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In this paper we desribe how quantum coherence of superfluid helium provides a mechanism by which
very small rotations can substantially modify the flow in a toroidal container. The specific modifications
to that flow are discussed. For He, we explain how the rotationally induced flow can be detected by
monitoring the apparent phase-slip critical current. The rotational resolution is limited by stochastic
processes related to the nucleation of phase slips. This type of superfluid-helium gyroscope (SHEG) is an
analog of the rf superconducting quantum interference device (SQUID). We also show how the large
coherence length of 'He can be utilized to lead to a rotationally induced interference pattern. Changes
in this pattern can permit the detection of very small rotational motion. This type of SHEG is analogous
to the dc SQUID. In appendixes, electrical circuits equivalent to the SHEG are described, as are certain
constraints on rotational sensitivity imposed by external measuring devices.

INTRODUCTION

This paper will describe the principles of devices, using
superfluid helium, that will detect very small changes in
the state of absolute rotation of the container holding the
helium. It is possible that the sensitivity of this class of
detector may eventually surpass existing gyroscope tech-
nology. Although a working superfluid gyroscope has
not yet been demonstrated in the laboratory, the princi-
ples underlying its operation have been well established
for many years and it seems likely that a working model
will emerge in the near future.

Although some of the ideas underlying this potential
technology have been recognized previously in various
forms, ' there has not yet been a consistent description
of a possible practical device. It is the purpose of this pa-
per to fill this void. We hope to present the basic princi-
ples of superfluid-helium gyroscopes (SHEG's) as they are
presently understood. However, because this field is in its
infancy, there are still many unanswered questions.
Wherever possible, we point out those aspects of the
problem which will require fundamental research.

Although the helium rotation sensors bear a close anal-

ogy to the superconducting quantum interference device
(SQUID), both rf and dc, we have chosen to write this pa-
per assuming the reader has no great familiarity with
these devices. We have also not assumed any special
knowledge of superfluidity.

A general discussion of the sensitivity of rotation sen-
sors or of the uses of such sensors is beyond the scope of
this paper. However, because there is already interest
within the geodesy community in measuring very small
changes in the Earth's rotation vector and also in the
possibility of detecting the general-relativistic gravi-
tomagnetic field of the Earth, we will tend to direct nu-
merical estimates toward the greatest achievable levels of

sensitivity.
The paper is arranged as follows: After first describing

the fundamental ideas behind these devices, we describe
the nature of intrinsic dissipation critical velocities in
superfluid He, a topic intimately related to the practical
realization of the gyroscope. We proceed to discuss a
specific realization using He. This is followed by a
description of a device relying on He and its specific
properties when confined to a very small hole. In each
case we present a discussion of the fundamental limita-
tions of such devices. Following the main text, there are
two appendixes. The first explains the electrical
equivalent circuit of the SHEG. The second describes
the nonintrinsic noise sources which might limit the sen-
sitivity of the SHEG.

Whenever numerical estimates are made within this
paper, we will use parameters that do not exceed current
state of technology.

GENERAL PRINCIPLES

Both stable isotopes of helium ( He and He) undergo
superfluid phase transitions at low temperatures (2.7 mK
for He and 2.17 K for He). Below the transition tem-
perature these liquids can exhibit flow without any dissi-
pation. ' Superfluid systems are characterized by a
macroscopic quantum-mechanical wave function
qi =%&e'~, whose complex phase P contains the kinematic
description of the system and whose amplitude %o is pro-
portional to the superfluid density. Usually (in the case
of He and He-B), the gradient of the phase is related to
the superfluid velocity field U, by

grad/ = (2m.m /h )v, ,

where h is Planck's constant and m equals either the bare
He atomic mass or twice the atomic mass of He. (The

46 3540 1992 The American Physical Society



46 PRINCIPLES OF SUPERFLUID-HELIUM GYROSCOPES 3541

factor of 2 comes from the fact that Cooper pairing un-
derlies the He superfluid state. ) The ratio h/m will

henceforth be designated by the symbol K.

The relationship between macroscopic quantum phase
and velocity, expressed by Eq. (1), leads to a restriction
on the flow states accessible to a quantum liquid. To as-
sure the single valuedness of the wave function, one must
assume that, if the function grad/ is integrated around
any closed path lying in the fluid, the total phase change
must be an integral multiple of 2~. Thus

tt) grad/ dl = 2m n . (2)

Combining this result with Eq. (1) leads to the flow-
restriction condition

U .dl =nb /m =n x, (3)

2 4+OR5= J grad/ dl=
1 K

(4)

which states that the fluid circulation is quantized around
all paths lying within the fluid. The quantum of circula-
tion, a, has the values 0.99X10 and 0.66X10 m /s
for 4He and He, respectively. Equation (3) has been ex-
perimentally verified"' in both He and He.

