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The external complex ac susceptibility y, =y,' —jy," of a spherical Nd2Fe&4B single crystal has been
measured as a function of temperature, field amplitude, and frequency in both directions, parallel and

perpendicular to the c axis. g,'( j. ) for T) T„ the spin reorientation temperature, is due to domain-
magnetization rotations (DMR's). g,'( l ) for T & T, is due to comparable DMR's and domain-wall dis-

placements (DWD's). y,'(~~ ) for the whole range is mainly due to DWD's. DWD's are usually enhanced

by DMR's. There is an anomalous sharp y', (
~~

) peak at T = T, for low fields and frequencies, which is as-
cribed to a technical magnetization mechanism when the first anisotropy constant equals zero. For data
analyses and explanation, relations between the low-field susceptibility and the anisotropy constants, ex-

pressions of the domain-wall energy density, and a formula for y,
"

arising from eddy currents for a me-

tallic magnetic sphere have been derived.

I. INTRODUCTION

As a basic material of the recently developed rare-
earth —iron —boron hard magnets, Nd2Fe&4B compounds
have recently been extensively studied. There has been
an agreement that at room temperature the magnetic mo-
ments lie along the tetragonal c axis and with decreasing
temperature a spin-reorientation transition (SRT) from
easy axis to easy cone takes place at T = T, = 135 K, the
SRT temperature. The temperature dependence of the
tilting angle, which is about 30' at low temperatures, has
been reported in Refs. 1 —6. It is well accepted that the
temperature dependence of magnetocrystalline anisotro-

py energy is the origin for this SRT. The anisotropy con-
stants as functions of temperature have been reported in
Refs. 3—6.

ac susceptibility technique is a powerful tool for study-
ing magnetic phase transitions and could be very useful
for analyzing transitions caused by the change in anisot-
ropy energy. This technique has already been applied for
studying SRT in strongly anisotropic materials, ' in-
cluding a Ho2Fe, 4B single crystal' and some polycrystal-
line Nd2Fe&4B samples. ' ""' ' Most works gave the
temperature dependence of a relative ac susceptibility in
arbitrary units, so that only the possible transitions could
be indicated. A few papers reported the actual values of
the real part of the complex susceptibility y' (Refs.
15—18) or both the real y' and imaginary y". ' Some
equations concerning the relationship between initial sus-
ceptibility and anisotropy constants were also
given, ' ' ' and they were compared with the experi-
mental data. ' ' Moreover, the field amplitude and fre-
quency dependences were studied in Ref. 19.

In the present work, we extend such studies to a spher-
ical Nd2Fe, 4B single crystal. Extending the above cited
previous works, we will show that temperature, field arn-

plitude, and frequency, as well as field-direction depen-
dences of both g' and g" can all provide important infor-
mation on the anisotropy energy, domain structure, and

technical magnetization process. The paper is organized
as follows: In Secs. II and III we describe the experimen-
tal procedure and results. The quantitative data treat-
ments are based on the published anisotropy constants
and an ideally demagnetized state, which are given and
defined in Sec. IV. In Secs. V —VII, we give a complete
set of formulas which are required for such treatments.
We derive formulas for the initial susceptibility as a func-
tion of the anisotropy constants for domain-
magnetization rotations (Sec. V), formulas for the initial
susceptibility due to domain-wall displacements, includ-

ing the 180' domain-wall energy density and wall width
(Sec. VI), and a formula for low-frequency eddy current
y" (Sec. VII). In Secs. VIII and IX, we discuss the exper-
imental data and give some conclusions.

II. SAMPLE AND MEASUREMENTS

The sample was a sphere of diameter 2a=3.5 mm,
made from a Nd2Fe&4B single crystal whose anisotropy
constants were reported in Ref. 6. The real and imagi-
nary components y,

' and y,
" of the external complex ac

susceptibility were measured during warming from
T=4.2 to 270 K using a mutual impedance bridge with a
concentric coil assembly. For each run of measure-
ments, the ac field was applied along the c axis or basal
plane with a fixed amplitude H, between 8 and 800
A/m and fixed or periodically changed frequencies f
ranging from 1 to 1000 Hz. Before the measurements the
sample was thermally demagnetized by heating it above
the Curie temperature.

III. EXPERIMENTAL RESULTS

and y,
" vs T curves for different field amplitudes,

frequencies, and crystal orientations are given in Figs.
1 —3. Some more results will be described in the course of
the discussion.

