tan 8 = p.

Let us consider now vortex lattices in high fields H, &
Hp where 2D cores overlap. For the particular case of
tang = p in the field H, = Hp, the arrangement of
singularities for tilted and perpendicular vortices is iden-
tical, see Fig. 6. The tilted vortex then is not a proper
description for strong fields and high angles. We argue
that in this case the combined lattice occurs. The en-
ergy of a parallel vortex is very small, and the energy
of the parallel lattice in strong fields decreases with H,
as (Ho/H, )2.io Then, positions of singularities are de-
termined mainly by electromagnetic coupling of 2D pan-
cakes as in the model with zero Josephson coupling.
In this case the free energy reaches a minimum for the
perpendicular arrangements of singularities (perpendic-
ular vortices). Thus in strong fields and at high angles,
the combined lattice is favorable irrespective of the ratio
HJ/H, i ~. The free energy for the parallel part of the
lattice is obtained in Ref, 10, the energy of the perpen-
dicular part is given by the standard London expression.

We conclude this section by noting that straight per-
pendicular vortices (pancakes arranged along the z direc-
tion) in the combined lattice are unstable with respect to
small distortions caused by the Lorentz force induced by
the in-plane currents of parallel vortices. A zigzag ar-
rangement of pancakes in perpendicular vortices would
have lower energy than the straight one; this effect de-
termines mutual positions of parallel and perpendicular
vortices, the subject to be discussed elsewhere.

0 Hc,J (1-n, ) H.

FIG. 7. The magnetization ~M, ~
as a function of the z

component of the applied field in the case of IIg ) II,q ~ and
(I —n, ) && I.

For HJ ( H, i ~ (the phase diagram of Fig. 4), the
component M, has a broad maximum near tan n
For H, (( 7H we obtain from Eqs. (6.10) and (7.1)

Po & CzC4Az 7Has
I

Ho
l~

For H«& H, i ~ vortices are locked in the parallel ori-
entation. The system responds to the field H„just as
in the Meissner phase: M, = H„/4n, see—Fig. 4.

In the case Hg ) H, i ~ (the phase diagram of Fig. 5),
with H~ increasing, when the first-order transition line
is crossed, ~M,

~
jumps to a lower value, the jump being

of the order Pe/16m A, &. For the combined lattice, ~M, ~

increases with angle ct:

(8.3)

until the lock-in transition, after which it drops linearly,
see Fig. 7. For tilted and parallel lattices ~M, ) decreases
with angle. This feature allows us to identify the com-
bined lattice. Note that the H~, dependence of M, for
parallel and combined lattices is the same as for the
Meissner state and the perpendicular vortex phase at
H~~ = 0. This is because the parallel lattice can be con-
sidered as the Meissner state with respect to H„, while

in the combined lattice we have the system of perpendic-
ular vortices which corresponds to a given H„.

IX. DISCUSSION

Let us consider the question of validity of the 3D Lon-
don and LD models for HTSC. The characteristic param-
eter po ——2(~&(T = 0)/p~sz can be estimated using the
perpendicular upper critical field H, q (which gives ( i, ),
torque measurements (which give an accurate estimate of
p) and the structural data (which allow us to estimate s).
In addition, the crossover temperature T„=T,(l —po)
provides direct information on the parameter pp.

For YBaqCus07 according to the H, q data, (,t,

16 A and 7 5. Torque measurements~o on an un-

twinned sample yield y 8. This difference can be ex-
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0.2

0.1

0.5'

FIG. 8. Angular dependence of the torque at high angles
for the Lawrence-Doniach and 3D anisotropic London models
in the case H& & H, & ~. T,„ is the maximum of the torque
with respect to the angle. The circles are data for YBa2Cu307
(Ref. 20).

