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Electromagnetic instability of uniform current flow in anisotropic type-II superconductors has been
considered. It is shown that the instability occurs in the region j» &j(jf2, essentially depending on the
orientation of the current density j with respect to the symmetry axes. This is due to the coupling of the
anisotropy and strong nonlinearity of the I - V curve in the flux-creep regime, regardless of specific mech-
anisms of flux dynamics. Peculiarities of the instability in different models of resistive states (convention-
al flux-creep model, vortex glass, critical-state model, etc. ) are examined. The instability is shown to des-
troy laminar current configurations and is accompanied by the appearance of current domain walls and
macroscopic-vortex current patterns, which depend on the sample geometry. A qualitative description
of the macroscopic vortex structures is given, and their manifestations in electric and magnetic proper-
ties of anisotropic superconductors are discussed.

I. INTRODUCTION

Vortex structures in anisotropic type-II superconduc-
tors reveal a number of characteristic features as com-
pared to the isotropic case, for example, a noncollinearity
of flux lines and applied magnetic field H, noncentral
forces upon vortices and their attraction along certain
crystallographic directions, existence of quasi-two-
dimensional (2D) vortices localized at superconducting
planes in layered materials, ' etc. The anisotropy con-
siderably reduces the tilt and shear elastic moduli of the
fiux-line lattice (FLL) and, as a consequence, the energies
of defects (vortex loops, kinks, dislocations, etc.) arising
in the mixed state. ' The latter proves to be especially
important for anisotropic high-T, superconductors due

to high operating temperatures and low line tension of a
fluxon, which leads to significant fluctuations of vortex
positions, thermally activated generation of defects in the
FLL, entanglement and reconnection of vortices, etc. '

In other words, the anisotropy generally reduces the sta-
bility of the FLL with respect to the generation of de-
fects, which (together with high T, and relatively weak

pinning ) leads to a fast relaxation of irreversible magne-
tization and low critical current density j,. In addition,
the high density of defects can cause some instabilities of
the Abrikosov FLL, resulting in its transition into states
such as liquid phases, ' vortex glass, etc. In this case,
the effect of the anisotropy does not reduce to a renor-
rnalization of parameters and their angular dependences
only (see, e.g., Ref. 9), but also can facilitate the appear-
ance of new Aux structures and lead to specific instabili-
ties of the FLL.

In the presence of a macroscopic current I, vortex
structures become metastable, which manifests itself in a
decay of an induced I (t) due to thermal fiuctuations (fiux

creep). In this case the anisotropy afFects the stability not
only on the level of individual vortices, but also via a
macroscopic electric field E(r, t) generated by the fiux

creep. As a result, the stability of the mixed state be-
comes dependent on dissipative processes as well, in par-
ticular, on the form of current-voltage (I V) charac-teris-
tic of a superconductor. For nonlinear resistive states the
anisotropy can considerably restrict possible forms of I-V
curves for which uniform current flow is stable to small
electromagnetic perturbations. Here the coupling of an-
isotropy and nonlinearity of I( V) can lead to a collective
electromagnetic instability of the vortex system since one
of the principal values of the differential resistivity tensor
R

&
becomes negative for current densities j» &j & jf2

essentially depending upon the orientation of j with
respect to the symmetry axes. '

The instability occurs provided that the nonlinearity of
I( V) and/or the anisotropy is high enough. The strong
nonlinearity of I(V) in the flux-creep regime (j(j, ) is

typical for any hard superconductor having the I-V curve
similar to that shown in Fig. 1. At the same time, the
essential anisotropy is a characteristic feature of high-T,
superconductors for which such an instability could easi-
ly be realized. The corresponding instability criteria can
be expressed in terms of directly measured parameters,
regardless of the microstructure of the mixed state as well
as specific mechanisms of flux dynamics and pinning.
One can be shown' that the anisotropy results in the in-
stability of some models which had originally been pro-
posed for isotropic superconductors and then were ap-
plied to the anisotropic case by taking account of angular
dependences of parameters. For instance, such a situa-
tion occurs for the Bean critical-state model with an an-
isotropic j„"vortex glass and collective creep' models,
conventional Aux-creep model, ' etc. Here the anisotro-

py can lead to a qualitative transformation of the FLL
and appearance of new nonuniform states which cannot
exist in isotropic superconductors. Notice that the insta-
bility results from a resistive part of j which is usually
small as compared with the nondissipative j, in a region
of the phase diagram below the irreversibility line. ' In
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FIG. 1. Typical I- V curve for a type-II hard superconductor.

isotropic superconductors this justifies the use of the crit-
ical state concept which is valid provided that kz T ((U,
where U is an apparent fiux-creep activation energy. '

However, in anisotropic superconductors the situation
changes qualitatively, since just the small resistive part of
j can lead to the instability even if ks T/U « l. As a re-

sult, the use of the critical-state model in anisotropic su-
perconductors may require a stability analysis for each
specific case, depending on the sample geometry, induced
electric fields, and details of I-V curves in the flux-creep
regime.

The instability leads to macroscopic spatial modula-
tions of magnetic fiux and current since one of the princi-
pal values of magnetic difFusivity tensor D p=pp R p
becomes negative along a direction which coincides with
neither the symmetry axes nor the current direction.
This is a manifestation of an instability of nonlinear
current flow in anisotropic media with respect to a local
turn of the initial j(r) toward a new direction corre-
sponding to a lower resistance. However, the uniform
turn of current is usually incompatible with the boundary
conditions ensuring zero normal components of j(r) at
the lateral surface of a sample. This results in a partial
closure of current lines and appearance of current pat-
terns which depend upon the sample geometry. Depend-
ing on the value and orientation of j, such patterns can
vary from weak modulations of an initially uniform j to
cellular current structures consisting of an array of mag-
netic macroscopic vortices in the system of Abrikosov
vortices. ' In this case, the anisotropy results in a dissipa-
tive transition from laminar into some "turbulent"
current flow. Such a transition may be considered as an
analog of the field-induced orientational instability aris-
ing in liquid crystals, where the electric or magnetic field
can lead to a spontaneous generation of domain walls
separating regions with different orientation of the direc-
tor, or the appearance of dynamic vortex structures (see,
e.g., Ref. 15).

Therefore, the anisotropy reduces the stability of the
mixed state on both the macroscopic and microscopic
scales, which can lead to novel flux structures. In this pa-
per, I focus only on the macroscopic level and consider
the electromagnetic instability of uniform current flow
and the appearance of current patterns in anisotropic su-
perconductors. Within the framework of the macroscop-
ic approach, ' the instability results from the coupling of
the anisotropy and the strong nonlinearity of I ( V) caused

II. LINEAR STABILITY
OF UNIFORM CURRENT FLOW

A. Symmetry of I-VCurves

We begin first with an analysis of nonlinear I-V curves
in anisotropic superconductors assuming for simplicity
the rhombic crystalline symmetry with the orthogonal
symmetry axes x, y, and z. In the case of an arbitrary
orientation of the magnetic indication B with respect to
x, y, and z, the electric field E is not parallel to the
current density j, therefore the I-V characteristic can be
presented in the form

E=G(j,B), (2.1)

by the nonzero j, (Fig. 1), regardless of microscopic
mechanisms of flux dynamics. For that reason I shall not
discuss in detail temperature and field dependences of
characteristic critical currents which can be essentially
model dependent. Instead, a general instability criterion
obtained is illustrated by different models of flux dynam-
ics in order to reveal some universal features of the insta-
bility which can be formulated as a kinetic phase transi-
tion. The latter enables one to use the universal scheme
which has been developed for a description of equilibrium
phase transitions. Here we restrict ourselves to a qualita-
tive analysis of the macroscopic vortex structures arising
above the instability threshold. It will be shown that
there is a mathematical analogy of the nonlinear Maxwell
equations describing the macroscopic vortex current
structure with equations describing a supersonic gas flow.
This enables one to predict the appearance of discontinui-
ties of current flow in anisotropic superconductors analo-
gous to the shock waves in aerodynamics.

The paper is organized as follows. In Sec. II, the sta-
bility of uniform current flow to small electromagnetic
perturbations is considered. The analysis is based on gen-
eral properties of I-V curves in anisotropic superconduc-
tors and restrictions imposed by symmetry. An explicit
instability criterion is obtained; the geometry of the insta-
bility and its dependence upon the current direction is
analyzed. Peculiarities of the instability in various mod-
els of resistive states (single-vortex and collective flux-
creep, vortex glass, critical-state models, etc.) are dis-
cussed as an illustration. Section III is devoted to non-
linear current structures caused by the instability. Quali-
tative analysis of low-amplitude current patterns and
macroscopic-vortex structures are given. The instability
is formulated as a spinodal decomposition of the uniform
resistive state due to a kinetic phase transition from a
laminar to vortical fiux-creep regimes. By using a hodo-
graph transformation of the Maxwell equations, a
quasihydrodynamic approach is proposed for description
of stationary current configurations in anisotropic super-
conductors. Section IV contains a discussion of the re-
sults and possible manifestations of the instability in mag-
netic and electric properties of anisotropic superconduc-
tors. The relation of the macroscopic vortex structure to
the observed magnetic granularity of nonceramic high-T,
oxides is discussed.
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where G(j, B) is a nonlinear vector function obeying the
relations

E„=G,(j,g), E» =G~(j,g), (2.2)

where p is the angle of j with the x axis, j,=j cosp,
j„=j sing, j= ~j~. In this case the invariance under in-

version results in that E =Oat j =OandE, =Oat j =0,
in other words, G~($)=0, BG„/8/=0 at P=(O, m. ), and

G„(P)=0,BG, /OP=Oat P=+n/2
In general, the angle 4 between E and x depends on

both p and j. If, by analogy with linear media, one re-
gards 4' to be independent of j, the I-V curve takes the
form

(2.3)

where p &
is a linear resistivity tensor, 6 is a function of j

and P, and a,PE (x,y, z). In this case, the principal axes
of p & coincide with x, y, and z; moreover,
c t%o'=(p„/p )cot/ at j, =O, where p„and p are the
principal values of p &. Furthermore,

BG mn

2
'=0, P=, n =0, +1,+2,

due to the invariance under inversion. The quantities p &

and G will be clarified below. The use of Eq. (2.3) instead
of general Eq. (2.2) can be justified, if one takes into ac-
count the strong nonlinearity of I( V) at j &j, due to the
flux creep which manifests itself as a macroscopic motion
of some fraction of magnetic flux G which essentially de-

pends on j [in various models G depends on j exponen-

tially or as j with m »1 (Refs. 8, 12, 13, 16, and 17)].
Since just that motion causes the electric field E, hence, it
follows that formula (2.3) can be considered as a general
relation between the vectors E and j, where the com-
ponents p & play the role of kinetic coefficients whose rel-

atively weak dependence on j (see, e.g., Ref. 18) can be
neglected as compared to the scalar function G(j,p).
Therefore, formula (2.3) takes into account main qualita-
tive features caused by the anisotropy, namely, the non-

collinearity of j and E and the angular dependence of a
mean density of depinned vortices proportional to
G (j,p}. For this reason I shall use just Eq. (2.3) instead
of the more complicated Eq. (2.2), which enables one to
simplify considerably the exposition.

