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Flux-line lattice in uniaxial superconductors at low magnetic inductions
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Within the London approximation, we predict the geometry of the flux lattice in anisotropic, strongly
type-II superconductors for arbitrary field orientation and intensity. At low magnetic fields, the scaling
of the lattice parameters with field differs markedly from the ordinary B ' dependence. We also calcu-
late the form factors and reflectivities for neutron diffraction. The dependence of the reflectivity on the
angle between the magnetic field and the c axis, and on the field intensity, is calculated.

I. INTRODUCTION

One of the most interesting aspects of high-
temperature superconductivity is the exact nature of the
intermediate state, characterized by the penetration of
the magnetic flux into the sample in the form of quan-
tized flux lines. In particular, the detailed structure of
such a flux line in the highly anisotropic and inhomo-
geneous high-temperature superconductors, as well as
their arrangement in a regular lattice, has been lately the
object of much discussion. ' The phenomenon of vortex
attraction in anisotropic superconductors ' when the
field is not parallel to one of the principal axes of the
crystal has very interesting consequences, some of which
are examined below. At large magnetic fields, the flux
lattice structure was predicted by Campbell, Doria, and
Kogan. Their calculation is, however, not valid in the
low-field limit. Since the low-field limit is important for a
number of experimental techniques such as decoration
experiments or muon spin rotation, it is interesting to in-
vestigate how the lattice geometry scales with magnetic
field near the lower critical field. From a theoretical
point of view, the calculation of quantities such as the
elastic constants of the flux-line lattice requires the exact
flux lattice geometry. The use of lattice geometries that
do not correspond to an equilibrium configuration leads
to unphysical results such as negative elastic constants.

A number of decoration experiments performed during
the past three years have shed some light on the issue of
the geometrical arrangement of the flux lines. The
decoration method probes vortex positions at the surface
and is limited to low fields by its inherent resolution.
Other techniques, such as muon spin rotation as (@SR),
are sensitive to the bulk magnetic-field distribution, but
provide only indirect information on the structure of the
flux-line lattice (FLL). A more direct way to study the
characteristics of the FLL is the diffraction of subthermal
neutrons. It has proved to be a useful technique to probe
directly the FLL at the microscopic level. Since the mea-
surements of Cribier et al. this technique has been
developed extensively and applied to a large class of su-
perconducting materials. However, it is only recently

that the technique was applied to high-T, superconduc-
tors by Forgan et al. We discuss their results briefly.

II. THE EQUILIBRIUM FLL

where m;J is the mass tensor. In the crystal frame, and
for a uniaxial material, m is diagonal:
m =diag(m„m„m, ) and is normalized so that
detm =1. r,p =x,y and s, q, i,j =x,y, z. The anisotropy
ratio is defined by

y=(m, /m, )'~ =
~ah

It should be emphasized that the London limit was
chosen deliberately for several reasons. First of all, most
high-temperature superconductors are high-~ materials, a
condition required to be in the domain of validity of the
London approximation. Second, the London equation is
a linear partial differential equation. It can be solved
analytically in Fourier space. The anisotropy of the su-
perconductor is taken into account via the introduction
of a mass tensor. The material is still assumed to be
homogeneous. One can question this assumption consid-
ering the layered nature of most of the high-T, materials.
However, there are good indications that the London
model can predict reliably a number of magnetic proper-
ties (except when the external field is close to the ab
planes, in which case the inhomogeneity of the material
has to be accounted for explicitly' ).

The solution to Eq. (l) in Fourier space is given by

2
NOR, pl q q q

br(q) =- b„(q),D(q) q

The basic equation describing the magnetic-field distri-
bution of an isolated flux line has been known for a long
time. Within the London approximation, it reads

b, +Am, E,e, "t)„B b, =@ o5„5(r),
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40(1+A, q m„)
b, (q)=

D(q)
D(q)=(1+A, q m„)(1+A, q m „+A, q„m )