Now consider an annular container of mean radius R
(see Fig. 1) and small cross section cr, filled with
superfluid and partitioned at one place by a very thin
wall. If this container is at rest, the superfluid ground
state must have zero velocity, and it follows from Eq. (1)
that the phase P is constant throughout the liquid. How-
ever, if the vessel is rotated about a central axis (perpen-
dicular to the place of the annulus) at regular velocity 0,
the fluid must exist in a nonzero velocity state. The cor-
responding phase gradient given by Eq. (1) implies that a
phase difference 5=/A —

P& will exist across the wall. We
will show that a very small rotation rate can create a very
substantial phase difference. If that phase difference can
be measured, one can determine the state of absolute ro-
tation of the annulus. Such phase differences can be mea-
sured, and this is the basic principle underlying this class
of rotation sensor.

If the lateral dimensions of the torus are small com-
pared with R, the velocity induced by rotation must be
close to the solid-body value' v=QR. In this case the
phase difference is given by

Because all physical observables related to the wall are
periodic in 5, the greatest physically distinguishable
phase difference across the partition if 5=~. The angular
velocity which produces this maximum phase difference
is given from Eq. (4) by setting 5=m.:

Q =K/4n. R

For the case of He, if R =0.5 m, 0 =3X10 rad/s
= 4X10 QE. Here QE is the Earth's daily rotation
rate and is, for geodetic purposes, a useful unit of angular
velocity. (It should be mentioned that a device of 1 m la-
teral dimension seems like the largest feasible device.
This scale matches the technology which is presently in
use for cryogenic gravity-wave detectors. ' Clearly, small
angular velocities can produce appreciable phase
differences for scale lengths achievable in a laboratory
setting.

For an ¹urn torus or radius R, the phase difference
for a given Q will be N times greater than that given by
Eq. (4). However, as shown below, there is a practical
limit for the maximum number of toroidal turns.

If one uses a technique to measure phase differences
across a partition, it should be possible to create a sensi-
tive sensor of absolute rotation.

The next sections describe possible techniques for
detecting these rotationally induced phase differences in
He and He.

ROTATIONALLY INDUCED FLOW
THROUGH AN ORIFICE

To probe the phase difference of Eq. (4), we may place
a very small hole, of radius r, in the thin partition. A
given phase difference across the small length of the par-
tition implies a very large phase gradient and, through
Eq. (1), a velocity in the hole which is very large com-
pared to QR.

Consider the torus initially at rest with the fluid in the
zero-circulation state. If the torus begins to rotate slow-
ly, the circulation will not change. This implies that, in
the circulation integral, the term arising from the solid-
body flow in the torus must be balanced by a counterflow
in the orifice. The superfluid gyroscopes described in this
paper involve methods of detecting the rotationally in-
duced velocity field in the orifice.

The size of the rotation-induced flow velocity in the
hole, vz, can be estimated by using the quantization of
the circulation condition. In the rotating torus we let the
velocity far from the orifice, as seen in the nonrotating
frame, be v =QR. The effective length of the orifice, l,ff,
can be obtained by solving the potential flow problem for
a round hole in a thin partition and then equating the to-
tal kinetic energy to —,'p~r l,ffv . Here the velocity v is
the mean velocity defined by the ratio of volume flow rate
to orifice area. The effective length is found to be'
l,ff=mr/2, SO that 5=Vi,ff/K.

Performing the circulation integral then gives the
equation

FIG. 1. Rotating annular container partitioned by a thin
wall.

v ger2mRQR+ =nK .
2

(6)
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Solving for v&, the velocity induced in the orifice, gives

Un =(2/mr) I n~ —2mR 0 j . (7)

Perhaps the most intuitive way to view this equation is to
point out that, for the zero-circulation state (n =0), the
rotation-induced fluid velocity in the hole is greater than
the linear velocity of the torus (QR ) by the large factor
4R/r. For example, if R =0.5 m and r =0.5X10 m,
the fluid velocity in the orifice exceeds the tangential
speed of the torus by 4 X 10 .

The discussion leading to Eq. (7) has ignored the
modification of the flow in the body of the torus caused
by the presence of the hole. A more complete derivation
(see Ref. 2 and A.ppendix A) of Eq. (7), for the case of an
N-turn torus, yields the result

2 ng —2mNR Qcosg
VQ

mr 1+4mNRr /o
(8)

where 8 is the angle between the rotation vector and the
normal to the plane of the torus and o. is the torus cross-
sectional area.

Notice that v& is evaluated in a reference frame rotat-
ing with the torus. In the inertial frame one should add
the negligibly small velocity QR.

The quantity 2mNR 0 cost9 is the flux of the vector 2Q
through the torus. For simplicity in this paper we will
assume that 8=0. By making the electrical analog (see
Appendix A) for a fluid flowing through a tube of length I
and area o., one can introduce the concept of the kinetic
inductance L =//po. Inspection of Eq. (8) shows that
the denominator term is a correction to Eq. (7), which in-
volves the ratio of the inductance of the N-turn torus to
that of the orifice.

Equation (8) is, for a superfluid such as He, the funda-
mental gyroscope equation. We will now discuss the
physical phenomenon through which one may measure
the fluid velocity in a small hole and thus detect the rota-
tionally induced flow described above.