B. Instability criterion

In this paper we consider an instability of uniform
resistive state caused by negative components of the
differential resistivity tensor R &=BE /Bj&. This im-

plies that, at the instability threshold, a principal value of
the tensor R

&
vanishes for one of its principal axes g, g,

G(j,B)=—G( —j,B)=—G(j, —B)=G(—j, —B),

provided that the crystal is invariant under inversion and
the Hall effect is negligible. Unlike the isotropic case, the
anisotropy leads to a noncollinearity of E and j even for
jlB. For B parallel to one of the symmetry axis (say, the
z axis} the vectors j and E lie in the xy plane and Eq. (2.1)
reduces to

A(k)= —
po 'k f(n) . (2.5)

This formula gives the spectrum of electromagnetic per-
turbations 5E(r, t) ~ exp(A. t +i kr) in an infinite medium,
where n=k/k is the unit vector along k, and k = ~k~.

The function f (n) obeys the following secular equation:

det[R & nn„Rr& —f5 &]=0,— (2.6)

where 5 &
is the Kronecker symbol. The instability

occurs if Eq. (2.6) has solutions with Ref(n) &0 corre-
sponding to the exponential growth of electromagnetic
perturbations with t. This is equivalent to that one of the
principal values of R

&
becomes negative. In the case of

an arbitrary orientation of j with respect to the symmetry
axes, Eq. (2.6) reduces to a cumbersome quadratic equa-
tion for f (n) given in Appendix A. For this reason we
consider here a simpler case of the 2D instability for
which the vectors j and E have only the x and y corn-
ponents. This enables one to get an explicit instability
criterion valid for both thin films and 3D anisotropic su-

perconductors if the current flows along the symmetry
planes (B~~z, j)~xy).

For the 2D case, the perturbations 5H(r, t) have only
the z component 5H, and the Maxwell equations reduce
to

8,5B =8 5E —8„5E

5j =8 5H, 5j = —() 5H .

(2.7a)

(2.7b)

Inserting 5E =R &5j& into Eqs. (2.7), one gets the fol-
lowing equation for 5H:

p r},5H=[R 8 „+(R +R )8„+R „0 ]5H, (2 8)

which describes different modes 5H(k) ~exp(A. t+ik r),
where A, (k) is given by Eq. (2.5) and

and g, whose orientations are determined by the orthogo-
nal eigenvectors n, where p=(g, g, g). Notice that for
nonlinear anisotropic media, the vectors n (j) essentially
depend on j and generally coincide with neither the sym-
metry axes (x,y, z) nor the current direction. The stabili-
ty analysis of the dissipative current flow to small elec-
tromagnetic perturbations 5E(r, t} and 5B(r, t) can be
carried out by means of the Maxwell equations
0,5B=—cur15E, curl5H=5j, and 5E =R &5j&. If one
neglects the self-field effects, ' the Maxwell equations
reduce to a set of linear equations

i~p05j(k) = [k X [k X 5E(k) ] ]

and 5E (k) =R &5j&(k) for the Fourier components

5E(k, co)= f 5E(r, t)exp( icot —ik r)d—rdt,

5j(k, co) =f 5j(r, t)exp( icot —ik r)d —rdt .

Hereafter, we put, for simplicity, B=poH, which corre-
sponds to H„«H «H, 2 and H, &

and H, 2 the lower and
upper critical fields, respectively. The condition of solva-
bility of the algebraic equations for 5E(k, co) yields the
following dispersion relation for the increment A, =iso
which depends on the orientation of the wave vector k
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f(n)=R „n„+(R„»+R»„)n„n»+R„„n» . (2.9}

4R Ryy &(R y+Ry )

tan2g=(R„„+R»„)/(R»» —R„„)

(2.10)

(2.11}

The angle g fixed by Eq. (2.11) also determines the orien-
tation of the orthogonal principal axes g and g of the ten-
sor R &

in the xy plane because the minimization of the
quadratic form (2.9) just gives two eigenvectors of R &,
one of them being directed along n at f (n}=0. Let n be
parallel to g, then g and g are related to x and y as fol-
lows:

g=y cosg+x sing, g=y sing —x cosg .

In the coordinate frame g, g, Eq. (2.8) becomes

poa~5H = (R, a((+R 2aqq)5H

(2.12)

(2.13)

where the principal values R, 2 are given by

2R
~ p

=R +R +[(Rxy+Ryx ) +(Rxx Ryy ) ]

The uniform state becomes unstable if there exists a
direction n for which ReA, (k) )0, i.e., the quadratic form
(2.9) is negative. This condition first satisfies for the
mode that has the minimum value of f(n). The mode is
unstable if f (g) &0 and af /ag=0, where we put
n„=sing and n =cosg. Using these conditions, one
finds, after a simple calculation, the instability criterion
and the angle g, determining the propagation of the criti-
cal mode, in the form

ductors as well, where the negative principal value R2 at
B~~z, j~~xy results in the instability in the xy plane. '

In anisotropic superconductors the criterion (2.10}can
easily hold because of the strong nonlinearity of I(V)
(Fig. 1}. In order to show that, we calculate the elements
R

& by differentiation of Eq. (2.3), which yields

, aG . aG
G +j cos g . —cosg sing p„,aj ag

R„»= j cosg sing . +cos g p„,aG , aG
aj ag

aG . , aGR»„= j cosg sing . —sin g paJ

(2.15)

s(j )», (g)=g/2+(g'/4+g)'", (2.16)

G +j sin g . +cosg sing p
aG . aG
aJ

where p„and p~ are the principal values of p &. An expli-
cit instability criterion can be obtained if one assumes the
simplest scaling of the form G (j,g ) =G(j /j k ( g ) ) [the an-
gular dependence of j„(g) will be discussed below]. In
this case, one has aG/aj =G'/jk, aG/a/= uG'/j„—,
u =j /j», G'=dG/du, therefore formulas (2.10) and
(2.15) reduce to a quadratic inequality for G'. After some
algebra the instability criterion (2.10) can be presented in
the form

(2 14) where

As follows from Eqs. (2.13) and (2.14), the instability cri-
terion (2.10}implies that the principal value R2 along the

axis perpendicular to n becomes negative. The
geometry of the instability is shown in Fig. 2. Formulas
(2.10) and (2.11) are valid for 3D anisotropic supercon- alnG

b(g)
a»Jk

alnj '
ag

(2.18)

16PxPy

[(p„+p» )b +(p„—p» )(b cos2$ —sin2$) ]

(2.17)

2q&

gC

1 k

Here the parameters s, (g) and s(j,g) characterize the an-
isotropy and nonlinearity of I(V), respectively, with
s, (g) being independent of j. Likewise, the angle g can
be found from Eqs. (2.11) and (2.15) as follows:

(p„—p )b +(p„+p )(b cos2$ —sin2$ )
tan2g=

(p„—p» )(1+2/s)+(p„+p» )(cos2$+ b sin2$)

(2.19)

0

FIG. 2. Geometry of the instability. Inset: the spectrum
A,(k) in the case s (s, (curve 1) and s )s, (curve 2). The dashed
curve shows the modification of A.(k) due to the spatial disper-
sion of R & (see text).

Formulas (2.16)—(2.19) are the main results of the linear
stability analysis for the I Vcurve of the for-m (2.3). For
instance, in the isotropic case (p„=p, b =0, g = ~ ), the
inequality (2.16) does not hold for any s (j), which implies
that the resistive state is always stable to small elec-
tromagnetic perturbations. The anisotropy can change
the situation qualitatively if the I-V curve is nonlinear
(s )0). Indeed, since the right side of Eq. (2.16) does not
depend on j, the criterion (2.16) can hold provided that
the nonlinearity of I( V) or/and the anisotropy is strong
enough. As follows from Eq. (2.17), there are two factors
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resulting in the finite value of s, (p) in anisotropic super-
conductors. The first one is the noncollinearity of j and
E because of p„Ap, whereas the second one comes from
the angular dependence of jk (bAO), or, in other words,
from the dependence of the fraction of the depinned flux
on current direction.

As seen from Eqs. (2.8) and (2.13), the evolution of
magnetic perturbations 6H(r, t) is described by a
diffusive-type equation with the diffusivity tensor
D p

=po R p. The condition R 2
=0 determines the in-

stability threshold at which the principal value of D &
along the g axis vanishes, which leads to a spontaneous
growth of magnetic flux structures at s )s, . Similar phe-
nomena arise in any system with negative differential
resistivity which results in a stratification of uniform
current flow into current domains or channels, as it takes
place in semiconductors (Gunn instability), hot plas-
ma, ' normal metals and superconductors, etc. These
phenomena are usually due to a bistability caused by
nonequilibrium processes, which leads to the appearance
of dissipative structures. ' By contrast, the instability dis-
cussed in this paper is a result of the coupling of strong
nonlinearity of I( V) and anisotropy and is not due to a
renormalization of kinetic coelcients by nonequilibrium
processes.

linear, j,(p) is an angular-dependent critical current den-

sity, p &
is a flux-flow resistivity tensor. In this case one

has G = 1 —j, lj, hence, s =j, l(j —j, ), and Eq. (2.16)
reduces to j &jf2 with

j/~= [(-,'+I/g)'"+-, ' lj, . (2.25)

From Eqs. (2.22) and (2.25), one finds that jf&-j, and

jf2-j, in the case of strong anisotropy (g —1), which
gives jf\ (kg TlUj), «jfp in a region of the phase dia-

gram below the irreversibility line U ))k~ T. ' At

j» « jfz, the values jf f 2 can be found, regardless of the
crossover region between the flux-flow and flux-creep re-
gimes, which was assumed above when deriving Eqs.
(2.21) and (2.25).