—
A, qm, q

where q =q„+q„. The various components of the mass
tensor in the vortex frame are given by

mxx macos 8+myosin 8, mxy O=myz ~

m„=m, , m„=m, sin 8+m, cos 8,
m„, =(m, —m, )sin8cos8,

8 is the angle between the vortex axes and the c axis. We
can invert this Fourier transform numerically to look at
the magnetic-field distribution in real space. Since b, is
(up to a numerical factor) the interaction potential (per
unit length) between two parallel infinite (lux lines, it is
worth describing b, (x,y) in some detail. A plot of the
transverse field components b, and b can be found in
Ref. 3. Figure 1 shows b, (x,y) in the plane perpendicular
to the flux-line axis. A number of remarkable features
are immediately noticeable. First of all, the field changes
sign in two regions of the xy plane, i.e., the vortex-vortex
potential is attractive in part of those regions. Notice the
presence of two minima in the field distribution on each
side of the vortex core in the regions where the potential
is negative. The potential is repulsive in the direction
perpendicular to the line joining the minima. The forma-
tion of vortex "chains, " to be described in more detail
below, can be directly related to this peculiar form of the
vortex-vortex interaction potential.

The total (London) energy (per unit length) of a system
of flux lines is

E = g b, (r, —r,. )+ ger;, (8)

where B is the total magnetic field at r:

B(r)= g b(r —R „),
"mn

(10)

it is easier to start with the total energy expressed in
terms of the Fourier components of b

where cr; is the self-energy (per unit length) of the ith vor-
tex. An explicit expression for o.; can be found in Ref.
11. In Eq. (8), E appears as a function of the vortex posi-
tions I r,. ]. Ideally, one should minimize E with respect
to the positions and find the configuration that leads to
the absolute energy minimum. We performed such nu-
merical minimizations. ' These computer simulations are
time consuming and ineffective if we want to study sys-
tematically the flux lattice geometry for arbitrary field
orientation and intensity. We can simplify the problem
considerably by noting that the equilibrium configuration
is a regular periodic lattice, and by assuming that the unit
cell has the geometry shown in Fig. 2 and contains one
flux quantum per unit cell. Notice that in Fig. 2, the tri-
angle HOB is isosceles. The validity of the latter assump-
tion was confirmed by numerous computer minimizations
of the total energy, Eq. (8). Thus we can minimize the
energy per unit cell rather than the total energy of the
lattice, and express the energy (per unit cell) in terms of
one variable only, namely p=alb, the ratio of the Aux

lattice parameters. Rather than using the energy ex-
pressed in terms of the real-space fields

e[B(r)]=J I d r [~B(r)~ +k [VXB(r)],
U. c. 2po

Xm„[VXB(r)],],
(9)

e= Q I~b(G)~ +A, [GXb(G)];mj[GXb(G)]j],
2po F

0-

where F, is the unit-cell area. The lattice vectors are
given by

R „=(ma +nb cos1(t)x+nb sinpy,

0
x/X

FIG. 1. Distribution of the z component of the magnetic field
setup by anisolated flux line in a plane perpendicular to the flux
line. The field vanishes along the thick solid lines. It is positive
in the central region near the core and negative in the two re-
gions to the left and right of the central area. The contours are
equidistant (y =55, 0=60', ~=60).

Oi ] iA
I

FIG. 2. Unit-cell geometry assumed for the energy minimiza-
tion. OAB is an isosceles triangle.
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where m, n are integers. The summation in Eq. (11) is
over the reciprocal lattice vectors:

= 2"- 2~ 2~ 1
Cs „=n x+ m —n cosP . y.

a b a sin
(13)

In Eqs. (12) and (13},a, b, and f depend on p (and the
magnetic induction 8) in the following way:

1/2

a= (14)
[1 (p/2)2]1/2

' 1/2
0 1

p[1(p/2)2]1 /2 (15)

cosg=
2

(16)

In deriving Eqs. (14}—(16), we have used the geometry
defined in Fig. 2. The reciprocal lattice vectors depend
on p via a, b, and f, and the total energy depends on p via
the reciprocal lattice vectors.