For the field parallel to the c axis and H, =8 A/m,
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f= 10 and 100 Hz, g,
' and y,

" are given in Figs. 1(a) and
1(b), respectively. In order to describe the features in the
frequency and temperature dependences of g,

' and g,", we
divide the whole temperature interval into three ranges.
In the low-temperature range below 70 K, y', is very low,
around 0.1, and y,"=0. For the high-temperature range,
there is a y,

' maximum around 190 K, above which g,
' is

independent of f and y,
"=0. The intermediate-

temperature range reveals some important characteris-
tics: For f=100 Hz, y', increases with T, having an
infiection at T= 127 K, while g', for f= 10 Hz is obvious-
ly higher, containing a sharp peak at 127 K; correspond-
ingly, y,

" shows a peak for both frequencies, the peak for
10 Hz being much higher.

and y,
" for the parallel field and H, =80 A/m,

f=10 and 100 Hz, are given in Figs. 2(a} and 2(b}, respec-
tively. In contrast with the results for H, =8 A/m, the
high-T y,

' is much higher and the high-T g," no longer
vanishes, but both are still frequency independent. For
the intermediate-temperature range, the y,

'
peak is shown

for f= 1 Hz, while the infiection for higher f develops
into a dip which is also present in y,".

For the field applied perpendicular to the c axis, the
differences between the results for H, =8 and 80 A/m

are smaller. Figures 3(a) and 3(b) show the data for
H, =80 A/m and f=10, 100, and 1000 Hz. The whole
temperature interval can be divided into two ranges,
bounded by 127 K, where y, shows a sharp maximum
about 2.3. The high-temperature g,' is frequency in-
dependent and after a drop approaches slowly a value
about 0.28, while g,"=0 holds. In the low-temperature
range, y,

' increases with temperature in several steps and
shows a systematic frequency dependence, and there are
several peaks or steps in the y,

" curves corresponding to
the y,

' steps.

IV. ANISOTROPY AND EASY DIRECTIONS

A. Magnetocrystalline anisotropy

The magnetocrystalline anisotropy energy density for a
tetragonal symmetry is expressed, up to the third term,
by

Ek =K, sin 8+E2sin 8+IC3sin 8cos4$,

where E&, K2, and K; are the anisotropy constants, 8 is
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FIG. 1. Parallel (a) y,
'

and (b) y,"as functions of temperature.
H, =8 A/m, f= 10 (solid lines) and 100 Hz (dashed lines). The
solid circles are the calculated DMR y, , (~~), and the open cir-
cles are the calculated DWD g, (

~~
).

FIG. 2. Parallel (a) y,
' and (b) y,

"as functions of temperature.
H, =80 A/m, f= 1 Hz (dotted lines), 10 Hz (solid lines), and
100 Hz (dashed lines). The solid circles are the calculated DMR
y, ,(~[), and the open circles are the calculated DWD y, (~~). In
(a) the short-dashed line is for H, =240 A/m and f= I Hz.
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the zenithal angle between the magnetization direction
and c axis, [001],and P is the azimuthal angle from the a
direction [100].

For Nd2Fe&4B crystals the anisotropy constants as
functions of temperature have been measured by several
authors. We use here for K1 and K2 Hock's results,
since his sample was taken from the same crystal as ours.
For K3 we have to use the data of Otani, Miyajima, and
Chikazumi, since they have made direct torque rneasure-
ments on it, although the values of their low-temperature
K, and K2 are only about —,

' of those given by Hock.
The three constants as functions of temperature are

shown in Fig. 4. With increasing temperature, K, in-
creases from negative to positive value. It equals zero at
around 127 K and stays almost constant, around 4.8
MJ/m, between 200 and 270 K. Kz is always positive; it
decreases from 50MJ/m at 20K to 0.8 MJ/m at 290 K
and crosses the K

&
curve at 200 K. K3 is rather small,

with a value of 2.5 MJ/cm at 4.2 K and almost vanish-
ing above 100 K.

B. Easy directions

If only accounting for K, and Kz in Eq. (1), we will

have three cases, namely, easy axis, easy cone, and easy
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FIG. 4. K& (solid circles), Kz (open circles), and K3 (solid tri-
angles) as functions of temperature for Nd2Fe&&B (Refs. 6 and 4).

plane, depending on the values of K1 and K2. However,
K3 cannot be neglected for the low-field domain-
magnetization rotation (DMR) susceptibility calculation.
Correspondingly, we can only generally talk about easy
directions.

The easy directions can be easily derived from the con-
dition of BEk/88=0, 8 Ek /B8 &0 and BEk/8/=0,
8 Ek /B(' )0. Writing the easy direction as (8o, ('o) and
remembering the direction opposite to (8o,go) to be also
an easy direction, we have the following cases which are
useful for the present material.

(a) For K, )0 and K2 —K3 ~
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(b) ForK& &0, K3)0, andK2 —K3& —K, /2,

sin8o =+[ K, /2(Kz —K3 )]'—
P =o+m/4 .

(2)

(3a)

(3b)

Case (a) is for T) T„where T, is the temperature cor-
responding to E, =0, and there are two easy directions of
8o=0 and m. . Case (b) is for T & T„and there are eight
easy directions of (8o, +n /4), (8o, +n/4+ ~),
(8o+ m, +m. /4), and (8o+m, +m /4+ m ), where 8o is calcu-
lated from Eq. (3a).