D

g)
(0
Il

U

U

—1.0

—0.5

plained by the strong dependence of p on the oxygen
content; y increases with z in the interval 0 & z & O. l
without a noticeable change of T, . For p 8 and taking
s = 8 A. (the distance between Cu02 planes separated
by a plane with CuO chains) we obtain po 0.12. High
angle torque data for the sample with 7 8 (Ref. 20)
at T = 75 K and H = 1 T are shown in Fig. 8. Devi-
ations from the 3D London predictions are seen clearly.
They disappear above 80 K implying that the crossover
temperature T«80 K. Using T, 90 K we obtain
po 0.12 in accordance with the estimate made above.
The torque data are in good agreement with the LD re-
sults, Eq. (8.2); the value of lnC2 obtained from this
fit is —1.4, which compares well with —0.9 obtained
within linear approximation. Thus, the LD model is able
to explain the anomalous torque for YBa2Cu307 as-
suming that phase diagram shown in Fig. 4 is valid for
this material. For the lock-in critical angle [cotn,
(Hg/H, )(1 —n, )) we obtain 2 x 10 (1 —n, ), i.e. , the

lock-in transition is practically absent in usually available
platelet samples.

For BiqSr&CaCu20s with approximately the same (,i,

as in YBa2Cu307 ~ and with y 55, the value pp
is about 0.001; for T12Sr2CaCu20s with 7 —500,37ss

pp is even smaller. Thus, these compounds are in the
Josephson regime in a broad temperature interval. Fig-
ure 9 shows the torque data for T12Sr2CaCu20s with
T, = 100 K at T = 90 K and H = 7.7 T. The value Hp
for this compound is estimated as 4 T; this suggests
that in the field of 8 T the tilted lattice does not exist.
The sharp drop at 0 = 89.92' can be attributed to the
lock-in transition. The position of this drop agrees with
the predicted value H, i ~(1 —n, ) for H, i ~ 0.02 T
and n, 0.5 for the sample studied. An increase of the
torque preceding the sharp drop can be taken as evidence
for the combined lattice. There is a quantitative discrep-
ancy between the predicted and measured values of the
torque at the peak (the predicted value is approximately
two times larger than the measured one). The discrep-
ancy can be caused by sharp edges of the sample or by
layers misalignment in the crystal studied. Such imper-
fections would smooth the peak value of the torque since
the lock-in transition would have occurred at diA'erent
angles in different parts of the sample.

We conclude by noting that the critical current is ex-
pected to change abruptly at the lock-in transition as
well as at the transition combined-tilted lattices because
the pinning should differ for parallel, tilted, and perpen-
dicular vortices.
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APPENDIX A

The 3D anisotropic London equations for a vortex
passing the origin along zp read2

(A1)

89.6 89.8

a (deg)

90.0
0.0

FIG. 9. Angular dependence of the torque T(a)/T(n =
89.6') of a single crystal T12Sr2CaCu20s at 90 K in the field
H = 7.7 T (Ref. 21). Open circles correspond to the angle
decreasing, and solid circles to the angle increasing.

Here z;p~ is the unit antisymmetric tensor; A m, p is a ten-
sor with eigenvalues A m = A

&
and A m, = A, , such

that A bA, = A, and ro —(zu, yo). Usually, these equa-
tions are written with zp as one of the coordinate axes, a
justified choice because nothing depends on zp for a vor-
tex in a uniform material. Within the LD scheme, this
feature is lost anyhow, and the crystal itself represents
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the most convenient frame. For the purpose of reference
and comparison with LD results we describe here the 3D
London vortex in t,his frame.

The crystal coordinates (z, y, z) (with z along the c
axis) are obtained by rotation of (zp, yp, zp) over the angle
0 (the angle between the vortex axis and the c axis) round
yp

—y, which means: xp ——z cos 0 + x sin 0 and 6(rp) =
6(zp)b(yp) = 6(z cos 0 —z sin 0)b(y). Equations (Al) then
yield

h —A, bAh, + (A, —A, b)(47r/c)V'„j,

= gp sin 0 6(z cos 0 —z sin 0)6(y),

h„—A„Ah„+ (A, —A, )(4)r/c)'7 j, = 0, (A2)

h„= Pp tan 0(A, —A, b) k k„/d, (A3)

h, —A, bAh, = Ppcos06(zcos0 —zsin0)b(y).