Care must be taken in the calculation of the total ener-

gy per unit cell e. Formally, the expression, Eq. (11), is
divergent because in the London approximation the mag-
netic field has a singularity at r=0. This singularity must
be removed by truncating the field at (roughly} g, the
coherence length. ( is the length scale below which the
London description ceases to be valid and determines the
vortex core dimensions. Since the core is elliptic in an
anisotropic material, as can be inferred from Fig. 1, we
use an elliptic cutoff as suggested by Brandt. ' The
coherence lengths in the ab plane and along the c axis are

g,b and g„respectively. These lengths are such that
y =g,b/g, . One can define an average coherence length
g=(g, bg, )' . We took ~=A. /(=60, a value suggested
by recent @SR measurements on YBa2Cu307 „(YBCO)
single crystals. ' This cutoff prescription is approximate,
but acceptable at low magnetic inductions. We tested
different cutoff prescriptions and checked that the results
were insensitive to the method used to remove the diver-
gence. At larger magnetic inductions, a resolution of the
full Ginzburg-Landau equations would be required. The
minimization of Eq. (11) with respect to p can be per-
formed in a number of ways. We chose the golden-
section-search method' because of its robustness and
also because the derivatives of e with respect to p are not
readily available. The minimum in the London energy
considered as a function of p is very shallow, especially at
low inductions and small angles. This makes the minimi-
zation procedure rather difficult, and requires high accu-
racy in the calculation of the energy. Alternative
schemes exist to facilitate the calculation of the lattice en-
ergy. '

The results of applying this minimization procedure
are shown in Figs. 3(a) and 3(b) for y =5 and 55, respec-
tively. Those are the values usually quoted for
YBa2Cu307 and Bi2Sr2CaCuz08 (BSCCO). When 8=0,
p=1 and the lattice is a regular triangular lattice, as ex-
pected. However, as 8 increases, p decrease very rapidly,
especially when y is large. This leads to a lattice
configuration where the lattice parameter a is much

smaller than b, i.e., the lattice appears as a highly distort-
ed triangular lattice. In the extreme situation where

p (&1, the lattice appears as a series of parallel "chains"
of vortices. Physically, this behavior is easy to under-
stand: As pointed out above, the interaction potential be-
tween two fiux lines has a pronounced (attractive)
minimum on each side of the vortex core. The presence
of these minima strongly favors the alignment of the flux
lines and the formation of chains. There is more to be
said about the field dependence of the lattice geometry.
The applied magnetic field determines the surface flux-
line density: n =8/40 where 40 is the fiux quantum and
8 the magnetic induction. In an isotropic superconduc-
tor, the lattice is triangular with one flux quantum per
unit cell. The lattice parameters are given by
a =b =(2@o/8/&3)'~, i.e., the lattice scales uniformly
in all directions with B(a,b =8 ' }. Figures 4(a} and
4(b) show the lattice parameters vs field for various field
orientations. The plots are log-log plots so that the slope
of the various curves are a direct measure of the field
scaling exponents. It is obvious that at low magnetic field
the lattice constants do not scale uniformly with field.
The separation of two flux lines in a chain a remains con-
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FIG. 3. (a) Ratio for the flux lattice parameters: p=a/b vs
8, the angle between the vortices and the c axis for various mag-
netic fields. y=5; (b) y=55. The magnetic field is in units of
No/(2+A. ) where A, =(A,,bA, , )
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stant and independent of field at low fields (and over a
rather large range of magnetic field when @=55). Since
there must be exactly one flux quantum per unit cell, the
other lattice constant b must scale as b=8 '. There-
fore, at low fields, the chain structure is fixed (determined
by the position of the minimum in the vortex-vortex in-
teraction potential) and it is the separation between two
chains that shows all the magnetic-field dependence. The
interaction between two adjacent chains is very weak. At
larger magnetic fields, as the chains begin to interact
more strongly, this peculiar behavior disappears and the
scaling reverts to an ordinary 8 ' scaling for the lat-
tice constants a and b. Notice that this "scaling cross-
over" happens abruptly at some critical field. Above this
crossover field, the lattice is just a distorted triangular
lattice scaling uniformly in all directions with increasing
magnetic field. Strictly speaking, the use for the term
"vortex chains" should be applied to describe the situa-
tion a =const and b=8 '. For t9=m/2, the vortex-
vortex potential is again purely repulsive, and the mag-
netic field scaling is the ordinary B ' dependence. Fi-
nally, it is worth pointing out that at large magnetic fields
the p vs 8 curves collapse on the same "universal" curve

[the solid line in Figs. 3(a) and (b)] regardless of field in-

tensity. This curve is the curve obtained by Campbell,
Doria, and Kogan.