0.2
V. LOW-FIELD SUSCEPTIBILITY FROM DMR

A. Demagnetized state
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FIG. 3. Perpendicular (a) y,
' and (b) y,

" as functions of tem-
perature. H, =80 A/m, f= 10 Hz (solid lines), 100 Hz (dashed
lines), and 1000 Hz (dotted lines) ~ The solid circles are the cal-
culated DMR y, , ( l ), the open circles are the calculated DWD

( l ), the solid triangles are the calculated eddy-current

Xe, eddy( l ) for 1000 Hz.

In order to calculate low-field DMR susceptibility, a
domain structure has to be defined. This structure is as-
sumed to guarantee an ideal demagnetized state where
the local magnetic moments are distributed with an equal
probability in all the easy directions. The actual domain
structure may be different from this ideal one, but the re-
sults calculated from this state can be a useful reference
for data analyses.

We only derive formulas for the applied field parallel
and perpendicular to the c axis. With the domain struc-
ture defined above, the direction dependence of low-field
DMR susceptibility should have a uniaxial anisotropy;
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i.e., it is a function of only the zenithal angle OH of the
field, independent of its arimuthal angle PH, provided
that the polar axis is chosen to be the c axis. Therefore
the derivation of susceptibility perpendicular to the c axis
can be done for a particular direction that is easy to be
treated.

We will not consider demagnetizing effects in the cal-
culation, so that the susceptibility is defined by
y=(BM/BH)sr 0, where H is the internal field. In the
following, subscripts h and I are used to stand for T)T,
and & T„and r and w for DMR's and domain-wall dis-
placements (DWD's), respectively.

B. Perpendicular y for T & T,

In this case, when H=O, two halves of magnetic mo-
ments are along equivalent easy directions OO=O and m,

so that we can assume the applied field to be along the x
direction and all the moments to be along the z direction.
The total-energy density in the / =0 plane is

M, asinO

~Hxy ~=(9o

@0M,

8K)

where a weight —,
' has been included.

For the second set of moments, we have, close to the
easy direction (80, —m /4), that

E=Ek+Em

Et sin Hc+Kzsin Ho+E3 sin Hocos4$

pPf,—H„~sin80($+n /4) . (10)

The equilibrium P is obtained by BE/BP =0,
B E/BP & 0, and it satisfies

Its equilibrium 8 is obtained by the condition of
BE/B8=0, B'E/BH'& 0 to satisfy

2KtsinH+4(K2 —K3 )sin 8 IJ—OM, H„» =0,
from which and using Eq. (3a) we obtain the first contri-
bution to the susceptibility y as

E=Ek+Em

=Etsin 8+(1(.z+IC3 }sin 8—@0M,H„sinH, (4)

where E is the energy density of the field-magnetic-
moment interaction and M, is the spontaneous magneti-
zation. The condition of BE/BH=O, B E/BH &0 at
8=80=0 leads to a relation between the equilibrium 8
and H„as

P ssinO= H„,
1

which is valid for 8 «1. Since M„/M, =sinH, we obtain
from Eq. (5) that

M„p,OM,
s( )=X

X 1

which is the perpendicular DMR susceptibility.

C. Perpendicular y for T(T,

57T/4

xy

E=Ek+E
=E,sin 8+(IC2 IC3)sin 8—@0M,H„~sinH . — (7)

In this case the magnetic moments at H=O are uni-
formly distributed in eight easy directions. The simplest
treatment can be done by assuming the field to be applied
in the [110]direction, written as H„. The moments with
directions of ( 80, m. /4), ( 80, m. /4+ n. ), ( Hc+ m, m /4), and
(Hp+'tr, 'tr/4+m. } are energetically equivalent and can ro-
tate in the plane of P =m /4; the moments in the rest four
directions are also equivalent and can rotate only along
the "easy-cone" surface. (The cone is now not perfect,
and its tilting angle, corresponding to a minimum energy,
changes with P. ) For calculation, we assume a half of the
moments to be along (Hc, ~/4) and another half along
(Ho, n /4). The easy directio—ns and magnetization rota-
tions are shown in Fig. 5.

For the first set of moments, we have, in the P=m/4
plane,

FIG. 5. Easy directions for T& T, . The K data in Table I at
T=20 K are used as an example. (a) Four energetically
equivalent easy directions symbolized by solid squares on the
unitary circle in the P= m./4 plane. When field is applied in the
xy direction [110],magnetization in the (Ho, m/4) direction ro-
tates to the (0,m. /4) direction, symbolized by the open square
(see Sec. V B). (b) Two energetically equivalent easy directions
symbolized by solid circles on the 0(m. /2 surface of the unitary
sphere, which is projected to the 0=~/2 surface. The other
two equivalent directions are not shown, which can be marked
on the surface of 0& m. /2. The solid squares correspond to the
upper two directions in (a). When field is applied in the [110]
direction, magnetization in the (0o, —m/4) direction rotates to
the P direction, symbolized by the open circle (see Sec. VC).
The loop through the symbols, which is not a perfect circle, is
the cross section of the "easy cone" to the unitary sphere.
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poM, H,
sin4 j=-

4E3sin 00

For P close to n—./4, this leads to

we have for 180' walls that

X (1)=kiM, ys 'sin 8o/2,

X~((~) kiM, ys cos 8o, (20)

p,H„
b,P=P+m/4=

16K3sin Oo
(12)

poM, poM, (Ki Ki )—
32E3sin 80 16K3EJ

(13)

The total perpendicular DMR susceptibility is finally

The second contribution to y is then obtained using Eq.
(3a) and considering a weight —,

' as

M, sin8ohg

2 BHxy

where k~ and k~~ are constants depending on the area of
mobile walls and the pinning mechanism. If the same
walls with the same pinning mechanism are involved for
both field directions, we should have k~/k~~ =1.