Formulas (2.20) and (2.24) are some approximations of
real I-V curves of anisotropic superconductors in flux-

creep (j,—j&)j, ) and flux-flow (j —j, ))j, ) regimes, re-

spectively. Other variants which have commonly been
discussed in the literature involve, for example, the power
I-V curve V ~j™with n ))1,' ' nonlinear flux flow, '8

I Vcurve -of the form Va-exp[ (jk/j )"—] predicted by
vortex glass and collective creep' modes, etc. For
Va-exp[ —(jk ij)"] the nonlinearity of E(j) increases as j
decreases, and s =)u(jklj)". As a result, the criterion
(2.16) holds if

C. Examples J &j j„(JM/& ) (2.26)

The instability criterion (2.16) can hold in various
models of flux dynamics at anisotropy level typical for
high-T, oxides. For instance, for the Anderson-Kim
flux-creep model, ' the I-V characteristics can be present-
ed in the form

(2.20)

Here j,(p)=k&Tj, (p)/U(p), U is an activation energy,

p & is the resistivity tensor in the thermally assisted flux-
flow (TAFF) mode. Formula (2.20) is the simplest gen-
eralization of the conventional flux-creep model which
takes into account the anisotropy via the tensor p &

and
the dependence of j&(p) on current direction. By com-
paring Eqs. (2.3) and (2.20), one finds G(u) =(sinhu )/u,
u =jlj„whence the criterion (2.16) can be written as

coth ——1&s,(P) .J J
J& J&

(2.21)

In this model the nonlinearity of E(j) increases with j,
therefore the instability occurs at j )j», where the value
of j» in two limiting cases g ))1 and g « 1 is given by

(2.22)

b b+ 13 ln(J„ /J ) (2.27)

in Eq. (2.17), which does not change qualitatively the
above statement (here P=Blnp/BP). Such a situation
arises due to a very strong nonlinearity of the function

exp[ (jk lj )"] ab—out a point j =0, where all derivatives
of V(j) vanish. This can lead to the instability at j~0,
even in the isotropic case, if one takes into account the
Hall effect. Then p~„=pyy p) p~y

= —
py,

=p tanQ, ,

which gives g =4/tan 0, with 0 the Hall angle. ' How-

ever, in high-T, superconductors, the Hall effect is negli-

gible, compared with the anisotropy [tanQ —10 —10
at B & 10 T (Ref. 25)].

A similar instability occurs in the case of power E( j) of
the form

where the parameter s, involves all relevant mechanisms
of anisotropy, and the exponent p is assumed to be in-
dependent of P. Notice that inequality (2.26) holds at

j—+0 for any anisotropy, regardless of mechanisms con-
tributing to s, . This indicates an instability of the glassy
state at j~0 with respect to any perturbations violating
its isotropy. Using Eqs. (2.10) and (2.15), one can show
that the angular dependence of p can be taken into ac-
count by the replacement

Jf 1 +3g I/4j g « (2.23) =p y~(J /Jk ) (2.28)

Now we consider an anisotropic critical-state model" for
which it is convenient to present E(j) as follows:

with angular dependent jk and m. If m =const, one has

s (j)=m, and Eq. (2.16) becomes

J, ( 4) /J ]P.g/p m &s, (P) . (2.29)

where the I-V characteristic at j )j, is assumed to be If Eq. (2.29) holds, the instability arises at any j. That
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feature of the power E(j ) with m =const does not al-

ready occur if one takes account of an angular depen-
dence of m (P). This can be done by substitution of Eq.
(2.27) into Eq. (2.29) with p =t}lnm /t}p. Then Eqs.
(2.29), (2.16), and (2.17) reduce to a quadratic inequality
for ln(jk/j), which gives the instability domains as fol-
lows:

(2.30}J &Jf ~ J&jf
2(p, p )' [sgnP/t/g +(1+m)' /m]

~p~(p„cos p+p»sin p)f —jkexp

(2.31)

Thus, the angular dependence of m leads to the splitting
of the instability region (Fig. 3).

Both for V-exp[ —(jk/j }"] and V-j™,the anisotro-

py can result in the instability at j~0, except the case
m =0 which corresponds to the linear E(j ). This fact
could be interpreted as follows. One possibility is that
highly anisotropic superconductors always have a linear

part of E(j) at small j, which provides a macroscopically
stable resistive state. For example, it has been shown
that the TAFF in highly anisotropic superconductors can
result from thermally activated generation of dislocation
pairs in the FLL. Another variant which will be dis-

cussed below could be due to the appearance of nonuni-

form current structures.
The above results are summarized in Fig. 3, where the

values j» and jf2 correspond to the flux-flow and flux-

creep regimes, respectively. Here the existence of the
domain 0&j &jf„as well as an instability at j & jf3
caused by a nonlinear flux flow' depends upon specific
mechanisms of flux dynamics and external conditions
(heat transfer to a coolant, etc.) By contrast, the ex-
istence of the region j» &j &jf2 is only due to the an-

isotropy and the characteristic shape of nonlinear I-V
curve of a superconductor (Fig. 1). Furthermore, we
shall consider just that universal current region

j» &j & jf2, and denote for simplicity jf+& as j».
Let us evaluate the anisotropy level which is able to

cause the instability. As follows from Fig. 3, the instabil-
ity occurs provided j» &jf2', that is, jf&

&j„since jf2-j,
at g»1 [see Eq. (2.25)]. The inequality jfi&j, reduces
to g &g, -j,/ji for the conventional fiux-creep model
and g &g, -m for the power I-V curve. Taking typical
for high-T, oxides values j, /j, -10-10, or m -5—10
(Refs. 16 and 17), one finds a similar estimation for both
cases g, —10—10 . As a result, the minimum values of
~p„—~»~/(p„+p ) and b(P) prove to be of order
4/&g -0.1 [see Eq. (2.17)]. Such an anisotropy in resis-

tivity and critical current density is much smaller than
that of high-T, superconductors for which p, -0.1p, in
the case of YBazCu307 and p, -(10 —10 )p, for Bi-
based compounds, and j,&/j, 2-10—10 . ' Here the
indexes a and c correspond to the crystallographic axes of
high-T, oxides, and j„and j,2 are critical current densi-
ties parallel and perpendicular to the ab plane. There-
fore, the electromagnetic instability can occur at quite
moderate anisotropy which can easily be realized in
high-T, oxides as well as in other layered and quasi-1D
superconductors.

D. Stability diagram

In this section we consider the dependence of the insta-
bility on current direction. Because of the invariance of
E(j) under inversion, the parameter b(p) = t}l nj k/Bp
vanishes at /=urn /2, n =0,61,k2 [see Eq. (2.4)] and can
be expanded into a Fourier series of the form

b((I))= g b„sin2ng . (2.32)

This results in a characteristic angular dependence of
s, (P) shown in Fig. 4, with the function s, (P) tending to
infinity at /=urn/2, since b(P)=0 and g(P)= ae. The
divergence of s, (P) at P= en/2 in .Eq. (2.16) implies that
the uniform current is always stable if j~~x, or j~~y. The
function s, (P) attains a minimum at P obeying the
equation t}g/t}/=0 which reduces to

(p„cos P~+p»sin P~ )

=(p„—p» )[b(P )sin2$ +cos2$ ] . (2.33)

This equation determines the direction of j for which the
instability occurs at minimum value of s(j). For in-
stance, P =sr/4 at b =0, whereas at p„=p» the angle

obeys db/dP =0 (we consider here only the first
quadrant 0 & P & sr/2). Thus, the instability domain

jf,(p) &j & jf2(p) essentially depends on the orientation
of j, reaching a maximum at p=p and vanishing in the
vicinity of P =0 or P =m /2. For example, in the conven-
tional fiux-creep model, Eq. (2.23) yields, at p„»p,

VIA
Jf1

vrrrrrrrrrrrrw
Jri Ja

?
Vlllr.
Jf3 J

FIG. 3. Regions of the instability (hatched) along the j axis.
The question marks indicate the domains whose existence de-
pend on details ofI ( V) at low and high E.

FIG. 4. The dependence of s, on P. The intersections of
s, lPl with the dashed line s, =s determine the instability region
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&6(p» /p„)' J, (4 )
Jfi(( )= (2.34)

~
cosg[siniti —b(P)cosiI) ] ~

'»

The angular dependence of j»(P) reveals sharp peaks at
/=0 and n. /2 with a pronounced minimum at P=P
This means that uniform current is stable if it Aows near-
ly parallel to the symmetry axes; that is, the angle of j
with the x or y axes is smaller than the critical value P,
determined by the condition jf,(p, ) =j,(p, ), which gives

p, -(j ip /j, p„)' . At P„»p, the value jfi(p) proves
to be much less than j„except for narrow vicinities of
the angles /=urn/2. A qualitative dependence of jf, (~I))

is shown in Fig. 5.
Now we turn to the instability criterion (2.16) and ex-

amine its dependence on current direction by using a
graphic analysis shown in Fig. 6. Here three characteris-
tic dependences of s (j) at j & j„matching the standard
flux-creep model [Fig. 6(a)], vortex glass [Fig. 6(b)], and
power I Vcurve-[Fig. 6(c)] are presented. The asymp-
totes of s (j) at j—j,»j, in all three cases correspond to
the (lux-flow regime for which s (j ) =j, /(j —j, ). The
dashed line in Fig. 6 has the ordinate s, ((()), and its inter-
sections with s (j) give the values j» z(p).

Let us now consider what happens when changing the
current direction if the vector j has initially been directed
along the x axis. According to Fig. 4, the function s, (P)
decreases with iI), which leads to the lowering of the
dashed line in Fig. 6 as P increases from 0 to P . The
uniform state is stable provided that the dashed line lies
above s(j). At small p, such a situation does occur for
Figs. 6(a) and 6(c), whereas Fig. 6(b) corresponds to the
instability at low j for any nonzero misalignment of j and
x. In Figs. 6(a) and 6(c), the instability domain

jf,(p) (j & j/2(p) arises if the angle p exceeds the critical
value i))„, determined by s,„=s,(P„,), with sm, „ the
maximum of s (j). For Fig. 6(a), one has s,„=j, /j „
which follows from both asymptotes of s (j) at j —j,»j,
and j,—j»j, taken in the crossover region

~ j,—j ~

—j, .
Furthermore, we get s,„=m for curve 1 in Fig. 6(c),
whereas the value of s,„ for curve 2 depends on details
of the crossover between the Aux-Sow and Aux-creep re-
gimes. For curve 1, the passing through P =P„, results in
a jumpwise appearance of a finite instability domain

0

FIG. 6. Characteristic dependences of s(j) for (a) conven-
tional flux-creep model, (b) vortex glass, and (c) power I-V curve
at j (j,. The dashed lines correspond to s =s, (p) at fixed p.