THE CRITICAL VELOCITY AND THE DETECTION
OF THE ROTATIONALLY INDUCED FLOW

It has been known for many years that dissipation-free
superflow will not exist for arbitrarily large fluid veloci-
ties. ' Over the past half century, there have been many
measurements and several theories to describe the break-
down of superflow at a well-specified critical velocity. Of
concern to us here is the intrinsic dissipation processes
that occur in a submicrometer orifice at temperatures low

enough so that normal-component flow is of no conse-
quence.

The important relevant concept is that of the phase
slippage as proposed by Anderson. ' He showed that,
when the flow through the orifice attains some critical
value, a quantized vortex line may be created which will

move across the orifice, crossing all streamlines of the po-
tential flow. It can be shown that in such a process the
phase difference 6 across the orifice will change by 2m and
the flow energy will be reduced by AF =~psv„where v,
is the critical velocity in the hole whose area is s.

diaphragm

FIG. 2. Rotating partitioned torus, coupled to a diaphragm
mass-current pump. Voltages applied to electrodes placed near
the metallized diaphragm can induce the current.

Direct detection of individual 2m-phase-slip events has
been reported by Avenel and Varoquaux (AV). ' The
fundamental 2m phase slips have also been studied recent-
ly by us. '

Consider a rotating torus partitioned on one side by a
thin wall which contains a submicrometer orifice. Sup-
pose an external mass current I is driven through the
torus. Figure 2 illustrates one particular configuration,
which includes a mass-current source with the torus.
With proper choice of the size of the torus and orifice,
the mass current will split between the two arms, so that
a substantial part of the mass flow will cross the orifice.
Namely, this is obtained (see Appendix A) if the kinetic
inductance of the half torus opposite to the orifice,
L2 =l2/ps2 with I2 the length of the arm and s2 its sec-
tion, is comparable to that of the torus other arm,
L, = l, /ps, + l,tt/pm r . Here the second term
Lo = t,ft/pmr is the contribution due to the orifice.

Suppose now that the value of driven current I, at
which phase slip occur is recorded (see the discussion
below). The flow in the orifice contains contributions
both from the external drive and from rotationally in-
duced flow, given by Eq. (8). Since the critical velocity
for a given orifice (at fixed temperature) has a fixed value,
the rotation will produce a shift in I, . This shift is identi-
cal to that caused by an apparent change in critical veloc-
ity to v, +v&, the sign depending on the sense of rotation.
The shift in I, is the basic observable which determines
the rotation rate.

LIMITS OF SENSITIVITY

In Eq. (8) is differentiated with respect to angular ve-

locity, we can compute a rotation sensitivity 6 for a
superfluid gyroscope. Thus

d 0 r I 1+4vrNRr /o. I

4XR '

A very small value of G implies a very sensitive sensor.
For a practical device of greatest sensitivity, one would

typically select the torus radius R to fit the largest avail-

able cryostat and then make the number of turns, N,
large enough so that the factor G was almost independent
of N. If N is increased so that 4mNRr/o =I-, /La=1,
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there is little to be gained from a further increase in N.
Here L, is the kinetic inductance of the torus,
L t

=L
&
+L 2 L0. Thus, in computing the optimal prac-

tical sensitivity, we will let N take the value satisfying
this latter equation. This yields the best rotation sensi-
tivity for a given size apparatus. For this value of N, Eq.
(9}gives

27Tr
Gmin

= (10)

2ucoka T

Eo ln2
(12)

where U, o and Eo are constants. Their experiments pro-
vide the empirical values Eolk&=106 K and u, &=10
m/s. It is very important to note that, in the data of Ref.
21, the linear temperature dependence suggested by Eq.
(12}is seen on top of a temperature-independent offset. If
the observed offset is caused by disturbances, which can
be eliminated by vibration isolation or other means, then
Eq. (12) indicates that, if one measures the critical veloci-
ty many times in the same orifice, one will see a distribu-
tion of values of width 0.27 m/s at T =1 K or, if the be-
havior can be extrapolated down there, 2.7X 10 m/s at
10 mK. If the critical velocity is measured M times, the
minimum detectable change will be

EU,
(5v, );„= (13)

One can show that, for an orifice which is not circular,
the numerator in the above expression has to be replaced
by the twice the orifice area.

If we assume that the variations in angular velocity are
detected through apparent variations in a measured criti-
cal velocity, then the minimum detectable angular veloci-
ty change is simply the product of 6 and the minimum
detectable change in critical velocity, (5u, );„:

(5Q);„=G(5u, );„.
The discussion of the minimum detectable change in

the critical velocity contains several different aspects.
Perhaps the most fundamental issue is the question of
how precise one could determine U, if all other sources of
instrumental noise were negligible. (In Appendix B we
discuss the limits set by external instrumental noise. )

Although critical velocities in submicrometer orifices
have been observed in many laboratories, no one as yet
fully understands the dynamics of the phase-slip process-
es. However, from the observed temperature dependence
of v„Varoquaux, Zimmermann, and Avenel ' have con-
structed a model involving thermally activated vortices
created near the walls of an orifice. Their calculation
predicts a thermal width AU, for the distribution of ob-
served critical velocities given by