B. Domain-wall energy density and width

For 180' domain walls of the present material, the
domain-wall energy density y~ is a function of E„E2,
and E3. We derive it following the procedures given in
Refs. 21 and 22. Assuming A to be the exchange con-
stant and, for simplicity, defining

poM, (K2/Ki+ 1)
x l(~) x y x yl+x y2

1

(14)
K,'=K, —/K, /,

K,2 =K, /K2

we have, for T & T„i.e., E, & 0, K,' & 0,

(21a)

(21b)

D. Parallel susceptibility for T & T,

In this case the magnetic torque acted by H, on the
moments is zero, so that the DMR susceptibility is

ys=2+AKz f (Ki2sin 8+sin 8)' d8

=21/ AK2 [QK»+(K»+1)sin 'Ql/(K, i+1)j,
x,~(ll) =X.=o . (15) (22)

E. Parallel susceptibility for T(T,

In this case the moments in all the easy directions are
equivalent. We have

and, for T ~ T„i.e., E2 0, —1 &E&2
~ 0,

Oo+ m.

ys =2+AKz f (Ki2sin 8+sin 8+K2i2/4)'y d8,
0

(23)

E=Ek+E

=K, sin 8+(Ki —Ki )sin 8 poM, H, co—s8 . (16)

where 8o is calculated froin Eq. (3a). This integration can
be performed numerically by a computer. If an effective
anisotropy constant is defined as

The equilibrium equation is

2K, cos8+4(K2 Ki )sin 8 cos8—+poM, H, =0,
from which we obtain, using Eq. (3a),

K„=K,+K,'=K, +K, iK, i,
(17)

we can write Eqs. (22) and (23) as

ra =u QAK, ~,

(24)

(25)

x,I(ll) =x, =M, 8 cos8
aH

poM,

4K, +8(Ki Ki)—
VI. DWD SUSCEPTIBILITY

A. General expressions

The DWD susceptibility is more complicated than the
DMR one. For the studied material with large E,
and/or E2, most domain walls should be 180' walls. In
this case, in the ideal demagnetized state defined above,
the DWD susceptibility should be determined by the area
of mobile walls, directions of the domain magnetizations
relative to the field direction, domain-wall energy density

y~, and M, .
Following classical technical magnetization models, '

(26)

VII. LOW-FREQUENCY
EDDY-CURRENT SUSCEPTIBILITY
FOR A FERROMAGNETIC SPHERE

A. Eddy-current loss power and loss per cycle

As first approximation, a conducting magnetic sphere
in ac applied field H, (t)=H, cos2mft has a uniforin

where w is a function of E&2. We have w=~, m,

&2+m. /&2, and 4 for K,2
= —1, 0, 1, and ~, respective-

ly.
The domain-wall width 5z can be traditionally defined

as the distance across which the atomic moment rotates
uniformly 180' with the changing speed equal to the cal-
culated one at the wall center. Following Refs. 21 and
22, it can be derived for the whole temperature range that
the 180 domain-wall width is given by the expression

5s =m+ A /K, s .
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r sin8 dB (t)
(27)

where p is the resistivity of the material. The instantane-
ous loss power is

magnetic induction B(t)=B cos(2n ft —5b ), where 5b is

a phase delay, at low frequency f. From Faraday's law
and Ohm's law, the P component of the eddy-current
density at the point (r, e, p), where r, 0, and P are the po-
lar coordinates of the point with the field along OH =0, is

n a fpp(2y,'/3+ 1 )
Xe,eddy 5p

(34)

Our calculations are based on uniform magnetization.
Considering the domain structure and nonuniform mag-
netization process, the results will be modified. However,
Eq. (34) can be a useful reference for the ac susceptibility
analysis.

y,'. Substituting Eq. (33}into Eq. (31},we obtain the final

equation for the eddy-current y, as

5
2

p( ) Jz d
2na dB (r)

v ~ '
15p dt

(28} VIII. DISCUSSION

where a is the radius of the sphere and the integration
has been performed over the sphere volume V. The loss
per cycle of magnetization is then

77a fB~VW= P(t)dr =
0 Sp

(29)

8. Eddy-current y,"

The loss per cycle equals the work done by the applied
field H, to the sphere in one cycle of magnetization M,
which is

A. General description of DMR and DWD susceptibility

From the calculation in Secs. V and VI, the contribu-
tions of DMR's and DWD's to the total y' should be as
follows. When T) T„y' is due only to DMR's or
DWD's if the field is perpendicular or parallel to the c
axis, respectively, as given by Eqs. (6) and (20). If T & T„
g' in both directions will have two contributions. For the
perpendicular case, the DMR contribution is calculated
by Eq. (14), while the DWD one by Eq. (19). For the
parallel case, the DMR and DWD contributions are cal-
culated from Eqs. (18) and (20), respectively.