0 (j & j» at low j. If s (j) has a maximum at nonzero j,
the instability domain arises at nonzero j as well, its
width growing continuously with P as follows:

Jf2~ 4 ) jf 1 (4)—
It is also convenient to present these results in some-

what different form, by examining stable and unstable
directions in the xy plane. Such an angular stability dia-
gram is shown in Fig. 7, where there are several charac-
teristic sectors marked as stable, metastable, and unsta-
ble. The stable sectors 0 & P & P„, and P», & P & n. /2 cor-
respond to the absolute stability of uniform current state
to small electromagnetic perturbations at all j. At
P„, & P & P, the uniform current turns out to be unstable
within the domain j»(p) &j & jf2(iIi) and metastable at

Y

90
]

180O 0

FIG. 5. The angular dependence of j»(P). The dashed curve
shows j,(P).

FIG. 7. Angular stability diagram. The angles P„P», P„„
and P are determined by the graphic solution of

s (j)=s, (P) shown in Fig. 4.
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j f1(0 }&j&Jf1(4) or Jf2(0}&j &jf2(0 }
Let us consider, for example, how the instability arises

when increasing j at fixed p for the case shown in Fig.
6(a). At j &jfi(p ) [s(j)&s, (p )], the instability cri-
terion (2.16} does not hold at any P, which implies that
both metastable and unstable sectors in Fig. 7 disappear.
At j & jf,(p ) the unstable sector arises in the vicinity of

with the angular width p„—p„~ [j j»—(p )]'
increasing with j (see Figs. 4 and 7). At p„, &p & p„(j)
or p (j}&p&p, the uniform current fiow is metastable
with respect to finite-amplitude perturbations 5j, since an
increase of j results in the narrowing of the metastable
sectors. At j)jfi(p}, the vector j gets into the unstable
sector, and at j =j the metastable sectors disappear
[s (j )=s,„]. The further increase of j results in a
recovery of the metastability of the current state at
j =jf2(p) and its absolute stability at j )jf2(f ).

Thus, the instability at fixed P occurs when the stabili-
ty boundaries p =p„„(j) cross the vector j as the
modulus j changes. These boundaries separating unsta-
ble and metastable states can be treated as spinodals in
the angular space by analogy with the thermodynamic
spinodals at first-order phase transitions. Besides, the
physical mechanism of both the electromagnetic instabili-
ty and the classic spinodal decomposition is due to that
the corresponding diffusion coefficient vanishes. For ex-
ample, the spinodal decomposition of alloys is due to a
negative diffusivity of a component, which is accom-
panied by the appearance of concentration structures.
Likewise, the above instability of resistive states is due to
the negative magnetic diffusivity D2 along the g axis,
which also leads to a spontaneous growth of inhomo-
geneities in vortex density and appearance of magnetic
flux structures. Therefore, the electromagnetic instability
in anisotropic superconductors could be interpreted in
terms of a kinetic phase transition resulting in the mag-
netic spinodal decomposition of the uniform current
state. That analogy will be discussed below in more de-
tail.

E. Short-wave spectrum

The above analysis based only on the macroscopic elec-
trodynamics and symmetry properties of E(j), gives a
diffusionlike spectrum (2.5) for which the increment A(k)
monotonously decreases or increases with k, depending
on whether the criterion (2.16) holds, or not. Above the
threshold [s )s„Ref(n) &0) an explosive instability
arises since the growth rate of electromagnetic perturba-
tions approaches infinity [A,(k)~ 00 ] at k ~ 0o. Howev-
er, the large k correspond to short wavelengths compara-
ble with microscopic lengths over which vortex struc-
tures are wittingly stable and A(k) &0. This implies that
the increment A,(k) actually passes through a maximum
at some k =k as it is shown in Fig. 2. The drop of A, (k)
at large k is due to additional mechanisms suppressing
the short-wave instability which is beyond the scope of
the macroscopic approach. We briefly discuss these
mechanisms here since they become important for the
description of nonlinear current structures arising at
s &s, .

Generally, the modification of the spectrum A,(k) at
large k is due to a nonlocality of I-V curves for short-
wave perturbations 5E(r, t} which are determined not
only by the local value 5j(r, t), but values 5j(r', t') within
some domain ~r —r'~k & 1 as well; that is,

dE =JR' 5J'&(r', t')d rdt',

where the tensor R &(r, t) becomes a kernel varying over
characteristic length l and time ~. In the Fourier repre-
sentation this leads to a dependence of R

&
on k at large

k, therefore the results of the previous sections are valid
at k (&k . Otherwise the time and space dispersion of
R

&
turn out to be important and the local R

&
in all for-

mulas obtained above should be replaced by the values
R &(k, co) which depend on k and co.

There are both macroscopic and microscopic mecha-
nisms leading to the space and time dispersion of
R &(k, A, ), for example, the coupling of the electromag-
netic perturbations with the diffusion of heat or non-
equilibrium quasiparticles accompanying the vortex
motion. For a film of thickness d, the characteristic
thermal time to and length I are given by to- C/bod and
I-(d~/ho)'~, with C the heat capacity, x. the thermal
conductivity, and ho the heat transfer coefficient, the
dispersion of R & manifesting itself at A, to & 1 and kl & 1.
The electron diffusion time and length are as follows:
to-w», l-(D, r»kz T/6)' with r» the electron
phonon inelastic scattering time, D, the electron
diffusivity, and 6 the superconducting energy gap. ' '

The dispersion of R &(k) can also be due to hydrodynam-
ic modes of the mixed state, dispersion of elastic moduli
of FLL, pinning (if the wavelength 2n/k become. s com-
parable with the pinning correlation length), ' etc.
Another mechanism can be due to a granularity typical
for both ceramic and single-crystalline high-T, ox-
ides since the existence of weakly coupled grains of
size I leads to the dispersion of R &(k) at kl ) l.

Near the instability threshold s =s„ the characteristic
values of k are much smaller than I (see below), therefore
R Ii(k) can be expanded up to second-order terms in k as
follows:

R p(k) R p+P Iirskrks (2.35)

where R
& corresponds to k =0, ~~@~~=

—,'QzR &(k)/Qk Bk&~& 0, and terms linear in k vanish
due to the invariance under inversion. At s ~s„the non-
local corrections are essential only for the principal value
R2(j) vanishing at s =s„whereas for the finite R, they
can be neglected. In this case the long-wavelength spec-
trum A,(k) becomes

A(k)= —
po 'R, (k~ —ek„+I k„), (2.36)

where e= —R2/R, -(s —s, )/s, «1 is a bifurcation di-
mensionless parameter, and k& and k„are the com-
ponents of k along the principal axes of R &. The last
term in Eq. (2.36) coming from the nonlocality results in
a maximum in A(k) at k&=0, Ik„=(c/2)'~ at e)0.
Here



3646 A. GUREVICH 46

I = ~P ttrsn npttrtts ~
/R i (2.37)

III. NONLINEAR CURRENT PATTERNS

A. Qualitative analysis

So far we have considered only the linear stability of
the uniform resistive state to small perturbations 5H(r, t).
Now we examine nonlinear current structures caused by
the instability at s & s, . As seen from Fig. 2, the instabili-

ty induces transversal components 5j (r, t) to the initial j,
which is just a local turn of j toward a new direction cor-
responding to a lower resistance in the xy plane. This
leads to current patterns which depend on the sample
geometry since the uniform turn of j is usually incompa-
tible with the boundary conditions which ensure zero
normal components of j(r) at the lateral surface. Two
characteristic examples are shown in Figs. 8 and 9. In
the first case (Fig. 8), a thin-film strip carries a transport
current flowing along the symmetry plane xy. Above the
threshold s &s, the uniform flow becomes unstable with

respect to the local turn of j. This leads to the appear-
ance of a nonuniform current state due to a partial clo-
sure of current lines caused by the effect of the strip
edges. In the second case (Fig. 9), a superconducting slab
is in a slowly increasing magnetic field H, (t). Here the
distribution of induced electric fields and closed screening
currents are determined by the sweep rate H, =dH, /dt
and the orientation of H, with respect to the sample sides

or the symmetry axes, at low enough H, the current flow

being laminar. Above the critical value of H, the local
stability criterion s(j(r))(s, (p(r)) violates in some re-

gions of the sample, which results in the appearance of
additional components 5j(r) to the initial j(r). The char-

FIG. 8. Formation of macroscopic vortices in a thin-film

strip due to the local turn of j toward a lower-resistance direc-
tion (dashed).

where P &z& is determined by the above-discussed mecha-
nisms of dispersion, and the unit vector n fixed by Eqs.
(2.11) and (2.19) corresponds to the critical mode with
k&=0 (Fig. 2). Notice that, at e«1, one can neglect
small terms proportional to k „k&

and k
&

in A.(k), there-
fore the long-wavelength spectrum depends only on one
length 1 given by Eq. (2.37). In the coordinate representa-
tion, the spectrum (2.36) corresponds to the following
equation for 5H:

(2.38)

/
/

/
/

/
/

/
/

( I

(a) (c)

FIG. 9. Successive stages of the current fragmentation in a
slab. The singular lines (dashed) play the role of self-induced
weak lines, as explained in the text.

aeter of the current patterns depends on the relation be-
tween 5j and j. For instance, at 5j &(j, there arise only
weak modulations of the initial current distribution,
whereas at 5j)j the instability results in a partial closure
of current lines and appearance of anisotropic current
loops, which can be treated as a macroscopic-vortex
structure for which cur15jAO. ' In general, this changes
both the value and the orientation of the magnetic mo-
ment M with respect to the symmetry axes and the sam-
ple sides.