Combining Eqs. (10)—(12) and (14) gives the rotation
sensitivity

(5Q);„= 2v, ok~ T/Eo ln2
2mr 1

(15)

For an estimate we take r =0.5X10 m, R =0.5 m,
o.=10 m, and T =10 mK. To optimize the sensitivity
these parameters require 32 turns in the torus. Then Eq.
(15) predicts a minimum detectable 5Q of about
1 X 10 QE I(fr)' . If the observed temperature-
independent offset ' of EU, is intrinsic to the phase-slip
process, then at 10 mK the attainable sensitivity might be
about a factor of 30 worse than indicated by Eq. (15).
For a more modest parameter set of R =0. 1 m, cr =10
m, T =1 K, and r =0.5X10 m, one requires 16 turns
and the detectable rotation is 6X 10 QE l(f r)'

It appears from the above discussion that, for a given
physical size of the torus, the important parameter to in-
crease the sensitivity of the gyroscope is the measurement
frequency f. (However, see Appendix B.) It may be pos-
sible that phase slips can be produced by mechanisms
leading to a smaller value of the intrinsic width hv, . For
instance, it may be possible to inject quantized vortex
rings into the orifice, which would then serve as nu-
cleation centers for the phase slips.

Mechanical vibrations of the apparatus are likely to
play a twofold role: Vibrations ending in a solid-body ro-
tation of the apparatus will act as any other rotation in-
put to the sensor and cannot be discriminated from sig-
nals. One the other hand, mechanical noise can induce
random flow nearby the orifice that will increase the
width EU, above the thermal level discussed above.
Note, however, that it is unlikely that the temperature-
dependent offset, observed experimentally ' in the only
measurement of AU„ is due to mechanical vibrations
and it may be due to intrinsic processes which cannot be
eliminated. Future research is clearly needed to deter-
mine the minimum achievable value of EU, .

GYROSCOPE USING A HELMHOLTZ OSCILLATOR

Recent attention has been focused on the behavior of a
superfluid oscillator described by Zimmermann and co-
workers and used successfully by Avenel and Varo-
quaux' to detect single 2m-phase-slip events. ' In this
section we explain how this device can be configured to
detect the apparent change in v, induced by rotation.

The Zimmermann-Avenel-Varoquaux (ZA V) oscilla-
tor, configured as a rotation sensor, is essentially the de-
vice shown in Fig. 2. The system described has a charac-
teristic resonant mode arising from the spring constant of
the diaphragm and the fluid inertia in the two holes. At
low temperatures, where the normal fraction is neglegi-
ble, or by assuming this fraction to be immobilized by
some porous media, the frequency is given by

If one repeats the measurements at a rate f for a time r
so that M =fr, then

k 1 1
COO

=
2

+
pg L) L2

(16)

(5v, )~m (14} where p is the total fluid density, p, /p is the superfluid
fraction, k is the spring constant of the diaphragm, S is
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the diaphragm's effective area, and L
&

and L2 are the ki-
netic inductances of the two arms of the torus as defined
in the previous section.

The system somewhat resembles the classic Helmholtz
resonance exemplified by a bottle with constricted neck.
Because of this similarity (weak though it may be), the
superfluid oscillator shown above has been frequently
called a "Helmholtz oscillator. "

The diaphragm can be electrically manipulated and the
resonance excited by the application of a voltage to a
fixed metal plate located nearby. If the diaphragm is
coated with a superconducting film, it can serve as the
movable element in a sensitive superconducting displace-
ment transducer.

Analysis of the fluid flow permits one to derive a rela-
tion between the velocity in the small hole, v&, and the
velocity of the diaphragm, Vd. This last quantity is
defined such that pSVd is the mass flow displaced by the
diaphragm. The result, when there are no trapped circu-
lation quanta, is

Vd = (1+B)(uz+un), (17)

(2/mr)(nlc 2mNR 0) m.r-
Vc+ 1+4mNRr lcr cog

(18)

If the rate of rotation changes, there is a corresponding
change in A„

coyS

Rcr
(19)

The changes in flow in the orifice are a factor S/~r
times greater than the corresponding changes in the dia-
phragm velocity. Thus, again, in analogy with Eqs. (10)

where B=L
& /L2, mr, as above, is the area of the orifice,

S is the diaphragm area, and un is given by Eq. (8) above.
In Eq. (17) the directions of the velocities are chosen such
that a positive Vd will produce, in the absence of trapped
quanta and for Q =0, a positive vh.