W = Vpp fH&dM =
VENT@&& esgQ&~ (30) B. DMR susceptibility calculations

Comparing Eqs. (29) and (30), we obtain

ma fB
+e,eddy

~PPMem
(31)

B =pp(2M /3+ H, ), (32)

From the definition of magnetic induction, B
=pp(H +M), and demagnetizing field Hd = NM-
= —M/3, we have

To calculate DMR susceptibilities from Eqs. (6), (14},
and (18}, the values of ppM„E„ IC2, and K3 are re-
quired. Table I lists such data, obtained from Refs. 6 and
4 directly or by averaging or interpolating the original
data. y„h (l}, y„I(i), and y„~(~~ ) are calculated from the
listed data. In order to compare them with the measured
results y,', a demagnetizing conversion is performed using
a general formula for the relation between the corre-
sponding external y', and internal y' (this formula is valid
for y" «y' when y' is very close to its dc value):

from which it follows

B /H, ~ =p,p(2y,'/3+ 1), (33)

1 1 1+
X,

' X' 3
' (35)

where the low-frequency M /H, has been written as where the last term is the demagnetizing factor N for a

TABLE I. Spontaneous magnetization, anisotropy constants (Ref. 6), resistivity in the basal plane (Ref. 23), and other quantities
derived from them and the experimental data (see text).

T (K)
poM, (T),
K, (MJ/m')
K2 (MJ/m )

K3 (MJ/m )

Xxy 1

Xxy 2

y, ,(~)
X, „(ll}X10'
W

y, „{~~}X103
7', (J.) X10
p (10 Qm)
g& eddy ( I& 1 kHZ) X 10

20
1.84

—18
48

1.6
0.07
0.27
0.31
9
3.05

96
12
7

47

40
1.84

—16
42

1.0
0.08
0.43
0.44

10
3.05

101
13
10
37

60
1.83

—13
35
0.6
0.10
0.73
0.65

12
3.04

110
13
14
30

80
1.82

—6.8
24
0.1

0.19

16
3.00

130
11
20
31

100
1.80

—3.5
20
0.0
0.36

18
3.00

137
16
28
33

120
1.79

—1.2
18
0.1

1.10

18
3.07

138
11
36
33

135
1.77
0.4

11
0.1

1.5
0
3.19

163
0

41

175
1.75
3.6
5.5

—0.1

0.31
0
3.54

162
0

49

215
1.72
4.7
3.0
0.1

0.23
0
3.72

162
0

56

250
1.68
4.8
1.6
0.0

0.22
0
3.83

163
0

58

270
1.66
4.9
1.5
0.0

0.21
0
3.84

163
0

62
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sphere. The y, „(l) and y, „(~~) data thus obtained are
listed in Table I and plotted in Figs. 1(a), 2(a), and 3(a) by
solid circles.

To have a comparison between the DMR susceptibili-
ties from the 8 and P rotations, y„, and y z are also list-
ed in Table I. We can see that with increasing tempera-
ture, the ratio of the latter to the former increases from 4
at 20 K to 7 at 80 K. This means that the DMR's in the
basal plane have a dominant contribution to the perpen-
dicular DMR susceptibility at low temperatures.

C. Perpendicular susceptibility

According to Fig. 3(a), the perpendicular case, the
agreement between y,

' and the calculated external DMR
susceptibility y, „(l) is good at higher temperatures. A
deviation of the data point at T= 135 K away from the
curves is believed to be due to the measuring error in
temperature (within 2 K) and in K, (around 1.2 MJ/m,
as can be seen from the scattering of the data at 120 K in
Fig. 4). This means that the perpendicular susceptibility
is almost fully attributed to DMR's for T) T, . For
T & T, the three calculated points lie between the curves
for f=100 and 1000 Hz, suggesting that there are both
contributions from DMR's and DWD's in this region.
Since the perpendicular DMR susceptibility calculated
from Eqs. (6) and (14) diverges at E, =0, T, can be
defined as the temperature, around 127 K, where y,

' takes
its maximum.

We observe in Fig. 3(b) that y,
"=0 for T )T„ the pure

DMR region. For T & T„where both DMR's and
DWD's exist, y,

"
is rather high. These facts further sug-

gest that the nonzero g," is due to DWD's. The partial

y,
' due to DWD's is mainly present at lower frequencies;

it decreases with increasing f, so that the high-f suscepti-
bility g,

' is close to the values calculated for DMR's. We
will further argue in Sec. VIII H that the actual DMR y,

'

is lower than the data for 1000 Hz and that the calculated
values are overestimated; i.e., the K~ given in Table I has
a minus error.