As an illustration, Fig. 9 shows the formation of the
macroscopic-vortex structure in the slab in the case
H, ~~z. For simplicity, we restrict ourselves to the strong
anisotropy limit allowing a clear physical interpretation
in terms of the anisotropic Bean model. In this case the
extended Bean model" predicts the current flow along a
rectangular path which contains the singular lines, where
the current sharply changes the direction by 90'. The
latter is due to the ignoring of the resistive part of j(E),
since within the framework of the critical-state concept
the real I-V curve is replaced by the stepwise function
I =I,sgn V. Since, however, some electric field always ex-
ists due to the flux creep, this would lead to discontinui-
ties of tangential components E, at the singular lines, in

contradiction to electrodynamics which requires the con-
tinuity of E, at any interface. Actually, these discon-
tinuities disappear when taking into account the flux
diffusion in terms of the Maxwell equations and more
adequate I-V curve similar to that shown in Fig. 1. This
results in the rounding of the current lines in the corners
of the slab over macroscopic scales determined by the
shape of I( V) and the aspect ratio. Unlike the isotropic
case, where this effect leads only to a correction to M, the
bend of current lines in the anisotropic case can cause the
instability due to the strong angular dependence ofjf, (p)
shown in Fig. 5.

Indeed, in the vicinity of the singular lines there exists
a macroscopic layer, where current lines sharply change
the direction and there is a large misalignment between j
and the symmetry axes. As follows from Fig. 5, the latter
leads to a considerable drop of j»(P) as compared with

j„therefore the rnaxirnurn nondissipative current density
through the singular lines is limited by the small value

j»(p ) «j, . This enables one to treat the singular lines

as peculiar self-induced weak links whose form and distri-
bution are determined in a self-consistent manner by the
overall current configuration. As a result, the currents
with j—j, flowing along the x and y axes cannot pass
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completely through the singular lines, which results in
the splitting of the initial current loop into four smaller
ones, as is shown in Fig. 9(b). Then, one can again apply
the Bean model to each of the domains being within the
dashed contours and get new singular lines which provide
the closure of the magnetization currents and, as a conse-
quence, the further division of current loops. The pro-
cess of successive fragmentation of macroscopic current
loops into smaller ones goes on as long as the sizes of the
loops become comparable with the above-discussed mi-
croscopic scale I over which the vortex structure is stable.
Thus, for strong anisotropy [jI,(p ) «j,(p)] the
current patterns at s & s, consist of an array of magnetic
macroscopic vortices of size -/ with closed screening
current densities (-j, ) well above the mean macroscopic
value —jI,((() ).

Such a structure could be outlined as follows. In the
high anisotropy limit s(j) ))s,(p), the angular width p,
of the stability sectors in Fig. 7 becomes very narrow [as
follows from Eqs. (2.22) and (2.23), p, —(p j&/p„j, )' at
p„))p ]. This implies that stable uniform currents can
flow nearly parallel to the symmetry axis, which impose
strong restrictions on the form of current patterns. For
instance, in a thin-film strip shown in Fig. 10, the current
structure could consist of an array of resistive current
channels, each of them being nearly parallel to either the
x or the y axes. However, characteristic width of the
channels as well as the spacing between them cannot con-
siderably exceed l, otherwise the existence of macroscopic
low-resistivity regions between the channels is incompati-
ble with curlE=0 (the regions electrically short the chan-
nels). Likewise, one can estimate a width of the channels
by considering an intersection of two channels shown in
Fig. 10. If the width of the channels is much larger than
l, they can be considered macroscopically, thereby the re-
gion where the current lines sharply change the direction
by 90' over the length -l turns into a discontinuity of the
tangential component E„which is again incompatible
with curlE=O. Therefore, at s ))s„sizes of the macro-
scopic vortices turn out to be of order /, whence it follows
that a description of such a state can actually be done
only within the framework of microscopic models of the
mixed state. In the case of a moderate anisotropy, sizes
of the macroscopic vortices can be much larger than /.

This requires an analysis of macroscopic nonlinear
current structures which will be discussed later on.

FIG. 11. I Vcur-ve along the g axis at fixed j„.

Notice that the appearance of the macroscopic-vortex
structure can be accompanied by a hysteresis, which fol-
lows from the form of the I-V curve (2.3) along the g axis
at fixed j„. Shown in Fig. 11, the X-shaped dependence

E&(j z) reflects the main qualitative features of the angu-
lar diagram in Fig. 7 since the change of j& at fixed j„is
equivalent to the change of P in Fig. 7. For instance, the
solid points, where BE&lrj)&=0, correspond to P=P
and P=P in Fig. 7. Furthermore, the part of E&(j„)
with a negative slope matches the unstable sector in Fig.
7, whereas the parts of E&(j &) with positive slopes, being
between the solid and open points, correspond to the
metastable sectors. As seen from Fig. 11, slow variations
of E& can result in hysteretic jumpwise changes of j& and,
therefore, the current direction. Such turns of j could
also be due to strong perturbations which cause transi-
tions of the representing point between stable branches of
the function E&(j &). These features are manifestations of
a first-order kinetic phase transition which will be con-
sidered in the next section. As mentioned in the Intro-
duction, the transition may be considered as an analog of
the field-induced orientational instability in liquid crys-
tals. In particular, for a nematic being between two
parallel glassy plates, longitudinal electric or magnetic
fields can cause a jumpwise turn of the director which has
initially been oriented perpendicular to the plates by sur-
face effects (the so-called Frederiks transition). '

B. Kinetic phase transition

In this section we consider low-amplitude (5j«j)
structures at the instability threshold in the simplest case
of the 2D instability in an infinite thin-film strip connect-
ed to a dc power supply. The condition of the fixed
current I reads

f5j(r)d r =0 (3.1)

with the integral taken over the cross section. The results
of the 2D analysis can be applied to the 3D case as well,
provided that the current flows parallel to the symmetry
plane xy, and B~~z. In order to describe the low-
amplitude current structures at s —s, ((s„one should
take into account second-order nonlinear terms in Eq.
(2.38), which gives

FIG. 10. Possible pattern of current channels in the high an-
isotropy limit (a). A fragment of the channel intersection (b).

poBi 5H =8,B~PH+(R ~+KB„5H)t)„„5H

(3.2)
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This equation is an expansion of the Maxwell equations
in current perturbations 5j, where we keep only the non-
linear contribution to the critical mode with k=kn,
which results in the instability at s =s„' the rest terms are
of the next order in e. It is convenient to rewrite Eq. (3.2)
in terms of the dimensionless field h =5H/H&, with
HI =2R

&
/X as follows.

pd, h =8~(h —ed„qh+28„hB„„h —I B„„„„h, (3.3)

where p=po/R1, and e= —R2/R, —(s —s, )/s, ((I is
the dimensionless control or bifurcation parameter (expli-
cit formulas for e and N are given in Appendix B). No-
tice that the length I can be excluded from Eq. (3.3) by
the rescaling of h, g, and rl, therefore Eq. (3.3) describes a
universal behavior near the bifurcation point e=O, re-
gardless of specific shape of E(j) and origin of the disper-
sion of R &(k). Equation (3.3) can be obtained by vary-
ing a functional Q t h j as follows:

B,h=—
5h

(3.4)

12+—(t)„„h) drl dg . (3.5)

As seen from Eqs. (3.4) and (3.5), the dynamics of h(r, t)
has a relaxation character, i.e., Eq. (3.3) has only station-
ary or monotonously changing with t dynamic solutions.
Besides, any evolution of the dimensionless current per-
turbations 5j„=—

B&h and 5j&=B„h is to result in a
minimum of Q I h j. This situation is analogous to that of
equilibrium phase transitions, with 5j& and Q playing the
roles of an order parameter and kinetic potential, respec-
tively. The dependence of Q on 5j& shown in Fig. 12 is

typical for the first-order phase transitions.
Due to a finite potential barrier in Q I5j& j at e (0, the

metastable uniform stationary state 5j&=5j„=O can be
destroyed by external noise, thermal fluctuations, etc.
The transition results from a nucleation and subsequent
growth of critical nuclei of a new "phase" with 5j„&0.
The critical nucleus is described by a stationary unstable
solution of Eq. (3.3) which corresponds to a saddle point
of Q Ih j. To analyze the current distribution in the nu-

cleus, we consider first a ID stationary solution of Eq.
(3.3) which depends only on i), with t)„h =0 at g=+ae.

FIG. 12. Kinetic potential Q vs 5j& in the case of (a) s &s„
(b) s =s„and (c) s )s, .

( g(r, t)g(r', t') ) =2k& TI 5(r r')5—(t t'), — (3.7)

where I =go(R t t)&&+R2tl„„).
At e & 0, the uniform state 5j&=5j„=0turns out to be

unstable due to the magnetic spinodal decomposition
caused by the negative principal value R2. The passing
through e=O leads to the growth of current structures
whose initial dynamics is described by the universal equa-
tion (3.3). However, the final stage of the growth can be
described only by the full Maxwell equations in which the
space dispersion of R &(k) should be taken into account.
This is due to the amplitude 5j(r) of the stationary struc-
tures not being small and depends on the shape of E(j)
and specific mechanisms of the nonlocality. For instance,
in Appendix C, it is sho~n that there are no stationary
low-amplitude 1D solutions of Eq. (3.3) obeying Eq. (3.1).

Therefore, the electromagnetic instability can be for-
mulated as a first-order kinetic phase transition described
by the universal equation (3.3) similar to those of the re-
laxation dynamics of equilibrium phase transitions.
The meaning of the kinetic transition can be clarified by
the angular stability diagram in Fig. 7, where one can for-
mally identify two states for which the vectors j are
within the stable sectors to the x and y phases, respective-

ly. These phases are separated in the angular space by
metastable and unstable regions. Let j be initially fixed

within the rnetastable sector of the y phase. Since the un-

stable sector expands as the parameter s (j) increases, the

y phase becomes unstable when the spinodal p (j) passes

through the vector j. This transition is just a turn of j
such that the vector j gets into the sector of metastability

As shown in Appendix C, such a solution exists only at
e & 0 and has the following form:

5j~(g)=t) h(i))= 3E (3.6)
2 cosll (71/2L )

with the correlation length L„=I/~e~'~ . Formula (3.6)
describes a ribbon of width I.„, where the vector j is

slightly inclined with respect to the initial current flow
due to the nonzero component 5j&(i)). Since, however,
the uniform turn of j in the ribbon is incompatible with
the boundary conditions, one has to take into account the
term t)&&h in Eq. (3.3) which leads to the closure of the
current lines. As a result, the 1D distribution (3.6) turns
into a chain of macroscopic vortices of length I.