If the oscillator is driven by a resonant applied force,
the velocity amplitude of the diaphragm may increase un-

til the hole velocity vz reaches the critical velocity v, for
a phase slip. At this point in the phase across the hole
slips by 2m, removing energy from the oscillator and in-

jecting one quantum of circulation in the torus. The en-

ergy decrement causes the oscillation amplitude to
abruptly drop. Because of the additional current caused
by the added circulation, usually the phase will slip again
in the next half cycle. Unless the applied force increases
substantially, the oscillator amplitude cannot rise above
the critical amplitude A„which corresponds to the ve-

locity in the hole reaching v, . By measuring the
diaphragm s critical oscillation amplitude A, when the
phase slip occurs, one can determine the value of the
diaphragm's velocity Vd, =cvoA, when ~uz =u, . From
Eqs. (17) and (8) it follows that

err (1+B)
c c n=(u +v

COp

and (11),we get, for the smallest detectable change in an-
gular velocity,

(M);„= (5v, );„,o.R
(20)

where (5u, );„is given by Eq. (14). This result is essen-
tially that of Eq. (15) except that, since the critical ampli-
tude can be measured at most twice in one oscillator cy-
cle, the measuring frequency entering Eq. (15) must be
that of the oscillator itself, fo=cuo/2m. Thus, for the
ZAV oscillator, the minimum detectable change in angu-
lar velocity is

mr ~"c(M);„=
crR

(21)

A more complete analysis of the ZAV oscillator re-
veals that the variation of oscillation amplitude with driv-
ing force exhibits a staircase pattern. The diaphragm
amplitude in Eq. (18) is that for the first step. The change
in the critical diaphragm amplitude between two adjacent
steps is the same as the change in A, caused by a rotation
that produces a 2m. phase shift across the orifice.

If the critical amplitude of one step is plotted as a func-
tion of rotation rate Q, a characteristic triangle pattern
will be produced. The periodicity of the pattern is the
quantum of rotation flux ~. If the flux of 20, 2QNm. R,
increases by ~, the triangle pattern passes through one
complete cycle.

It is not yet known what the upper limit of the
Helmholtz frequency can be. The only successful device
(i.e., showing a staircase pattern) yet demonstrated had
a characteristic frequency of only a few Hz. Further-
more, attempts to see the staircase pattern using higher-
frequency oscillators were unsuccessful, ' ' although
this may have been due to problems with the orifice or
due to too high a temperature.

To create the staircase pattern, the transient, due to a
single phase slip, must decay within the torus in a time
less than one-half of a cycle of oscillation. On steps
higher than the first one, where multiple phase slips take
place, the decay should even be faster. This relaxation
process is not understood at present, but it may involve
acoustic dissipation, which is typically very slow in

superfluids. At this point it is not known what physical
process will limit the maximum frequency in the ZAV os-
cillator.

Possibly an upper frequency limit is determined by the
time =r/v, it takes a vortex line to cross the orifice.
This limiting frequency is about 10 Hz for an orifice with
diameter 10 m. In this limit a SHEG based on the
ZAV oscillator would be of use both in geodetics and
gravitomagnetics.

It is important to make clear that, at this writing, only
Avenel and Varoquaux have succeeded in achieving the
conditions to create the staircase pattern. It is not yet
clear what the important parameters are to create an os-
cillator which exhibits this characteristic. Clearly,
several important questions must be answered in future
research.
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GYROSCOPE USING QUANTUM INTERFERENCE

Although He exists as a superfluid (below 2 X 10 K),
the physics involved in a flow through a small orifice is
very different from that discussed above for He. The
most significant difference involves the magnitude of a
length g, which characterizes the distance over which the
wave function amplitude can have significant variations.
This so-called coherence length is of the order of 0.1 nm
in He, but in He is almost three orders of magnitude
larger. For the case of He, one finds

topology of a He gyroscope based on quantum interfer-
ence. The torus contains similar small orifices in each
side. We will calculate the maximum supercurrent
through the device as a function of rotation rate.

For algebraic simplicity we will assume that the weak
links are identical. A current I, is injected into the torus
by the motion of a diaphragm pump (such as that shown
in Fig. 2). In the torus reference frame, I, divides, with
current I& passing through the right-hand branch and
current I2 passing through the left-hand side. The mass
currents in the two sides as viewed in the inertial frame
are

Ql —T/T,
(22)

I ] =I]+QRpo and I2 =I2 QRpa' (24)

I=I, sin5 . (23)

In their experiments on phase-slip phenomena, Avenel
and Varoquaux showed that, in He, as the size of g in-
creased, the current-phase relation changed continuously
from linear He-like behavior to that characterized by
Eq. (23).

In the discussion which follows, we will assume that
Eq. (23) is a good approximation for an orifice in a parti-
tion whose thickness and at least one lateral dimension
are comparable to g. Thus the apertures of interest must
exist in a wall of thickness =100 nm and must have at
least one other dimension of comparable size. The
manufacture of such elements is well within the current
microfabrication technology. Figure 3 shows the basic

where T, is the superfluid transition temperature and go,
the zero-temperature coherence length, is about 70 nm at
low pressures.

