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Finite-size-scaling analysis of a simulation of the He superfluity transition

E. L. Pollock and Karl J. Runge
Physics Department, Laavrence Livermore 1Vational Laboratory, University of California, Livermore, California 94550

(Received 3 February 1992)

Several finite-size scaling techniques are applied to path-integral simulations of the superfluid transi-
tion in three-dimensional (3D) He at low pressure. The twist free energy shows a linear increase with

periodic cell length below the transition temperature, which it predicts as 2.19+0.02 K. (The experi-
mental value is 2.172 K.) Fitting the supertluid fraction to the scaled form Lp, (t,L)/p=g(L'~"t),
t =(T—T, )/T„gives T, =2.17+0.05 K and the correlation-length exponent v=0.72+0. 1 (experimen-

tally 0.67). The universal constant (R~p/mkT, )Q(0)=0.50+0.02 found here compares well with the
value 0.49+0.01 from recent 3D XY model simulations. Additional analyses that include corrections to
scaling are found to yield values for T, in agreement with the above estimates. A phenomenological re-

normalization analysis suggests the superfluid density exponent v=(1.0-1.3)v, consistent with the
Josephson relation.

I. INTRODUCTION

Finite-size scaling is now routinely used to interpret
Monte Carlo simulations of phase transitions. ' The mod-
els simulated are usually classical degrees of freedom
confined to lattice sites. Here we apply finite-size scaling
methods to a path-integral Monte Carlo simulation of the
superfiuid transition in three-dimensional (3D) He. An
advantage of this system is that the A, line provides a line
of critical points for a range of densities, and so it is not
necessary to simultaneously search for a critical density
and temperature, as had to be done in the analysis of
finite-size data for the liquid-vapor critical point in a clas-
sical Lennard-Jones system. A disadvantage is that the
necessary path-integral simulations are computationally
intensive and statistical accuracy of better than 2% in the
superfluid fraction is difficult to achieve. Nonetheless, a
transition temperature reliable to within a few hun-
dredths of a degree and critical exponents consistent with
experimental values are obtained. A finite-size analysis of
simulations of the 2D superfluid transition by fitting to
the vortex core radius and formation energy parameters
of an XY model, as suggested by Kotsubo and Williams,
gave a bulk transition temperature in good agreement
with experiment.

A variety of methods for performing finite-size scaling
analysis on Monte Carlo data have been suggested. Here
we apply a number of them to the superfluid transition in
3D He. Perhaps the most intuitive analysis is to exam-
ine the twist free energy, defined as the free energy
difference caused by changing from periodic to an-
tiperiodic boundary conditions in one direction, as a
function of system size. This free energy change will in-
crease with system size in the ordered phase and decrease
toward zero exponentially in the disordered phase. In a
path-integral calculation it can be easily computed from
the winding number distribution as discussed below and
provides a clear indication of the transition. As a second
method, estimates of the transition temperature and

correlation length exponent v are obtained by requiring
the superfluid fractions for the various system sizes and
temperatures to collapse onto a single scaled form.
Thirdly, we employ a technique that incorporates the ex-
pected form of corrections to scaling to provide another
estimate of the transition temperature. Lastly, the phe-
nomenological renormalization method suggested by
Barber and Selke is used to obtain a value for the
superfluid fraction exponent U, which is found to agree
with the Josephson relation v =v.

II. ANALYSIS

Path-integral techniques and their use in calculating
superfluid densities are discussed in Ref. 2. The data
there for systems of IV=64 He particles in a periodic
cell has been augmented with additional simulations pri-
marily for smaller periodic systems (N =32, 16, and 8).
The choice of interparticle potential specifying the Ham-
iltonian is described in Ref. 7. For reference all the data
used in this paper are given in Table I.