D. Parallel susceptibility

In the parallel case [Figs. 1(a) and 2(a)], the calculated

y, „(~~) is zero for T) T„ the pure DWD region, where
is very high. Although this g, „(~~) is not zero for

T & T„ it is almost negligible in comparison with the g,
'

data. Therefore the parallel y,
' is almost completely due

to DWD's in the whole temperature range.
By comparing the data with Eq. (20), we find that the

temperature dependence of y,
' cannot be totally explained

by the change in M, and y~. In order to make such a
comparison, we calculate w and y, (~~) using Eqs. (20),
(22) —(25), and (35) from the data of M, and E's given in

Table I. The data for y, (~~) are normalized so that the
experimental data at low temperatures are well fitted by
them. The results are also listed in Table I (except for
T = T„where both values are 3.14 and 0.146, respective-
ly) and plotted in Figs. 1(a) and 2(a) as open circles.

According to Table I, w smoothly changes with tem-
perature, from about 3 when T & T, to 3.84 when T=270

K. In Fig. 1(a), after fitting the low-temperature data, the
calculated y, (~~) data are very close to the experimental
curves in high-temperature regions, but there is a large
difference at intermediate temperatures, where the exper-
imental data are much higher, including a y', peak (10
Hz) or an inflection point (100 Hz) at T = T, . In Fig. 2(a)
the experimental data are much larger than the calculat-
ed ones even for the high-temperature range. The peak
at T = T, and low frequency (1 Hz) becomes broad, while
the inAection at higher frequencies becomes a dip.

It turns out that k~~ is a function of temperature. For
lower fields it is almost constant at low and high tempera-
tures, but increases significantly in the intermediate-
temperature region, including a peak at T=T, . At
higher field the increase of y,

' at high temperatures sug-
gests the presence of hysteresis, since the corresponding
y,
" is also high and frequency independent.

E. DWD susceptibility enhanced by DMR's

If k~~(T)=k~(T), we can calculate the partial DWD
susceptibility for the perpendicular case at T & T, from
the parallel y,

' data, which are, as explained above, al-
most exclusively determined by DWD's. The formula is
obtained from Eqs. (19), (20), and (3a) as

(36)

The results are listed as y,
' (j.) (we put a prime to identi-

fy it to be calculated from experimental data) in Table I
and plotted in Fig. 3(a) by open circles. We can see that
this contribution is negligible when compared with the
measured y,

' data. Since quite a large fraction of perpen-
dicular y,

' is due to DWD s in this temperature region,
we may conclude that k~ is much larger than k~~ below

T'
We name this phenomenon "DWD susceptibility

enhanced by DMR's. " The reasons are as follows: The
fact that the total susceptibility is larger than the sum of
the two individual DMR and DWD contributions should
be due to the interaction between both. The DMR sus-
ceptibility is determined by the magnetic energy in the
whole sample volume, while the DWD susceptibility has
a local nature. Therefore, although DWD's can enhance
DMR's in some ways, the strength of the enhancement to
the DMR susceptibility must be small. On the contrary,
the inAuence of DMR's can be everywhere in the sample,
so that they can enhance the DWD susceptibility to a
large extent.

A remarkable phenomenon for the parallel susceptibili-
ty can be observed in Fig. 2(a). There is a large dip in y,

'

(=0.04) around 127 K in the curves for H, =80 A/m
and f= 10 and 100 Hz, and it is as large as 0.25 (or 2.5
for g' after a demagnetizing correction) for H, =240
A/m and f= 1 Hz. This dip obviously corresponds to
that in the parallel DMR susceptibility. However, as
shown by the solid circles in the same figure, the latter is
small ( (0.02). This observed y', dip is due to DMR's
and mainly to the DWD's enhanced by DMR's, especial-
ly for higher fields. Hence at least part of the origins for
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the large k~ at T&T, can be attributed to a DMR-
enhanced DWD susceptibility.

I. Parallel y', peak

There is a sharp peak at T=127 K in the parallel y,
'

curves for H, =8 A/m and f=10 Hz [Fig. 1(a)] and
H, =80 A/m and f= 1 Hz [Fig. 2(a)]. Increasing H,
to 240 A/m reduces the peak appreciably [Fig. 1(a)].
Further increasing H, to 800 A/m finally eliminates it
(data not shown). It was also absent at H, =0.8 A/m
and f= 100 Hz (data not shown).

From the above calculations, the DMR susceptibility
should be zero at T & T, and 0.018 at T a little below T, .
The DWD susceptibility should change smoothly when T
passes through T, . Therefore this peak cannot be ex-
plained by DMR's and DWD's without interaction.