If a superfluid is confined to a space whose dimensions
are on the order of g, the wave function becomes quite
modified and, for flow, the linear current-phase relation
implicit in Eq. (1) is no longer valid. For 4He in an orifice
with dimensions &100 nm, the very short coherence
length assures the applicability of Eq. (1). However, for
the case of He in an orifice whose size is comparable to

there is experimental evidence and theoretical
reason to believe that the current-phase relation is given
by the dc Josephson relation

where, as before, o is the cross-sectional area of the torus
and R is the radius. The sum of the currents is always
equal to I„ independent of the frame of reference. The
sinusoidal current-phase relation holds in the frame of
the orifice, i.e., the rotating frame. ' Thus

I, =I, sin5& and Iz =I, sin52, (25)

=2I, sin
5, +52 5, —52

cos (26)

We can find an expression for the difference term by
using the restriction of Eq. (2), which holds in the inertial
frame. This gives

2m.R (I )
4m. QR

PKO K

27TR~ 4~2QR 2

(u2 —u, )—
OK K

(27)

where, in the second line, we have written the currents in
the orifices in terms of the average fluid velocity, with
respect to the orifice. The symbol s represents the area of
a single orifice. Because the currents depend on 5
through the dc Josephson relation, Eq. (27) is nonlinear.
However, the typical critical velocity in He is on the or-
der of 10 m/s and the area s must typically be about
10 ' m . Then, for any reasonable value of R and e, the
first term on the right-hand side will always be much
smaller than the second and will be ignored in what fol-
lows.

The phase differences in the two reference frames differ
by only a very small amount (the Galilean boost term
QRl, &2m/x ) and may be taken to be identical. Combin-
ing Eqs. (26) and (27) gives

where, as before, we are letting 5 symbolize the phase
difference across the orifice.

If the two equations in (25) are added, we get

I, =I, sin5, +I, sin52

27T2QR 2 51+52I =2I cost c
K

sin
2

=ID sink, (2&)

FIG. 3. He Josephson interferometer. where
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2' QR
K

(29)

is the maximum supercurrent that can flow through the
device and b =(5,+5@)/2 is the phase difference across
the entire device. Equation (29) implies that, as far as the
diaphragm current is concerned, the entire rotating torus
behaves like a single Josephson device whose critical
current is modulated by the angular velocity. If the
quantity ~R 20 is thought of as the flux of the vector
2Q, the modulation flux period is ~.

For a torus with N turns, Eq. (29) would be modified by
the factor N multiplying the argument of the cosine
term.

Equation (29) is the important result for the He gyro-
scope. It plays the same role as does Eq. (8) for the He
gyroscope. For an N-turn torus, changes in angular ve-
locity are related to changes in maximum current
through the relation

5Q
5IO 4I, n NR sin(2n NR 0/a)

(30)

There must be some intrinsic thermal limit on 5IO, but it
is not obvious exactly what to assume this limit to be.
However, we may be guided by the close analogy between
this dc SHEG and the closely analogous dc SQUID. In
the latter device the intrinsic limit is related to thermal
noise arising in a parallel resistive element. There is no
apparent similar element for the dc SHEG, except
perhaps for the leakage through the orifice due to ballis-
tic quasiparticles driven by the pressure head.

The characteristic energy barrier that prevents phase
uncoupling of the superfluid on two sides of the Joseph-
son junction is given by E]=KI, /2~. It would seem that
the fractional width of the distribution function charac-
terizing the phase unwinding must be at least as big as
kT/E„which is on the order of 10 for He. If we

multiply 6 by 10 I„we obtain a thermal limit for
smallest detectable change in Q.

To make an optimistic numerical estimate of the sensi-
tivity factor G, one might take values for the case R =0. 1

The best sensitivity as a rotation sensor is achieved if the
device is "biased" so that the sinusoid in the denominator
is near unity.

In a physical realization of the He rotation sensor, the
current I, would be supplied from the motion of a dia-

phragm, similar to the arrangement shown in Fig. 2. If a
stepwise dc potential is applied to a fixed electrode near
the diaphragm, a pressure head hP will appear across the
torus and the diaphragm will move toward the electrode
at an almost constant velocity, determined by the max-
imum mass current Io. The motion of the diaphragm is
monitored by a sensitive displacement transducer (see
Appendix 8).

The minimum detectable variation in Q is given by the
product of 6 and the minimum detectable variation in
current through the device:

(3 I)

m, N = 1. This suggests a value of
(50),„=2X10 QFI+rfJA. The frequency of opera-
tion is presumably the Josephson-Anderson frequency'

f,„=hP/~p, where b,P is the pressure head across the
torus. However, the quantum interference phenomenon,
leading to Eq. (29), will break down on time scales short-
er than some characteristic relaxation time in the torus.
As in the case of the He SHEG, these relaxation process-
es are not yet understood and are the subject of ongoing
research.

The estimate above may be overly optimistic because
of our present inadequate state of knowledge concerning
the role of intrinsic noise processes for this device. It
should also be emphasized that there are additional noise
contributions arising from thermal motion of the dia-
phragm and limitations in the SQUID displacement
transducer. These are discussed in Appendix B.

It appears that the rotation sensor described in this
section offers a greater possible sensitivity then that de-
scribed for He. Aside from the different transfer func-
tions for the two types of devices, the dc SHEG must
have the advantage that, for a given pressure drive hP,
the phase is "slipping" at the Josephson-Anderson fre-
quency fJ~ =AP/pa. A typical value of b,P might be
about 1 Pa, giving a frequency near 10 Hz. Ultimately,
this high sampling rate must win out over the much
lower-frequency ZAV oscillator.