A. Twist free energy

The twist free energy, defined as the free energy
change, produced by switching from periodic to an-
tiperiodic boundary conditions along one direction,
would be intuitively expected to scale very differently
with system size in the ordered and disordered phases.
For a system with a one-component order parameter,
such as the Ising model, this free energy change in the or-
dered phase well below the transition temperature is pro-
portional to the number of spins reversed in imposing the
antiperiodic boundary conditions. In 3D this is given by
the area L, where L is the cell length, so that hF ~L .
For a system with a two-component order parameter,
such a superfluid He or the XYmodel, spin wave theory,
valid at low temperature, gives

bF= ,' fY(VO) d—r (1)
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as the free energy cost in imposing a phase variation 8(r)
on the system. For antiperiodic boundary conditions
along one direction V0=~/L and

The constant helicity modulus Y is proportional to the
superfluid density for the case of He. In the high tem-
perature phase AF is expected to decrease exponentially
with the correlation length g, AF-e

In a periodic system the density matrix is periodic.
This arises naturally in a path-integral computation by
allowing the path for an N-particle system originating at
Ir„r2, . . . , r&I to end at IrI+L„r2+L2, . . . , rIv+L~I
where I L&, L2, . . . , Lz j are any set of lattice vectors in-

cluding the most likely value L&=L2= ' ' ' =L~=O.
This brings in the winding number

N
W= —g (r —r' —L. )J J J (3)

which is defined for every path configuration. Viewing
the periodic space as a toroid, W describes the number of
times the paths wind around the toroid. As shown in

pgF Ap
(

iw vr) (4)

or

AF= kTin—(e ' ),
where ( ) denotes averaging over all configurations
generated in the periodic case. The winding number dis-
tributions, P ( W, ), necessary to compute this average are
given in Table I.

AF as a function of cell length L is plotted in Fig. 1 for
several temperatures near the transition temperature and

Ref. 2, the superfluid density is given by
p, /p=(mkT/3R N)(W )L .

To switch from periodic to antiperiodic boundary con-
ditions (in say the z direction) it is only necessary to
correct the density matrix by reweighting each path

iW Lm/L t8' m

configuration with e ' =e ' so that the paths end-
ing +L, +3L, etc., from their origins pick up a minus
sign. Since the partition function Z, is given by the in-
tegral over the diagonal density matrix a little algebra
gives

TABLE I. Superfluid fractions and winding number probabilities. The 4 blocks of data (from the top) are for N =64, N =32,
N =16, and N =8 particle periodic systems. The density is 0.02197 particles/A (or a molar volume of 27.41 cm ) except for the
N= 64, T = 1.6, 1.818, and 2.0 cases for which p=0.021 83, 0.021 86, and 0.021 91 particles/A ', respectively.

1.60
1.818
2.0
2.105
2.222
2.35
2.50

0.865( 32)
0.657(22)
0.471( 16)
0.411(17)
0.218( 12)
0.159( 12)
0.090(2)

p( w=0)

0.2719
0.3515
0.4569
0.5268
0.6944
0.7849
0.8788

P(W=+1)

0.2218
0.2326
0.2210
0.1991
0.1420
0.1015
0.0580

P( 8'=+2)

0.1058
0.0769
0.0457
0.0337
0.0105
0.0055
0.0027

P(8'=+3)
0.0306
0.0130
0.0048
0.0035
0.0003
0.0006

P( 8'=+4)

0.0048
0.0017

0.0003

P(%=+5)
0.0008

1.6
1.8182
1.905
2.0
2.1056
2.2222
2.353
2.5

0.838( 17)
0.693( 11)
0.655( 15)
0.557( 19)
0.471(20)
0.314( 11 )

0.225(8)
0.145(8)

0.3282
0.3925
0.4283
0.4793
0.5613
0.6766
0.7611
0.8433

0.2278
0.2314
0.2228
0.2140
0.1852
0.1458
0.1116
0.0753

0.0859
0.0622
0.0551
0.0420
0.0312
0.0150
0.0076
0.0003

0.0197
0.0097
0.0074
0.0042
0.0028
0.0008
0.0003
0.0001

0.0023
0.0005
0.0005
0.0001
0.0001

0.0002

1.6
1.739
1.8182
1.905
2.0
2.105
2.2222
2.353
2.5

0.862( 15 )