It should be emphasized that the results presented in
this section describe how the flux lattice scales with the
average magnetic induction B. Similarly, the angle t9

gives the orientation of the magnetic induction, as op-
posed to the orientation of the applied magnetic field,
H

pp
At low fields, the orientations of B and H

pp
are

likely to differ significantly. Grishin, Matynovich, and
Yampol skii have calculated, in the very-low-field limit,
the relative orientation of B and H, as a function of the
external field intensity and orientation. We did not in-

clude any demagnetization effect due to finite-size effects:
Our results are valid for an infinite superconducting
medium only.

III. INTEGRATED REFI.ECTIVITY

The general formalism to calculate the integrated
reflectivity Rzk is well established, and we shall merely
quote the relevant results. In the Born approximation,
the differential cross section for the elastic scattering of a
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FIG. 4. (a) Flux lattice parameters a and b is magnetic induction for various value of 0, the angle between the vortices and the c
axis. @=5;(b) y =55. The magnetic field is in units of 40/(2~X ) where A, =(A,,bk,, )' . The chainlike dependence of the flux lattice

parameters at low fields reverts to the usual B ' dependence as 0 approaches ~/2 as it should.
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neutron beam by an array of scatterers is

M„
27rh2 y yp. l&k ~

I
vlk~ & I'

cr cr'

= yp. &~lw'wl~&, (17)

where

lv= &k I vlk& (18)

(19)

The interaction between the neutron spin S and the mag-
netic induction B set up by the array of flux lines is

V(r) = —y(ps/A' )S.B(r)

(y/2)ps—(B„S„n„+B~S~o~+B,S,o, }, (20)

where 0, cr, and o, are the Pauli matrices,
S=(S„,S~,S, ) is a unit vector indicating the spin direc-
tion, and y the neutron gyromagnetic ratio. Notice that
B(r) is the total magnetic induction at r. The final result
is easily expressed in terms of the Fourier components of
the magnetic induction set up by one flux line:

'2 2

y [Ib„(G)l'+Ib, (G)l'
G

+ Ib, (G) I']~(q —G),
(21)

where 6 is a reciprocal lattice vector of the flux-line lat-
tice, q is the momentum transfer, and the b;(G)'s,
(i =x,y, z) are given by Eqs. (3)—(6). The experimentally
measured quantity is the integrated reflectivity. It is ob-
tained directly from the scattering cross section upon in-
tegration over the solid angle Q. For the (hk) Bragg
peak, the integrated reflectivity is

Vn
R~k =2m

4
~n V

, IFpkl',
Ggk Fc

(22)

where y„ is the ratio of the neutron magnetic moment to
the nuclear magneton (y„=1.91), A,„ is the neutron
wavelength, V is the irradiated sample volume, GI,k is the
magnitude of the reciprocal lattice vector corresponding
to the (hk) Bragg peak, and F, is the FLL unit-cell area.
The form factor for the (hk) reflection is determined
below. Physically, Rzk is the ratio of the total intensity
of the (hk} reflection to the unscattered neutron flux
behind the sample. It has dimension of an area, and gives
the total scattering cross section. We now proceed to a

is an operator acting on spin states. V is the interaction
between a neutron and the flux lines. p describes the
beam polarization, M„ is the neutron mass, and

I
ko & is a

neutron quantum state. For an unpolarized beam, p
and

2

[&+ I
iv+8'I+ &+ &

—
I
lv+ tvl —

&] .

systematic discussion of the various factors appearing in
Eq. (22).

The cell area is F, =40/B. The reciprocal lattice vec-
tor corresponding to the (hk) reflection is given by Eq.
(13). Finally, the form factor Fzk is the normalized
Fourier transform of the two-dimensional magnetic-field
distribution of a single flux line:

fd r b(r)exp(ir„„r)
I

I2
F~k =

fd rb(r) @0
(23)

Everything else being constant, the form factor for a
given reflection is inversely proportional to A, . Since the
form factor appears squared in Eq. (22} for the
reflectivity, we expect the large London penetration
depth in the oxide superconductors to suppress the
reflected intensity considerably compared to what one
would expect in a conventional superconductor with
smaller A,. Equivalently, we can say that because of the
large penetration depth, the magnetic field of a single flux
line penetrates far inside the sample. The superposition
of these individual contributions will produce a very uni-
form microscopic field. Since neutron diffraction is sensi-
tive to variations in the magnetic field, the resulting
scattering intensity will be low. Other imperfections in
the materials' microstructure will contribute to a de-
crease in the intensity of the scattering. For example, in
a polycrystalline material the presence of grain boun-
daries will cause the flux lines to bend irregularly to take
advantage of the intergrain space to lower their self-
energy. This bending will further disrupt locally the
periodicity of the magnetic field.