Here 4n j, /c = curl, h, and 6 is the 3D Laplacian. Note
that, in fact, h(R) depends only on (z —z tan 0) and y.
The 2D Fourier transform (FT) of the field at = 0 is

h~ = pp tan 8 [1+A, b(k tan 0+ k„) + A, k ]/d,

the last equation (A5). In the real space formula (4.4),
the 3D London limit corresponds to setting sinu = u;
this can be directly confirmed by integration over k in
t, he inverse FT of j,(k).

From t, he last of Eqs. (A5) we find

/pc ~1j,(r) = —K,8z'A &%2 r, A (I+rP)'&') '

(A7)
r/ = 7 cot 0, r,' = z r/ + y (I + r/'),

where K1 is the modified Bessel function. The boundary
of the region in the zy plane, where the London model
diAers substantially from the LD approach, can be esti-
mated setting lj, (r)l = jp. The boundary is situated in
the region where the argument of I~ i in (A7) is small; we
then obtain

(A8)

These are two identical ellipses touching each other at
the origin and located symmetrically on opposite sides
of the z axis. The width of the region enclosed by the
curve in the z direction is 8 tan 0; in the y direction it is
2A~ (I + 2) —i/2

The free energy per unit length of a London vortex has
been obtained in Ref. 5:

h, = pp/[I + A, b(k sec" 0+ k„)],
where

d = [1+A, b(k sec 0+ k&)](l+ A, k + A, bk tan 0).

CL, — A(0) A, A,b(1+ cos 0) )
ln

' + cos &ln
167r2A2b A, (,b A(0) + A, cos 0)

(A9)

Note that in the crystal frame, the equation for h, is de-
coupled from others; h, (R) can be easily obtained either
from the real space Eq. (A2) or from its Fourier trans-
form (A3). This feature is preserved in the LD formalism;
with the help of Eq. (2.4) we obtain

s ) h, (R)b(z —ns) —A, bah, (R)b(z —ns)

For large angles, tan 0 &) p, the London line energy reads

Po2 A, 72 A, Csl.
ln + 2 ln

16m A, &A, (& 2tan 6 r & ) (Alo)

with C3L, ——e 2 = 0.135.
Taking the limit A, ~ oo, one obtains for 0 g )r/2 the

result of the model with pure electromagnetic coupling
of the layers:

= Ppb(y) ) 6(z —na + a/2) . (A4) A,b(1+ cos 0)
EM —

2 cos n
16~2A~b 2(,b cos 0

(Al 1)

j, = ippck„ t—an 0/4)r(l + A,'k'+ A'. ,k' tan' 0),
where

A (0) = A, b sin 0+ A, cos 0. (A6)

Within the LD model, in the linear approximation, the
current j,(r) = (cPp/8)r2A, s)&p = jpp. It is easy to check
the same relation in the Fourier space: expand the rhs
of (4.2) in k a (& I and compare the result with j, (k) of

This equation can be solved with the help of FT, see
Refs. 12 and 13.

The 2D Fourier solution for the current density is

= ip')ock„[1+ A, (k- sec 0+ k„)]/4n. d,

j„= ipock [1+A (0)—(k sec 0+ k ))/47rdcos20,

(A5)

The free energy of the equilibrium vortex lattice in
intermediate fields, H, ) &( H (& H, 2, reads (see Ref. 5)
in our notation

po(B~ + 7 B, ) 7H, 2 ~C)
32m. 2A bA (B2 + 72B2)'/2 (A13)

Vor the combined lattice of perpendicular and parallel
London vortices we have G, = Gg + G~~ with

go(B' + 7'B,')' ' 7H, 2 gC')

8)r 32)r2A bA (B2 + 72B2))/2 '