&
along

the g axis. The value L& can be estimated froin Eq. (3.5)

since the potential Q I h j is to be minimum for any steady
state h(g, rl). By inserting Eq. (3.6) into Eq. (3.5), one
gets that Q -e ~

L&, where L& is the length of the nu-

cleus along the g axis. The minimum of Q corresponds to
the value of L& at which the term e(t)„h ) in Eq. (3.5) be-
comes of order (t)&h ), hence h /L

&
eh /-L and

L&=1/~e~ ))L„. Such a critical nucleus is a highly an-

isotropic macroscopic vortex, with the length L& along
the g considerably exceeding the length L„along the i)
axis. The dynamics of the thermally activated generation
of the critical nuclei can be described in a standard
way ' '

by adding to the right side of Eq. (3.2) a random
"force" g(r, t) with the correlation function
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of the x phase. The analogous orientational transition
from the x phase to the y phase occurs if the vector j has
initially been within the metastable x sector.

The x ~y transition occurs at 0 & P & P„whereas the
y ~x transition arises at P, & P & m. /2. Here P, is the an-
gle at which the coefficient N(p) = ,'d E—&/Bjt in Eq. (3.2)
changes the sign, and E&(j &) has a bending point (Fig.
11). As shown in Appendix B, P, obeys the equation

1+ cos(P+ 1f )
a@ Bs

BJ

+ —.sin(1(+P)+cos(P+P) . =0 (3.8)
1 Bs

j J 8

with s(j},s, (P}, and P(j,P) given by Eqs. (2.16}—(2.19);
in the final formula (3.8) one should put j=j»(p). If the
first term in Eq. (3.8) is small as compared with the
second one, the angle P, approaches the angle P at
which Bs, /8/=0. In the vicinity of P=P, and s~s„
where the quadratic term in Eq. (3.2) is small, one has to
take into account other nonlinear terms proportional to
d+B&„H, d&Hdt„H and (BQ) 8„+. At P—+P, and
s ~s„ the transition becomes nearly of the second order,
with P, playing the role of a "critical" point in the angu-
lar space. Since, however, the uniform turn of the aver-
aged current density ( j) in the strip is impossible be-
cause of the boundary conditions, the vector ( j ) remains
within the unstable sector of the angular diagram, where
only uniform current structures can exist. Hence, it fol-
lows that the boundary conditions here play a very im-
portant role since just their effect leads to the stabiliza-
tion of the nonuniform current state. By contrast, struc-
tures arising at classical spinodal decomposition are only
transient stages upon transitions from unstable to stable
phases.

C. Macroscopic-vortex structures

In an anisotropic medium, a nonuniform stationary
current flow is generally vortical, which implies a partial
closure of current lines and appearance of closed current
loops. In this case the Maxwell equations curlE=O and
divj=0 have solutions with curlj%0, which follows al-
ready from the linear Eq. (2.13) describing a potential
current flow (B&&H +8„+=0) only for uniform currents
(BH ~ rl). However, in the nonlinear case the anisotropy
can also break the continuity of current flow, resulting in
the appearance of singular interfaces at which jumps of
tangential components j, occur. These features can be
analyzed by using a transformation of the stationary
Maxwell equations from the physical xy plane onto the
so-called hodograph plane (j„j ). If one neglects the
self-field effects, by assuming that E (j,H)=E (j,H, )

with H, the external magnetic field, the hodograph trans-
formation reduces the nonlinear Maxwell equations to
one linear equation. Such a procedure enables one to for-
mulate a quasihydrodynamic approach for the descrip-
tion of nonlinear current flow and use some important re-
sults obtained for similar problems in aerodynamics,
theory of crystallization, etc. In the case under con-

sideration, the hodograph transformation is as follows
(details are given in Appendix D).

Let us introduce a function U(j) such that x =aU/aj»
and y = —8 U/8 j„. Then the quantities j„=j cosp,
j„=j sing, and U( j,p) are related to x, y, and H as fol-
lows:

aU 1 aUx =sing +—cosP
i)J J

aU 1 . aU
y = —cosP . + —.sing

. aUH=U —j

(3.9)

(3.10)

(3.11)

1
b + p(2+s)sin2$

(1+s) 1+p cos2$

1 —p (cos2$ bs sin2—$)
(1+s}(1+pcos2$}

(3.13)

(3.14}

Here p =(p„—p )/(p„+p ), and the parameters s(j)
and b (P) are given by Eqs. (2.18). In the isotropic case
(p =b =0), Eq. (3.12) reduces to

. aU a'U J' a'U
(3.15)

8j A/2 (1+s) ~J'2

The boundary conditions to Eqs. (3.12) and (3.15) are that
the normal components of j vanish at the lateral surface
of a sample, and the tangential components j, are deter-
mined by external conditions, for example, by Sxed total
current or voltage for a sample connected to an electrical
circuit, or by the sweep rate H, for a superconductor
placed in an alternating magnetic field H, (t}. In general,
these boundary conditions are nonlinear since the re-
quirement that j, is equal to some function F(x,y ) at the
surface leads to a nonlinear relation between j, and the
coordinates x,y, which are proportional to the derivatives
of U according to Eqs. (3.9) and (3.10). If the solution of
the liner equation (3.12) can be obtained, the stationary
distributions of H(r) and j(r) are given by formulas
(3.9}—(3.11) which carry out the inverse transformation
from the hodograph plane (j„,j ) onto the physical plane
xy. Such a procedure is single valued provided that the
Jacobian of the transformation b =B(x,y)/B(((), j) no-
where passes through zero. As shown in Appendix D,
the Jacobian 6 is

aj' +
J ajay J ay

a'U i aU . a'U
ajay J ay+ 'aj'

(3.16a)

In this case the nonlinear equation for H (x,y ) reduces to
the following linear equation for U (j,p ):

—A + +jA +j C =0, (312)
Bj Bp i)p~ BQBj gj2

where
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where A (P,j) and C(P,j) are given by Eqs. (3.13) and
(3.14). In the isotropic case [A =0, C = I/(I+s)], Eq.
(3.16a) becomes

a'U
'

1 a'U 1aU
I+s gj' j ajar j a4

2

(3.16b)

Here the value 6 is always positive, and the hodograph
transformation is a well-defined procedure since s (j)& 0
for all models discussed in this paper. By contrast, in the
anisotropic case the Jacobian 5 has no definite sign,
which enables one to make definite conclusions about sta-
tionary current distributions without solving Eq. (3.12).
Indeed, the change of the sign of 6 implies that the type
of the partial differential equation (3.12) changes from an
elliptic (b, & 0) to a parabolic (b, &0) one, which indicates
a discontinuity of the current flow under certain condi-
tions. In other words, the condition 6=0 is equivalent
to the local instability criterion s(j(r))=s, (P(r)), since,
at small 5j, the hodograph transformation reduces Eq.
(3.12) to Eq. (2.13) whose type changes from an elliptic
(R2&0) to a parabolic (R2&0) one when passing
through s =s, . At 6 & 0 the stability criterion
s(j(r)) &s,(p(r)) holds everywhere in a sample and the
linear equation (3.12) describes a laminar, but generally
vortical, current configuration determined by the bound-
ary conditions. Notice that an analysis of even laminar
current flow in anisotropic superconductors is a much
more complicated problem as compared to the isotropic
case since the form of current lines essentially depends on
both the sample geometry and the shape and angular
dependence of E(j) (for example, in an anisotropic
cylinder placed in a parallel magnetic field, the current
lines are essentially noncircular). In this case the hodo-
graph transformation enables one to simplify the problem
considerably since it reduces the nonlinear equation for
H(x, t) to one linear equation for U(j) at arbitrary E(j).

At 6 (0 the situation becomes more complicated since
the local instability criterion s(j(r) ) & s, (p(r) ) now

violates in some regions of the sample. This implies that,
under certain conditions, the laminar current flow can
break down along the singular lines in the xy plane,
where the tangential components of j turn out to be
discontinuous. A physical interpretation of this is as fol-
lows. %e begin first with the isotropic case and notice a
formal analogy of Eq. (3.15) with equation which de-

scribes a 2D flow of a compressible gas if one replaces
j~v, s —+ —v /c, U~Q, where v= —V4 is a local
flow velocity having the potential @=Q —v B„Q, and c (v )

is the sound velocity. Let us consider the I-V curve with
a downward curvature (s & 0), then the condition that the
difFerential resistivity becomes negative (s & —1) corre-
sponds to the transition from subsonic to supersonic re-

gimes in the aerodynamic analogy. On the other hand,
the negative differential resistivity is known to result in a
stratification of uniform current flow into current
domains which are separated by domain walls which
match discontinuities of tangential components j, .
A similar situation in aerodynamics occurs when passing
through the sound velocity v =c, which leads to the ap-
pearance of shock waves. For instance, the steady-state

equation (3.3) with 1=0 reduces to the so-called Euler-
Tricomi equation describing low-amplitude shock waves

in aerodynamics [some 2D solutions of Eq. (3.3) can be
expressed via hypergeometric functions ]. Notice that
actually the domain walls have a finite width determined

by the space dispersion of E(j). As a result, the tangen-

tial component of j sharply varies within the domain wall

over the length I, the macroscopic approach based on the
hodograph transformation corresponding to the limit

1~0.
In the anisotropic case, one can therefore interpret Eq.

(3.12} in terms of a compressible flow of magnetic flux

having an anisotropic nonlinear viscosity. Then the in-

stability at s =s, corresponds to the vanishing of this
viscosity along the g axis, which results in a generation of
the current domain walls. Their appearance is due to the
hysteretic form of the I-V curve shown in Fig. 11, where
the domain wall corresponds to a jump in j& caused by a
switching between the raising branches of the ¹haped
function Et(j &) (see, e.g. , Refs. 20—22). Due to the essen-

tial effect of the boundary conditions, these domain walls

are curved and form the network sketched in Fig. 13. A
mathematical description of such a structure can be very
complicated, for example, an analysis of similar problems
in a theory of dendritic crystal growth, as well as the
hydrodynamics of a 2D viscous two-phase flow or
liquid crystals, ' indicates instabilities of flat interfaces
resulting in nontrivial chaotic patterns.