We note that the peak is located at T„where E& =0,
and this provides a hint for its interpretation. For the
studied sample with high anisotropy, the elementary
magnetic moments in the domains should in general be
parallel to the easy directions. However, there is an ex-
ception; when E

&
=0 at T =T„ the anisotropy energy

around the c axis is very small, so that the magnetic mo-
ments can lie within a certain angle around the c axis
with almost the same energy. This can be realized by cal-
culating the 8 dependence of the second term with a fac-
tor of sin 8 in Eq. (1). For example, when 8=5', 10', and
15' this term is 5.8 X 10 I( 2, 9.1 X 10 E2, and
4.5 X 10 K2, respectively. As a consequence, the
domain magnetizations will align not only along the c
axis; their directions can be within a considerable range
of angles 8. Such domains can rotate in the parallel ac
field. However, these DMR's still cannot give a suscepti-
bility peak, since cos8 is very close to unity in the parallel
case and the M, component should be close to zero. On
the other hand, the domain-wall energy density is large at
T = T„regardless of a zero E, . A large susceptibility
from DWD's can be realized only when the wall displace-
ments do not change or change negligibly the total wall
area, since otherwise the domain-wall energy will change
appreciably because of a large y~ at T, . It will require a
change in the domain shape and volume, which becomes
possible since the DMR's cost little energy and there are
infinitely many domain configurations that correspond to
the same energy even if the magnetostatic energy is also
considered. Hence a presence of the parallel y,

'
peak at

T = T, is in principle expected.
The concrete magnetization process needs further

study. However, there is one thing which can be visual-
ized: To keep the same domain wall area and change the
domain shape and volume, the domain-wall movements
should be across a quite large distance. Such movements
involve some energy barriers to jump over, which makes
the peak present only at low frequencies. These barriers
can be due to the intrinsic periodic potential for narrow
walls. At 127 K the domain-wall width 5&=2.6 nm,
calculated by Eq. (26) using IC,s.= 15 MJ/m and
A =10 " J/m. It corresponds to about 15 iron atomic
layers. This domain wall is not very narrow, so that the

barriers are rather low and can be overcome in the help
of thermal activation. The higher the H, , the longer the
moving distance. This means that, to have the peak, the
frequency should be inversely proportional to H, , which
is indeed the experimental result. The domains and walls
that can participate in such special movements can only
be a small fraction; the absence of a change in the
domain-wall area is a very strict condition. If the H, is
too high, the main contribution to the DWD susceptibili-
ty will be from the major walls, and the peak, which is
only due to the special DWD's, must disappear. Since
the minimum distance of such wall movements is the lat-
tice constant (because of the periodic potential of narrow
walls), the peak will also disappear if H, is too small.
Our 0.8-A/m results may belong to this case.

G. Eddy-current effect

Using Eq. (34) and the resistivity given in Ref. 24,
y,",dz„ is calculated for the perpendicular case off=1000
Hz and T & T„where the eddy-current effect is the larg-
est. The results are listed in Table I and plotted by solid
triangles in Fig. 3(b). For f ~100 Hz, g, ,dd„ is always
within the measuring error. Thus all the frequency-
dependent y,

" can be regarded as due to magnetic relaxa-
tion, except for the calculated case, where the contribu-
tion of eddy currents has to be taken into account.

We see in Fig. 3(b) that the calculated g,",~d„ is un-
reasonably larger than or close to the experimental data
for 1000 Hz. The anisotropy in p may be one of the
reasons. For polycrystals of a compound near Nd2Fe, 4B,
p along the c axis is twice as great as that in the basal
plane. If the same is true for the present single crystal,
then the calculated y,

"
ddy will decrease by a factor of 3,

so that this discrepancy is resolved. Another reason is
that pp'eddy is calculated using the experimental y,

' for
1000 Hz, which includes the contributions from DMR's
and DWD's. If the DWD's are due mainly to the closure
domain walls, their partial contribution to y,

"
ddy will be

less than calculated from Eq. (34), since the correspond-
ing magnetization is close to the surface. On the con-
trary, the DMR's are more uniform in the sphere, and
Eq. (34) is relevant for them. The fractional DMR makes
the real p eddy smaller than the calculated one.

In any case the y,
" for 1000 Hz will be lower after the

eddy-current correction. After such a correction, all the
curves of y,

" for T & T, will correspond to the effect of re-
laxation.

H. Relaxation

If a relaxation process involves a single time constant ~
at a fixed temperature, then, with frequency changing
from 0 to Oo, y" as a function of the corresponding y'
will draw a half circle starting from y'(f=0) and zero y"
to the y'(f ~ ao ) and zero g". The maximum y" corre-
sponds to 2rrf r= 1. A distributed r makes the half circle
oblate, i.e., the maximum y" smaller than the half
difference between the two extreme values of y'. Howev-
er, the average ~ can be still estimated by f where a max-
imum y" takes place.
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We did not make measurements at a fixed temperature,
but from the temperature-dependence curves of y" and y'
some analyses can still be made.

In Fig. 3(b) the y,
" curves at T(T, show several peaks

or steps. After an eddy-current correction for the data of
1000 Hz, we can make g,"-vs-y,' functions at different
temperatures using the data given in Figs. 3(a) and 3(b).
Although there are only three points for each function,
two features can still be found: (1) The functions obey
not a half-circle type, with the maximum y,

" more or less
smaller than [y,'(f~0) y,'(f—~ &x& )]/2; (2) the average
~ is between 0.001 and 0.01 s for T&40 K without a
monotonical temperature dependence. The first feature
means that the relaxation involves a broad or narrow
time-constant spectrum, and the second one means that
the relaxations at different temperatures are independent,
related to different processes.