(A12)

where the parameter C& on the order unity depends on
the lattice structure. The leading term in the potential
G of Eq. (7.1) is (F—B2/87r) Thus, for the tilted . lattice
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NpB.
32ir2A2 B

ApB pH, 2 zC,'
ll

ln

(A14)

APPENDIX B

In Fourier representation Eqs. (2.4) read

(k„+ q )A (k, q) —k ksA„(k, q)

The tilted London lattice is always preferable to the
combined one: use the inequality (B + p~B~)i~~

B + pB, in the prelogarithm factor of Gi to show that
Gi —(G~ + G~~) is always negative.

~

A (k, q)+ —4 (k, q) ~
(Bl))'.

b I,

with another equation obtained from (Bl) by the inter-
change z ~ y. Here

A (k, q) =f dr dz A (r, z) exp[ —i(kr q- qz)],

A (k, q) =) fdrdzA (r, z)d(z —es) exp[—i(kr+ qz)],

O (k, q) =) f r dzed„(r) (z d—es) exp[—i(kr+ qz)], 4„(r)= qi iq„(r),
n

with n = z, y. Denoting the rhs of (Bl) by —a~ we have

a (ks+q2)+a„k k„
q2(k2 + q2)

to obtain an equation for Az, interchange z and y.
Using the definition of A one can prove the relation

(B2)

A (k, q)= —) A
~

k, q+
(

s
2.ml

(B3)

which verifies that A (k, q) is periodic in q with period 2s/s. With the help of this property we obtain from Eq. (B2)

(B4)

where q = q + 2irm/s. An equation for As(k, q) is obtained after z ~ y. Solving these two linear equations for

A~ (k, q) and As (k, q) yields

pp Cq (k, q)[k Apq+ k„A),q+ k ApqA), q]+ qlk„(k, q)k k„(Apq —A), q)A k, q
2ir k~(1 y Apq)(1+ Ayq)

(B5)

and a similar expression for A&(k, q) (z ~ y), where

1 s sin h(ks)
k~ + q2 2k cosh(ks) —cos(qs)

'

k a
2C)q,.(k, q) sin

* = kepi, b(qs+ k a),

(B8)

Also, one can verify that

k A (k, q) + kyAs(k, q)

(B6)

[k Cq (k, q) + kvqlpv(k, q)] . (B7)2x 1+APq

Now we use the relation p„„+i(r) = Cq„(r) —qrq„+i(r)
and Eq. (3.4) to obtain qI) (k, q) and Cq&(k, q) in terms of

k a (' 4vri . k a]
2C)&(k, q)sin =

~ k„pi, — sin
~
b(qs+ k a).

2 [,
" k 2)

Then, with the help of Eq. (2.11), we find j„k in terms
of piq. Inserting the phases qxp into (B5) and using
Eqs. (2.11), (2.14), and (3.5) we obtain Eq. (3.7).

Since ks & s/g, [, « 1, we can use in the free-energy
calculation

82

A +$ AQ q
2

4sin (qs/2) + k s
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APPENDIX C

Consider an integral

= 1 dz dp
2WP g+yg&~g I + z + y P

where R )) 1. Asymptotically,

2RI =ln 1+
Integration over an infinite strip parallel to z gives

On the other hand,

(CI)

(C3)

dp
( )

We see that for P « I the procedure (C4) gives a correct
answer. For P » I the procedure (C3) should be used, if
we are to evaluate the integral with logarithmic accuracy
for large or small values of P. Thus, one can replace the
circular region of integration by an infinite strip parallel
to the direction of the fastest decrease of the integrand.

The difference between (C3) and (C4) is lnP. In the
domain of angles tan 8 )) p the parameter p = 7/ tan 0
according to Eq. (5.2); this gives an extra factor in log-
arithm in the third term of Eq. (6.1). In the domain
of angles tan tl « 7 the factor p = I + tan 0/7, and the
difference between (C3) and (C4) is negligible.
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