Therefore, the finite-amplitude structures at s & s,
could be treated as a cellular current pattern formed by a
network of curved domain walls of thickness -l. Notice
that the formation of such a network, which depends on
the sample geometry, makes the initially potential
current rotational flow, by analogy with hydrodynamics,
where a potential stream becomes a rotational flow upon
passing through curved shock waves. This result in a
partial closure of current lines and appearance of aniso-

tropic current loops within the current grains in Fig. 13.
Such grains can be treated as magnetic macroscopic vor-

tices in the system of Abrikosov vortices. ' Qualitatively,
the formation of the macroscopic vortex structure was
discussed above when considering the current fragmenta-
tion in a slab in Fig. 9.

Sizes of the macroscopic vortices and densities of
closed currents j„circulating within them, essentially de-

pend on j and the relation between s(j) and s, (p). For
the macroscopic vortices much larger than I, the condi-
tion of the local stability reads s(j(r)) &s,(p(r}) every-

FIG. 13. A fragment of current granular state. The full and

thin curves show domain walls and current lines, respectively.
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where within the macroscopic vortex. If such a structure
appears upon increasing J above jfi, then the condition
s &s, can be fulfilled provided that j, )jf2(p)- j,. This
is a lower estimation of j, which ensures the local stabili-
ty of circulating currents when they flow along the direc-
tion P=P corresponding to the minimum of s, (P) in
Fig. 4. Thus, an increase of j above j» leads to a jump-
wise appearance of local vortical currents j, -jf2—j».
The amplitude j, decreases upon approaching the critical
point s =s, (P, ), ((}=/„where the kinetic transition be-
comes nearly of second order. Here j, &(j and the char-
acter of the current patterns changes from the macro-
scopic vortex structure to weak modulations of j(r }.

Spatial scales of current modulation are maximum near
the critical point, where they seem to be of the order of
the transversal sizes of a sample. The growth of the con-
trol parameter e leads to a successive fragmentation of
large macroscopic vortices into smaller ones because of
the appearance of new domain walls, which is accom-
panied by an increase of amplitudes of screening currents
circulating within the macroscopic vortices. This process
begins with large macroscopic vortices and finally results
in macroscopic vortices comparable with the microscopic
length I at s))s, . In this scenario the current patterns
are assumed to be stationary and the vorticity of j comes
from the crystalline anisotropy and the curvature of the
domain walls. However, one cannot exclude a possibility
of dynamic large-amplitude structures as well, for exam-
ple, local oscillations of the macroscopic vortices and
their viscous motion caused by the Lorentz force. Notice
that both situations have some "hydrodynamic" analogs
in the physics of liquid crystals, where the spontaneous
generation of domain walls due to the field-induced orien-
tational instability can result in both stationary and dy-
namic structures. '

IV. DISCUSSION

A. Resistive transition

Now we discuss possible manifestations of the elec-
tromagnetic instability, in particular, the resistive transi-
tion occurring at j =j». As shown above, the instability
can result in the essential growth of total electric resis-
tance because of the increase of the amplitudes of local
vortical currents at j )j». Characteristic current densi-
ties within the macrovortices are of order j„with a dissi-
pation corresponding rather to the viscous flux flow.
This manifests itself as a resistive transition similar to
that from the flux-creep to flux-flow regimes, with the
value j» playing the role of a "critical" current density.
However, that j» has a dynamic origin and can be well
below j, determined by a static balance of pinning and
Lorentz forces (see, e.g., Ref. 45). Let us consider as an
illustration the case of currents flowing in the ac plane
of high-T, superconductors where the anisotropy is the
most pronounced. Assuming p &&p„, x =c, y=a in
Eq. (2.34), and taking p, -0.lp, for YBazCu307 or
p, —(10 —10 )p, for Bi- or Tl-based compounds, and

j&

—(10 ' —10 )j„' one finds that jf&

-(10 ' —10 )j,.

Thus, the anisotropy can considerably reduce the
current-carrying capacity which is now determined not
by the pinning force itself but rather by details of E(j)
deep within the flux-creep region. Notice the specific an-
gular dependence of j»(p) which reveals sharp peaks at
/=7m�/2 (Fig. 5). The amplitudes of the peaks are limit-
ed by the corresponding values of j,(P), since the uni-
form resistive state is stable if the angles of j with the x
or y axes are smaller than p, -(p„j&/p„j, )' «1. At
the same time, there is a wide region of P for which
j»((j„regardless of specific mechanisms of pinning.
Similar angular dependences of critical current and con-
ductivity have been observed in thin films and bulk high-
T, superconductors upon varying the field direction with
respect to the c axis and in grain-oriented
YBa2Cu307 when changing the angle between the trans-
port current and the ab plane. ' Herewith, the angular
dependence of jf&(p)~icos/~ '~ at /=7m/2 is similar
to that of the intrinsic pinning model.

The fragmentation of the uniform resistive state should
be the most pronounced for perfect anisotropic single
crystals, especially for Bi- and Tl based compounds. A
nonlinear resistivity of the macroscopic vortex state
seems to be calculated only within the framework of mi-
croscopic models of flux dynamics. In any case, however,
the appearance of the macroscopic vortex structure de-
creases the nonlinearity and anisotropy of the average
E(j) compared with the local E(j). Indeed, in the long-
wavelength limit k —+0, the steady-state current structure
could be treated as some effective medium with renormal-
ized parameters s(j) and s, (P). Then the stability cri-
terion of the macroscopic vortex state 9 (s, implies that
such a medium is more macroscopically isotropic and
"linear" than the initially unstable uniform state. These
arguments allow one to suggest that the I-V curves of
highly anisotropic superconductors are linear, except for
currents nearly parallel to the symmetry axes. Likewise,
the macroscopic anisotropy could be reduced by any ran-
dom inhomogeneities, which also results in the suppres-
sion of the long-wavelength instability.

The electromagnetic instability can be treated as a
current-induced kinetic transition from the laminar flux-
creep to vortical flux-creep or flux-flow regimes. This
manifests itself in singularities of a dynamical response of
the current state, for example, in an increase of the elec-
tric noise power upon approaching j». Let us consider
an equilibrium part of the noise by separating current
fluctuations into statistically independent components
6j& and 5j„. Making use of the Nyquist theorem, one
gets the power spectra (5j& ) and (5j„) in the form

(5j ~&) =2k&T/VR2(j ), (5j „) =2k& T/VR &(j),

(4.1)

where V is the volume of a sample, and R, 2 are given by
Eq. (2.14). Here R& remains finite at j=jf&, whereas
R2 ~(jf,—j) passes through zero. At the instability
threshold, the current fluctuations become highly aniso-
tropic due to the divergence of (5j&) ~1/(jf~ —j),
where jf,(p} essentially depends on the orientation of the
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transport current. This also may lead to a peak of
mechanical damping in vibrating-reed experiments which
could be due to neither the flux line melting ' nor the
depinning transition.

B. Magnetization and self-induced magnetic granularity

Manifestations of the instability in irreversible magnet-
ic properties of anisotropic superconductors are due to
the above-discussed breakdown of the laminar Bean-like
configuration of magnetization currents which turns into
a granular current state with large intragrain screening
currents at comparatively low value of macroscopic j (see
Fig. 13). The boundaries of the current grains (macro-
scopic vortices) are the domain walls of thickness I,
within which a sharp variation of tangential component
of j occurs. Magnetic properties of such a state prove to
be similar to those of ceramic superconductors in which
crystalline grains are coupled by weak Josephson interac-
tion (see, e.g. , Refs. 36—39). In both cases there are two
current systems corresponding to high local currents
(j—j, ) circulating within the grains and low macroscopic
currents fiowing through the grain boundaries (j—j»).
This leads to a magnetic granularity which was observed
on both ceramic and grain-oriented and single-crystalline
high-T, superconductors. ' The magnetic granularity
is usually attributed to the crystalline granularity caused
by various structural defects (grain boundaries, stacking
faults, twins, etc. ) which are assumed to exhibit weak-link
properties because of the short coherence length. ' These
inherent weak links essentially reduce the intergrain j,
compared with the intragrain one.

The appearance of the macroscopic vortex structure
may be another mechanism of the magnetic granularity
arising without weak links. As follows from the above
analysis, this mechanism should be the most pronounced
in anisotropic single crystals, especially in Bi- or Tl-based
superconductors. Here the current domain walls play the
role of self-induced weak links whose form and distribu-
tion depend on induced electric fields, sample geometry,
form of E(j) in the flux-creep regime, etc. This leads to a
self-induced magnetic granularity determined not by the
weak-link structure, but rather the nonlinearity of E(j ) at

j &j, . ' Since the shape of E(j ) essentially depends on T
and 8, the magnetic granularity turns out to be very sen-
sitive to changes of T and 8 as well. For instance, above
the irreversibility line, ' the nonlinearity of E(j) de-
creases considerably, thereby the macroscopic vortex
structure could exist only at high anisotropy.

Another possibility to reveal the self-induced magnetic
granularity could be measurements of M of anisotropic
superconductors placed in an alternating magnetic field

H, (t), or a decay of the remanent M(t) at fixed H, (flux

creep). In the first case, the electric field in a sample is

proportional to 8„ for example, E&=8,r/2 for a long
cylinder parallel to H. Such a field induces the electric
currents

j (r) =
I 1 —(kii T/U)ln[E, /E (r) j )j,

close by j, with an accuracy to a small ratio k~ T/U over

a wide region of the parameters (E, is a crossover electric
field between the flux-flow and flux-creep regimes). How-
ever, for highly anisotropic superconductors the
difference j,—jf&

can be of order j„thereby the local in-

stability of laminar current configurations can occur in
the regions where s(j(r)))s, (p(r)) practically at any T
and 8. This implies that the total magnetic moment
essentially depends on the distribution of the macroscop-
ic vortices determined by the sweep rate and the sample
geometry.

In the flux-creep experiments, the field H, (t) is in-

creased up to a certain value H, (0) and then kept fixed,
which leads to a decay of induced magnetization currents
at t & 0 due to a nonzero resistivity at j &j,. If the initial
value of j(t) is close by j„then the self-induced granular-

ityy

arises during a time interval 0 & t & t, ( T B), where
t, (T,B) is the time needed for a decay of j(t) from j=j,
to the minimum value j =jfi(p ) at which the ex-
istence of the macroscopic vortices is still possible. The
fraction of the sample occupied by the macroscopic vor-
tices decreases with t such that, at t ) t, (T,B) the current
flow becomes laminar. However, due to the specific an-
gular dependence of jfi(p) (Fig. 5), the current distribu-
tion even at t & t, essentially differs from that shown in
Fig. 9(a).