We focused on the (10) peak because it is presumably
the most intense, and also because, as discussed in Sec. II,
the spacing between the flux lines is more regular along
the chains than in the direction orthogonal to the chains.
This is because the spacing between two vortices in a
chain is determined, at low field, by the position of the
minima in the vortex-vortex potential. Figures 5(a} and
5(b) show the integrated reflectivity as a function of mag-
netic induction for y =5 and y =55, respectively. The
reflectivity is very low for y =5 or y =55, and decreases
rapidly as the magnetic induction is tilted away from the
c axis. For 0=90', the reflectivity is suppressed by two
orders of magnitude compared to the L9=0' reflectivity.
It is interesting to point out that the reflectivity for
y =55 is not as low as one might have expected. This is
because the larger anisotropy of the material yields a
more anisotropic vortex-vortex potential, which in turn
leads to a more inhomogeneous microscopic field distri-
bution, and a larger form factor. At large magnetic in-
ductions, the reflectivity decreases slowly as B', as can
be inferred easily from the magnetic induction depen-
dence of the various factors appearing in Eq. (22).

Recent neutron-diffraction measurements by Forgan
et al. show very clearly a highly symmetric diffraction
pattern in YBCO single crystals when the field is applied
parallel to the c axis. The diffraction pattern has a four-
fold symmetry instead of the expected sixfold symmetry.
The fact that the Bragg spots coincide with the direction
of the twinning planes ([110] and [110]) in the crystal
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four. Again, the most intense diffraction peaks occurred
in the direction for the twinning planes. Of course, since
the field is tilted with respect to the c axis, only one set of
twin planes is likely to play a significant role in pinning
the flux lines along their length, and this only if the ap-
plied magnetic field is parallel to the twin planes. Pin-
ning by twin planes has been confirmed very clearly by
Vinnikov et al. in their decoration experiments. ' Al-
though the observation of Bragg peaks by Forgan et al. is
very encouraging, it is unlikely that it will help confirm
our predictions, unless similar measurements are repeat-
ed on untwinned YBCO crystal or on Bi or Tl com-
pounds, which have no twin boundaries. The theoretical
results presented above show that the reflectivity is not
significantly smaller in more anisotropic crystals.

IV. CONCLUSIONS
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FIG. 5. (a) Neutron-diffraction integrated reflectivity for the
(10) Bragg reflection for (a) y=5 and (b) y=55. k is the average
penetration depth, V is the volume of the sample, and A.„ is the
neutron wavelength.

clearly indicates that the flux lines are heavily pinned by
the twin boundaries which thus dictate the symmetry of
the flux lattice. Forgan et a1. also tilted the magnetic
field so that the angle between the external magnetic field
and the c axis was equal to 45'. They observed a distort-
ed sixfold symmetric diffraction pattern with two of the
diffraction spots being clearly more intense than the other

We showed that in anisotropic superconductors, the
low-field flux lattice geometry is nontrivial, and scales
with field in a peculiar way. In superconductors with a
fairly low anisotropy, this unusual scaling behavior may
not be directly observable because it takes place below
the lower critical magnetic field. For instance, if
A.,&

=150 nm, and y=S, then 4o/(4n. k )ina=5 mT,
which is probably below the lower critical field for all
vortex orientations. However, for y=55, the behavior
should be observable at fields equal to several times the
lower critical field, The recent observation of vortex
chains by Bolle et al. in decoration experiments on
BSCCO samples seems to confirm the existence of chains.
What they observed is, however, more complex than the
simple flux lattice described here. The exact reason for
this is not known. It could be that surface effects (possi-
bly important in the thin slabs used in the experiment)
and/or pinning effects prevent the formation of the ideal
lattice discussed above. More neutron or @SR studies in
larger samples, and at larger fields should help clarify the
situation.

Similar calculations for the more complicated case of a
biaxial superconductor are in progress. The results will
be published elsewhere.
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