0.798( 11)
0.752( 11 )

0.700( 14)
0.621(9)
0.544( 12)
0.421( 11)
0.370(9)
0.310(9)

0.4061
0.4402
0.4739
0.5182
0.5781
0.6604
0.7078

0.2287
0.2210
0.2130
0.2026
0.1818
0.1521
0.1329

0.0596
0.0517
0.0450
0.0352
0.0269
0.0168
0.0126

0.0080
0.0068
0.0047
0.0029
0.0022
0.0009
0.0006

0.0006
0.0004
0.0003
0.0001
0.0001

1.818
1.905
2.105
2.222
2.353
2.5

0.839( 10)
0.797(8)
0.711(10)
0.662(9)
0.572(9)
0.521(8)

0.4609

0.5551
0.5939
0.6477
0.6872

0.2211

0.1927
0.1788
0.1594
0.1434

0.0441

0.279
0.0229
0.0158
0.0124

0.0042

0.0018
0.0014
0.0009
0.0005

0.0002

0.0001
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FIG. 2. Scaled superfluid fraction N' 'p, (T,L)/p vs tN' '"
for periodic systems of 8, 16, 32, and 64 particles. The best
linear fit (dashed line) was for T =2.17+0.05 and v=0.72+0. 1.

C. Corrections to scaling

FIG. 1. Free energy difference hF =Fop Fp (in K) between
antiperiodic and periodic boundary conditions for the indicated
temperatures as a function of system size. The straight lines at
low T are linear fits. The curves for the three high T points are
to guide the eye.

clearly shows the change from a linear increase at low
temperature to a decrease above the transition tempera-
ture T, . An estimate of T, based on extrapolating the
slopes of the curves to zero gives T, =2. 19+0.02.

B. Scaling function fit

According to the basic hypothesis of finite-size scal-
ing, ' near the critical point T, the intensive properties of
a system depend on the system size L only through the
ratio of L to the bulk correlation length g(T). This im-
plies that if the bulk superQuid fraction behaves like

p, (t)lp-t', t=—(T —T, )/T„near t =0 then its finite-
size behavior obeys the scaled form

p, (t,L)lp-L "i"Q(L'i t), (6)

where v is the correlation length exponent Ig(t)-t "].
The function Q is unknown but must be analytic for finite
argument since this corresponds to a finite-size system.

We have made another estimate of T, and v by trying a
linear form for Q and varying T, and v to minimize the
deviation of the data from this line. It was assumed that
v/v=1 since this is indicated by experiment, "
renormalization-group calculation, ' and the Josephson
hyperscaling relation U = (d —2)v. The assumption
v/v=1 will be shown later to be compatible with our
data.

Figure 2 shows the scaled data and the resulting linear
fit. (The two points farthest away from the transition re-
gion were not used in the fit.} The best fit parameters
were T =2.17+0.05 and v=0.72+0. 1. The value of T,
was more stable to variations in this procedure than was
the value of v. For example, fitting a quadratic to the
data shifted 1, to 2.19 and v to 0.57.
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R
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FIG. 3. Scaled superfluid fraction X' p, (T,L)/p vs T for
periodic systems of 8, 16, 32, and 64 particles. The solid lines
are to guide the eye.

It follows from Eq. (6) that at the critical point the
superQuid density goes to zero as L " and that the
functions L" p, (T,L)lp (given by different values of L)
all cross at T = T, . Assuming v =v, this quantity is plot-
ted in Fig. 3. One can see that the intersections occur
near the experimental critical point T, =2.17, however,
for the smaller L values there is a systematic deviation to-
ward smaller T. This shift is due to corrections to scaling
which we take into account as follows.