As an illustration, we consider a slab placed in the
magnetic field H perpendicular to the anisotropic xy
plane, restricting ourselves to the strong anisotropy limit

j «j, (p). Shown in Fig. 14 is a possible laminar
current configuration at t & t„which differs from that in

Fig. 9(a) in that the singular lines turn into four overlap-
ping sectors, where the current density equals j and
makes the angles +P with the x axis. In contrast to the
case presented in Fig. 9(a), the lines where the current
sharply changes direction do not already play the role of
the self-induced weak links since j flowing through them
exceeds j . As a result, the above-discussed splitting of
current loops does not occur, which indicates the distri-
bution is stable. A direct calculation of the magnetic mo-
ment M for the case shown in Fig. 14 yields

2a

2b

FIG. 14. An example of stable Bean-like current
configuration in an anisotropic slab. The thick and thin lines

show singular and current lines, respectively. The angles a and

P are determined by the continuity of normal components of j
through the singular lines as follows tana=j sing /
(j,„jcosp„)and tanp=j—cosp /(j, »

—j sing ), where j,„
and j,~ are the critical current densities along the x and y axes,
respectively.
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M=0. 5 f [rX j],dx dy

=2abj (b cosP +a sin((} ) . (4.2)

This formula is valid in the strong anisotropy limitj «j,(p) for which the triangular regions where the
currents flow parallel to the x and y axes give the same
contribution to M as the butterflylike domain, where
j =j . The field of the full flux penetration into the sam-
ple is

Hz=j (b cosP +a sing } . (4.3)

Here neither M nor H depend on j, along the symmetry
axes. In particular, the measurements of M for H~~ab
in highly anisotropic Bi- or Bl-based high-T, super-
conductors may give only the combination
(b cosp +a sing }j,but do not enable one to extract
J~~ arid J~y.

An estimation of the time t, (T,B}is very sensitive to
details of E(j) in the flux-creep regime. Let us consider
here the simplest case of the exponential I-V curve
E ~ exp [(j—j, ) /j & ] which results in the logarithmic de-
cay j (t)=j,—j,ln(t/tv), where j,(T B)= dj /d —lnt is
an observed flux-creep rate, tv-pvL /pf is a time con-
stant, and L, is a sample size. Hence,

t, - toexp[( J jff )/j~ ] (4.4)

Taking L-0. 1 mm, pf-10 p Qcm, j, /j&-—40, one
finds to-10 s, and t, -3 ms at j» =0.8j, and

t, -3X 10 s at jf,=0.4j, . Therefore, at a moderate an-
isotropy (j» ——j, ), the macroscopic vortices arising at ini-
tial stages of the flux creep disappear for a short time
much smaller than typical experimental time windows

ht —10 —10 s and do not affect the observed relaxation
of M(t). However, highly anisotropic superconductors

(j» «j„ t, )ht) can reveal the magnetic granularity
caused by the frozen macroscopic vortex structure within
the entire time window ht.

If the field H, is inclined with respect to the symmetry
axes, the formation of the macroscopic vortex structure
can change both the value and the direction of M, which
results in a torque. This may manifest itself in peculiari-
ties of the torque flux creep or hysteretic jumpwise
changes of the direction of M in a superconductor placed
in a rotating magnetic field. Such a behavior is a result
of the ¹haped I-V curve shown in Fig. 11.
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APPENDIX A: 3D SPECTRUM

f+=u/2+(u /4 —v)'

where the functions u (n) and v(n) are given by

(A 1)

The cubic secular equation (2.6) actually reduces to a
quadratic one since Eq. (2.6) automatically gives divsj =0
or k5j(k)=0. A direct evaluation of the determinant
(2.6) yields

u =(n +n, )R„„+(n„+n,)R««+(n«+n„)R„

(R„„+R„)n„n —(R„,+R )n„—n, (R,+R, )n,—n

+ [R,„R,+R„,R,„(R„+R„)R„—]n„n

+ [R„R,+R „R„—(R„,+R,„)R«]n„n, +[R„,R „+R~R„« (R, +R, )R„„—]n„n, .

(A2)

(A3)

Formulas (Al) —(A3) describe two modes, unlike the 2D
case in which there is only one mode given by Eq. (2.9).
Another feature of the 3D case is a possibility of oscilla-
tion at u &4v. The spectrum A,(k) simplifies if currents
flow along a symmetry plane, say, j(~xy and B~~z. Then
the elements R„„R,R „and R~ vanish due to symme-
try and Eq. (Al) reduces to that of Ref. 10.

BR p5E =R p5jp+ —,'5ji35j
jr

In the coordinate frame (g, q), Eq. (Bl) reads

BR BR
5E~ =R25J~+ . 5J~+ 5J„5J(2 Bjg BJ~

(Bl)

(B2)

APPENDIX B: CALCULATION OF N AND e

In order to get N, we expand E up to second-order
terms in 5j as follows:

(with no summation over g and rj). Hence, it follows that
N= —,'BR /BJ( with

R2=[4R„R —(R„+R „) ]/2Ri .

Making use of Eqs. (2.15), the formula for R2(s) at s =s,
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can be written as

R2=RO(p)[s, (p) —s], (B3)

u, & uz & u~ are the roots of the cubic equation (C2) with
u'=0; moreover,

4p„p (g +4g)' G
Ro($) =

(p +p )(2+s, )+s,(p„—p )(cos2$+b sin2$)

E
u ) +u2+u3 —3

u)u2+u)u3+u2u3 0

(C4}

(C5)

Furthermore, one has

aR2 aj aR2
2N= . +

(B4)

(B5)

Here j =j sin(P+ g) and j&
= —j cos(P+ P) (see Fig. 2),

hence,

dj = —cos(P+g} =—sin(P+g)—ap 1 . ap
Bj& aJg J aJg

with g given by Eqs. (2.11) and (2.19), and

aq/aJ, = (aq/aJ )(aJ /aJ, }+(ay/ay }(ay/aJ, } .

(B6)

Inserting the derivatives into Eq. (B5) and differentiating

R2, at s ~s, one finally obtains

u, E(m)+ [K(m) —E(m)]u~ =0,
(1—m )u, —u2+muq =0 .

(C7)

(C8)

Solving linear equations (C4), (C7), and (C8) and substi-
tuting the result into Eq. (C5), one finds the following
equation for the parameter 0(m (1:

The critical nucleus corresponds to the solution of u (g)
of Eq. (C2) for which u(+~)=u'(+~)=0 and C =0.
Such a solution described by Eq. (3.6) exists only if e & 0.

Now we turn to periodic solutions of Eq. (Cl) obeying
Eq. (3.1) which read

i(2f [(x —u, )(x —u2)(x —u~)] '» x dx =0 . (C6)
1

This condition can be expressed in terms of complete el-
liptic integrals K (m) and E (m) (Ref. 52) as

as as 1 . (a@/aj)cosy"'~ aJ+ ay J
""~+

I+(a@/ay) Ro,

(B7)

3E (m) —2E(m)K(m)(2 —m)+(1 —m)K (m) =0 . (C9)

This equation has the only solution m =0 which does not
correspond to the periodic function obeying Eq. (3.1).

E=(s s )Eo,

4p„p (g +4g)'» G

[(p„+p» )(2+s, )+s,(p„—p» )(cos2$+ b sin2$) ]

(B8)

(B9)

where y=P+P is determined by Eqs. (2.16)—(2.19). As-

suming N =0, one gets Eq. (3.8).
The formula for e= —Rz/R, can be obtained from

Eqs. (B3}and (B5) as follows:

APPENDIX D: HODOGRAPH TRANSFORMATION

In the 2D case, the stationary Maxwell equations

BE —BE =0,
j„=OH, j = —B,H

(Dl)

(D2)

with E=E(j) reduce to one nonlinear equation for
H (x,y). Making use of the Legendre transformation, it is
convenient to transform from the independent variables x
and y to new variables j, and j by presenting Eq. (D2) as

APPENDIX C: STATIONARY 1D SOLUTIONS
OF EQ. (3.3)

At a, h = a&h =0, Eq. (3.3) after double integration over

g reduces to

dH =d (yj „)—d (xj» )
—ydj„+xdj» .

Let us introduce the function

U =H+xj —yj

(D3)

(D4)

I u +E'u u —0, (C 1) such that dU =xdj —ydj and

I u' =2u /3 —eu +C, (C2)

where C will be determined below. Solutions of Eq. (C2}
can be written as an integral

where u =h', and the prime denotes the differentiation
with respect to g. Here we put the integration constants
zero in order to ensure the correct uniform state u =0.
Multiplication of Eq. (Cl) by u' and integration over g
give

AUx=, y=-
Bjy

(D5)

where U(j) is regarded as a function of j. Assuming
j„=j cosp and j =j sing, we get formulas (3.9) and

(3.10) instead of Eqs. (D5). To express Eqs. (D 1) and (D2)
through the variables j and p, it is convenient to write

Eq. (Dl) as Jacobians:

g=l( —,
')'» f [(x —u, )(x —u~}(x —u, }] ' dx,

I

(C3)

which can be expressed via elliptic functions. Here

a(E.,x) a(E„y)+
a(x,y) a(x,y)

=0. (D6)
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Multiplying Eq. (D6) by the Jacobian b, =a(x,y)/B(j, p),
one finds

r

1 BU 1BU
J aja4 J ay

2
BU 1 BU BU (D8)
BJ J BP BJ

aE, ay aE, By BE„ax
aJ ay ay aJ+ aJ ay

aE. ax
. =0 . (D7)

B BJ

Taking E„=p„jG(j/jk(ttp))cosP, E =p jG(j /
jk(p))sing, and making use of Eqs. (3.15), one gets after
some algebra the linear equation (3.12) for U(j, p).

The hodograph transformation is a well-defined pro-
cedure provided that the Jacobian 6 is nowhere zero. A
direct calculation of 6 by means of Eqs. (3.9) and (3.10)
gives

By expressing the combination B.U+j B&U by Eq.
(3.12), one finds Eqs. (3.16a) and (3.16b). A similar hodo-
graph transformation can be used if the stationary
Maxwell equations are written in terms of the scalar po-
tential 4 such that E= —V@. Then one can introduce a
function U(E) for which r=VEU, and
4&= U EB—U/BE. In this case the condition divj(E) =0
gives a linear equation for U(E) in the same way as dis-
cussed above. Such a representation could be convenient
for the analysis of 3D current configurations.
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