CONCLUSION

We have described the basic principles of rotation sen-

sors exploiting quantum phase shifts in superfluid helium.
One device, using He, depends on the critical velocity at
which vortices are generated in a small orifice. Another
device uses He and exploits the nonlinear relationship
between current and phase, which is appropriate for
orifices about 100 nrn in dimension.

There are still many significant questions that need to
be answered to understand fully the limit of this emerging
technology. Presently, perhaps the most pressing need is
for a demonstration of the detection of small rotations by
one of the two devices described herein. Such a demon-

stration will lead in a natural way to the answers of some
of the important issues raised.
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APPENDIX A

The analysis of the SHEG can be cast in familiar elec-
trical analogs if one considers an equivalent circuit for
the device. The key ingredients in this analysis are the
concept of kinetic inductance, the role of abrupt 2m. phase
slips, and the role or pressure driving terms.

Consider a tube of area s and length l through which
fluid of mass density p flows at mean velocity v. The ki-
netic energy of the fluid in the tube is

K= —,'pU sl . (Al)

This can be written in terms of the mass current
I=pus,

hP l dI dI
ps dt dt

(A3)
P

The driving term on the left is the chemical potential
difference 5V, and so the latter equation becomes

V=L dI
di

' (A4}

Equations (A2) and (A3) show that the kinetic induc-
tance places the normal role of inductance in circuits.

A small orifice in the potential flow regime also obeys
Eqs. (A3) and (A4), but with L =1/2pr =l,tt/par .

In terms of inductance, the quantization of circulation
condition, in a torus containing two distinct flow sec-
tions (e.g., a small hole and a large channel) appears as

L)I)+L2I2 =nz . (A5)

The effect of a 2~ phase slip at time ~ can be deduced
by treating the phase-slip event as a generator of poten-
tial difference of the form

K=— I =—LI1 1 2 1
(A2)

2 ps 2

where the L = 1/ps is called the kinetic inductance of the
tube. This quantity can also relate the time derivative of
the mass current resulting from a driving pressure bP
across the tube:

L2
'L, +L2

Li
and I2=I,

1 2

(A8}

The motion of the diaphragm in Fig. 2 is described by
the differential equation

d2
m +P +kx =F+ShP,

dt
(A9)

dI, Q,
Ld +RI, + +EVg =b V,

dt ' C
with Ld=m/(Sp), R =P/(Sp), 1/C=kl(Sp), and
EVg = F/(Sp). —Equation (A10) is formally equivalent
to that describing the voltage and current in a series cir-
cuit composed of an inductor Ld, a resistor R, a capacitor
C, and a voltage generator hV . AV is then the total
voltage drop across the circuit.

In the ZAV oscillator the current I, displaced by the
diaphragm divides between the two parallel kinetic in-
ductances in the ratios implied by Eq. (A8). If the induc-
tances of the tubes connecting the diaphragm to the torus
are neglegible, then the potential difference across the di-
aphragm is the same as that across the torus. The dy-
namics of the ZAV oscillator is then analagous to the cir-
cuit in Fig. 4.

From the electrical equivalent circuit of the ZAV oscil-
lator and standard methods of circuit theory, one can

(A10}

where x is the diaphragm's effective displacement, m is
its effective mass, k is its effective stiffness, and p is a
damping coefficient. As in connection with Eq. (17), x is
defined such that the total fluid mass displaced by the di-
aphragm per unit time is I, =Sp dx ldt, while the
effective stifFness mass and damping coefFicients are
chosen such to give the proper free oscillation frequency
and decay time.

The right-hand side of Eq. (A9) includes a driving force
F, usually of electric origin in practical devices, and the
force due to the pressure difFerence hP on the
diaphragm's effective surface S. If we define an analog of
"charge" as Q, =pSx, so that I, =dQ, ldt and express hP
as hP =pb, V, then Eq. (A9) can be recast as

b, V, =+it5(t r), — (A6)

+ hV
L) L2

where the sign has to be chosen so that the pressure pulse
tries to decrease the flow through the orifice. Thus a 2m

phase slip, occurring in the torus consisting of two
lumped inductances, creates a mass current
Iq =+~/(L, +L2).

A final useful result is that, for two kinetic inductances
connected in parallel, an impressed pressure head would
drive a total current If =I&+I2 through the pair as if
they were inductors in parallel. The total current
through the parallel pair increases as

dIr

dt
(A7)

Ld

R

&v, ()

Li

()z v.

and FIG. 4. Electrical equivalent circuit for the ZAV oscillator.
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compute the dynamical effects of a 2m phase slip. Sup-
pose that a constant amplitude oscillating drive
b, Vg

= b, Vocos(cozt ) is applied at the oscillator resonance
frequency too=(LTC )

' with LT =Ld +L ~L2/
(L, +L2). The current in the orifice will oscillate with
increasing amplitude until the critical current I, in the
orifice is reached.