From finite-size scaling in the presence of a nonvanish-
ing irrelevant scaling field g one expects that'

Lp, (t,L)lp=Qz(tL' ', gL "),
where the correction to scaling exponent 6 has been cal-
culated as 0.521+0.006. ' Q2(x, y} must be a regular
function of its arguments, and, so, may expand near
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(9)

or that T,2=T, +c5,z+ . This implies that TJ plot-
ted versus 5; for all pairs should yield a straight line with
intercept equal to the infinite system transition tempera-
ture T, . For each L, the data in Table I were fit to a 4-
parameter function of T (displayed in Fig. 3). The aver-
age intersection point T; and its associated error were es-
timated via the synthetic data method. ' The T; ob-
tained are consistent with a linear dependence on 5;.. A
final least-squares fit yields T, =2.21+0.03K. The value
was found to be fairly insensitive to the choice of the
correction to scaling exponent 0.25 & 5 (0.75.

For large size systems we estimate the value at the
crossing point in Fig. 4 as Q(0) =4.1+0.2 A (after con-
verting the N'/ to L). The universal constant
(R p/mkT, )Q(0)=0.50+0.02 should have the same
value for the 3D XY model which is in the same univer-
sality class. Recent simulations of that model' give
0.49+0.01. That the two systems are in the same univer-
sality class has long been accepted but it is gratifying to
see this agreement between simulations of "real" helium
and a classical spin system.

Another commonly used estimate of T, examines the
location of the specific heat maximum, T,„(L). Finite-
size scaling indicates' that the correction is of the form
T,„(L) = T, +a /L '/'. Although the path-integral
Monte Carlo data for the specific heat is rather noisy
(having come from differentiating a fit to the total ener-
gy), the N = 16,32,64T,„(L)are consistent with the pre-
dicted form and yield T, =2.23+0.07. Thus, the finite-
size corrected estimates for the transition point are slight-
ly larger but consistent with that obtained from the twist
free energy and scaling function methods and also with
the experimental value.

D. Phenomenological renormalization

A final analysis of the Monte Carlo data in the critical
region was performed using phenomenological renormal-
ization, in which one defines the ratio

Rt t ( T}=p, ( T,L, )/p, ( T,L2 ) . (10}

t=0

Lp, (t,L)/p=g2 '(1+atL' "+bL + ) .

If we denote by t,2 the intersection point of system sizes
L, and L2, then Eq. (8) predicts

~ (L
—5/v L —6/v )/(L I/v L 1/v

)
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FIG. 4. Ratio of p3(T, L, )/p, (T/L2) vs T for N, =64,
N2=32 and Nl =32 N2=16. The two curves should cross at
T = T, =2. 17 at a value of 0.794' '.

In the critical region

Rt t. (T)= Li g (L 1/v

g (L t/vt)

from Eq. (6) and in particular
U/V

1

Rt t (T, )= (12)

ACKNOWLEDG1VIENTS

The authors thanks M. P. Nightingale for his help.
The work performed at Lawrence Livermore National
Laboratory was supported under the U.S. Dept. of Ener-

gy Contract No. W-4705-ENG-48.

Figure 4 shows Rt t (T) for two cases: N, =64,
N2=32 and N, =32, N2=16. Since L&/L2=2'/3 for
both cases, these curves should cross at
(T„2 "/')=(T„0.794"/"). The statistical uncertainty
in the data is too large to accurately determine T, from
the crossing of these two curves however, assuming
T, =2. 17 then from the figure Rt t (T, )=0.74—0.80 or

v/v=1. 0 to 1.3.
In conclusion the finite-size scaling analysis described

above for a path-integral simulation of the superQuid
transition in 3D He yields a transition temperature, crit-
ical exponents v and v, and the universal constant
(A' p/mkT, )g(0) in good agreement with experiment
and calculations on other models in the same universality
class.
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