These processes may be different DWD's enhanced by
DMR's. These DWD's will not take place at higher fre-
quencies, which corresponds to a zero y,

" and a
frequency-independent y,'. This will happen for T & 50 K
at frequencies a little above 1000 Hz, as can be seen from
the low-temperature plateau in the y,"-vs-T curve of 1000
Hz in Fig. 3(b). Thus the DMR y,

' in this region should
be very close to the 1000-Hz data. In comparison with
the three theoretical points in Fig. 3(a), remembering that
the vertical DMR susceptibility is mainly due to rota-
tions in the basal plane, we conclude that the real K3
should be 30% higher than those given in Table I. For
T) 60 K, g,

" is far from zero, so that the DMR g,
'

should be lower than the 1000-Hz curve, and the corre-
sponding E3 should not vanish. At frequencies lower
than 10 Hz, y,

" should also decrease, accompanied by an
increase in y,'.

Another phenomenon which is not easy to understand
is for the parallel case, where there exists a broad max-
imum in y', [Fig. 1(a)] corresponding to a g,

"
peak [Fig.

1(b)] in the intermediate-temperature region. As treated
in Sec. VIII D k~~ is anomalously increased in this region.
Qualitatively, this can be ascribed to the consequence of
relaxation, since the maximum decreases with increasing
frequency. However, it is not logical for this increment
of k~~ to disappear at higher temperatures. There may be
some special mechanism which decreases the E,z in the
walls in this region or some DMR's which are related to
magnetostatic energy due to a finite sample size.

Further study to understand the parallel susceptibility,
including the y,

'
peak at T„is in progress.

I. Comments on previous g derivations

Finally, we would like to comment on some previous
works cited in Sec. I that presented some formulas on the
initial susceptibilities. For DMR susceptibility parallel to
the c axis, our formulas agree with those given in Refs. 15
and 16. However, most authors did not consider (or they
neglected) DMR's for the P-angle change, and instead
they regarded the DMR susceptibility corresponding to
the 0 change as the total perpendicular DMR susceptibil-
ity. The neglection of the P anisotropy will actually lead

to an infinite perpendicular susceptibility at T & T, .
Another problem, which makes the solution somewhat
arbitrary, is that in some works a magnetostriction term
has entered the formula as a positive effective K&. Actu-
ally, this is only valid for a positive magnetostriction con-
stant A, and a positive stress 0. along the c axis or when
both are negative. In these two cases, however, this effect
does not need to be separated from E&. In any other
cases, an inclusion of this effect would drive the solution
in confusion. In Table I of Ref. 16, the formulas for [100]
and [110] directions have a difference of a factor of 2
without arguments. In our opinion this difference should
not appear for the demagnetized state defined in the
present work. If magnetic moments are not distributed
in all the easy directions with the same probability, the
largest difference should be between [110] and [110]
directions. There is a typographic error in Ref. 18, where
the definition for K should be EC2/E, .

IX. CONCLUSIONS

The low-field susceptibility of the studied spherical
Nd2Fe&4B single crystal is in general due to DMR's and
DWD's. Perpendicular to the c axis, g,

'
is dominated by

DMR's with respect to the 8 angle when T & T„and it
has two comparable contributions from DMR's, mainly
with respect to the angle P and from DWD's enhanced by
DMR's for T& T, . When T=T, the perpendicular y,

'

has a maximum of about 2.3, corresponding to an inter-
nal y' larger than 10. Along the c axis, the DWD process
is always dominant for y,', which is enhanced by DMR's
when T&T, and probably also for T&T, . There is a
broad maximum for this y,', centered by 190 K, and a y',
peak at T=T, for f= 1 and 10 Hz and H, =8—240
A/m. This peak can be ascribed to the cooperation of
thermally activated DWD's and nonresistive DMR's
within a certain angle. Frequency-dependent y,

' and y,
"

are almost totally due to magnetic relaxation processes,
which is an important feature of the low-field DWD's.
To reach the above conclusions, the low-field DMR sus-
ceptibility and 180' domain-wall energy density as func-
tions of anisotropy constants have been derived for
different cases. The results can be considered as a basis
for the further study of different uniaxially anisotropic
single crystals or polycrystals. A formula for the low-
frequency eddy-current imaginary susceptibility is de-
rived for a sphere as well. Finally, the spin-reorientation

temperature T, as a characteristic quantity of this materi-
al can be determined from temperature-dependent low-
field ac susceptibility measurements through (1) the sharp
peak of y,'(I), (2) the sharp onset of y,"(I) from zero, (3)
the sharp peak of g', (~~) at H, =8 A/m and f=10 Hz,
and (4) the dip of g', (~~) at H, ~ 80 A/m. A precise re-

sult, 127 K, is obtained by the former three approaches.
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