If the drive amplitude is not too high, the critical
current will be reached when the current oscillation is
near one of its maxima or minima and the diaphragm dis-
placement is correspondingly close to zero. The phase
slip has two consequences: (i) The oscillation amplitude
for the total current I, drops by an amount AI, =~/L&.
(ii) A steady current I =+s/(L&+L2) circulates around
the torus superimposed to the current due to the dia-
phragm motion.

The result of these two effects is that, after the phase
slip, the current in the orifice is reduced by bI, =~/L j,
while that in the parallel channel does not change at all.

The total work done by the equivalent voltage genera-
tor (i.e., the work done by the phase-slip process) is found
to be

W= I,a+a —/2Li . (A 1 1)

(L, +L2)I +2mNR Q=na . . (A12)

This is analogous to flux quantization in a supercon-
ducting ring if the quantity 2~NR 0 is taken as the
external flux threading the ring and a as the quantum of
flux. If the velocity in the orifice corresponding to I is
calculated, vn=I /(pn. r ), Eq. (8) with 8=0 is then
recovered.

A circuit analysis is also possible when the orifice be-
havior approaches the Josephson one. This is the case
for He when the coherence length approaches the di-
mensions of the orifice. In this case the equivalent circuit
is similar to Fig. 4 except the voltage generator 6 V, is re-
placed by a nonlinear element characterized by the
current-phase relation I=Ipsin5. Though the circuit is
no more linear, it is still suitable for approximated
analysis or numerical simulation in close analogy with
the resistively shunted junction (RSJ) model for the
SQUID.

APPENDIX B

Besides the intrinsic fluctuation of the critical current
coming from the stocastic nature of the phase-slip pro-
cesses, at least two other sources of noise can be identified
in the ZAV oscillator: the noise of the transducer used to
read diaphragm displacement and the thermal (Browni-
an) noise of the oscillator itself.

The position of the diaphragm is monitored by making
it a part of an inductive motion transducer. The dia-

phragm is coated by a superconducting layer and is posi-

This equals the decrease in the kinetic' energy of the
flow through the orifice.

The effect of rotation can be reformulated in term of
the linear circuit of Fig. 4 expressing the quantization of
circulation in term of the current circulating in the torus:

L2

diaphragm

SQUID

FIG. 5. Equivalent circuit for the motion transducer.

ax Li
5~ =MIp

L L, +L2(1+L, /L)
(B1)

where in the approximated result we have assumed
L =L, »L2. —To a first approximation, a/L
=L '(dL/dx)-=g/xo, with xo the equilibrium distance
between the coil and diaphragm and g a factor of order
unity.

A SQUID noise spectrum QS&(co) is usually flat,
QS&(cv) =QS&, in the frequency range where the oscil-
lator is operated. This noise can be converted to a dis-
placement noise S„using Eq. (Bl):

'2
xp

MIO(
(B2)

With typical values of xp =0.2 mm, Ip =0. 1 A, M = 10
nH, and QS& =10 $0/&Hz, one gets QS, =4X 10
m/Hz assuming g= l. This figure is reasonably close to
what has been obtained in practice. ' Limiting sensi-
tivities of better than 2X10 ' m/&Hz have been pre-
dicted for similar transducers.

As explained above, the ZAV oscillator is used to per-
forrn a measurement of the apparent critical mass current
in the orifice. The mass current in the orifice, I, , is relat-
ed to the diaphragm displacement (see Appendix A) by

s"L

Li +L2 dt
(B3)

Using Eqs. (B3) and (A12), one can convert the dis-
placement noise into an equivalent angular velocity noise
as

QSnd =L2(Sp)( ,'vrNR )(too+S„), — (B4)

tioned in front of a suitably shaped (fiat helical) supercon-
ducting coil coupled to a SQUID in the circuit shown in
Fig. 5.

The coil carries a persistent current Ip. The dia-
phragm displacement x induces a change ax in the induc-
tance L of the coil. Because of flux conservation, this
motion causes a change in the currents circulating in the
superconducting circuit, including a change 5$ in the
magnetic flux read by the SQUID. Circuit analysis ap-
plied to the circuit of Fig. 5 gives
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where coo is the angular frequency of the oscillator.
Equation (B4) should be compared with the uncertain-

ty due to the intrinsic noise mechanism arising from the
stochastic nature of the phase-slip process:

QSn;=(L&+L2)(per )bv, ( ,')n—NR )/+coo/2' . (B5)

These two contributions become equal if

coo= I [(L,+L2)ILz](per IS)hv, /+S„/2mIzi3,

and this sets an upper limit to the frequency of operation
of the oscillator. Taking L& =L2, s& =8X10 m,
S=2X10 m, QS„=10 ' m/VHz, and hv=0. 27
m/s, as predicted at 1 K from Eq. (12), one gets
too/2m= .1 kHz.

The SQUID will also contribute a back action force on
the diaphragm. This force is due to thermal current
noise in the SQUID ring. The eff'ect of this random
force can be evaluated, and it is found to be of neglegible
importance for any realistic value of the system parame-
ters.
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