
PHYSICAL REVIEW B VOLUME 46, NUMBER 6 1 AUGUST 1992-II

Hidden Z2 XZ2 symmetry breaking and the Haldane phase in the S=—' quantum spin chain
with bond alternation

Mahito Kohmoto
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato ku-, Tokyo 106, Japan

Hal Tasaki
Department of Physics, Gakushuin University, Mejiro, Toshima ku, -Tokyo 171, Japan

(Received 28 October 1991)

We study the S =
2 spin chain with the Hamiltonian

L —1 L

I tr2jtr2j+1+ o21tr21 + j+~o2j o2j +1 ) +0 g ( 1 o2j —
1 a2j )

j=l j=l

where cr; =(0.;,o.~, o';) are the Pauli matrices. We find that a nonlocal unitary transformation reveals the
hidden Z& XZ& symmetry of the system. It has been argued that a similar hidden Z2 XZ2 symmetry of
the S =1 chain is fully broken when and only when the system exhibits the Haldane gap. We prove that
the present system exhibits both an excitation gap and a full breaking of the hidden Z2 X Z& symmetry in

a range of the parameter space including the line P=O, A, & —1. We argue that the range with such

properties indeed extends to the limit P~ ~ in which the present model reduces to the S = 1 spin chain.
This observation provides support of Hida s conclusion that the Haldane gap in the S = 1 chain is con-
tinuously connected to the gap in the decoupled S =

t system with P= 0.

I. INTRODUCTION

Haldane' argued that, when S is an integer, the spin-S
quantum antiferromagnetic chain with the Hamiltonian

H = gS;"S;"+,+S;S;+,+A,S S+, +D(S')

has a unique disordered ground state with a gap in a
finite region of the parameter space including the SU(2)
invariant Heisenberg point X=1, D =0. This conclusion
was somewhat surprising since it had been believed that
there should be spin-wave excitations without any energy
gap. When S is a half-odd integer in (1.1), it is argued
that there is no excitation gap at the SU(2) invariant
point. Initial controversy about this fascinating predic-
tion seems to have been resolved by numerous experi-
ments (both in quasi-one-dimensional compounds and in
computers ) and some theoretical works. There is also an
exactly solvable model for S = 1 with an additional biqua-
dratic interaction which is proved to possess most of the
properties Haldane predicted. However, Haldane's con-
clusion on the standard Heisenberg model with small in-
teger S (say, 1) still remains to be justified theoretically.

The ground state accompanied by the Haldane gap is
unique and has exponentially decaying correlation func-
tions. It turned out, however, that the ground state is not
simply disordered but has highly nontrivial hidden struc-
tures. Den Nijs and Rornmelse argued the Haldane-type
ground state in an S = 1 chain has a "hidden antiferro-
magnetic order" which can be measured by the string or-
der parameter

j—10;„;„=— lim S exp im g St S ),/1' —j/ ~ e k =i+1

where a=x, y, or z. (See also Ref. 6.) This string order
parameter has been calculated numerically. Kennedy
pointed out that, in an S = 1 Haldane gap system defined
on a finite open chain, the four lowest-energy levels are
nearly degenerate and are separated from the other eigen-
states by a finite (Haldane) gap. This near degeneracy
arises from almost free S =

—,
' degrees of freedom generat-

ed at both ends of the chain. In the infinite volume lim-

it, the four nearly degenerate states converge to a single
infinite volume ground state since the extra spin —,

''s at the

boundaries are no longer observable. These two non-

standard properties of the Haldane gap systems can be
observed in the solvable model of Ref. 4.

Kennedy and Tasaki' argued that these two charac-
teristic features, the hidden antiferromagnetic order and
the fourfold near degeneracy, can be understood as
consequences of a hidden Z2XZ2 symmetry breaking.
They introduced a nonlocal unitary transformation for
the S=1 antiferromagnetic chain and found that the
model obtained by applying the transformation to the
Harniltonian (1.1) has a discrete Z2 X Z2 symtnetry.
Moreover the Zz X Zz symmetry is fully broken only
when the system exhibits the Haldane gap phenomena.
The symmetry is partly broken or not broken in other sit-
uations.

The existence of a hidden Z2 XZ2 symmetry breaking
is a powerful criterion to distinguish a system exhibiting
the Haldane gap from other disordered spin systems. For
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example, when the uniaxial anisotropy D in the Hamil-
tonian (1.1) is very large, the ground state is a small per-
turbation to the state characterized by S ~0 & =0 for all i
In such a situation, the ground state is unique and there
is a finite excitation gap of order D. (This fact can be
proved by developing a suitable rigorous perturbation
theory. '

) However, the ground state does not break the
hidden Z2XZ2 symmetry. The same is true for the
disordered ground state observed in an S =1 antiferro-
magnetic chain with strong bond alternation.

Hida" recently studied an S =
—,
' Heisenberg chain with

alternating ferromagnetic and antiferromagnetic cou-
plings. [The Hamiltonian (2.1) below with A, =l.] The
model converges to the antiferromagnetic S =1 Heisen-
berg chain as the ferromagnetic coupling P tends to
infinity. Hida observed numerically that the model has a
unique ground state with a gap for all the values of
P& —1. He also found that the den Nijs —Rommelse
string order parameter for the S =

—,
' chain is nonvanish-

ing in these ground states. This is an interesting observa-
tion since it seems to indicate that the Haldane gap in the
S = 1 chain is continuously connected to the gap in the
model with P=O. The latter model decouples into a col-
lection of pairs of interacting spins, and so it is trivial
that the ground state is unique and accompanied by a
gap.

The purpose of the present paper is to examine wheth-
er the disordered ground states observed by Hida exhibits
a hidden Z2 XZ2 symmetry as in the spin-1 models. We
find that, in the S=—,

' chain with bond alteration, the
nonlocal unitary transformation used by Kohmoto, den
Nijs, and KadanofF' in 1981 plays the role of the
Kennedy-Tasaki unitary transformation for the S =1
chain. The unitary transformation maps the S =

—,
' chain

with alternating couplings into an Ashkin-Teller type
S =

—,
' quantum spin system on a pair of chains. [See (3.1)

below. ] The transformed model has a very natural
Z2 XZ2 symmetry. Moreover, the unitary transforma-
tion maps the string order parameters of the original sys-
tem into ferromagnetic order parameters in the double-
chain system. [See (2.2), (3.2), and (3.3) below. ] Thus, the
breaking of the Z2XZ2 symmetry in the transformed
system corresponds to the development of the hidden an-
tiferromagnetic order in the original system.

We show this Z2 XZ2 syrnrnetry is fully broken in the
vicinity of the decoupled model and in the valence-bond-
solid (VBS) state which is the exact ground state of a
solvable model. This suggests that the symmetry is
indeed fully broken in a wide range of the parameter
space including the totally decoupled models and the
strongly coupled chain, i.e., the S = 1 model. When there
is a long-range Neel order, the Z2 XZ2 symmetry is part-
ly broken.

The organization of the present paper is as follows. In
Sec. II, we define the model and briefly discuss the nature
of its ground states. In Sec. III, we describe the nonlocal
unitary transformation. In Sec. IV, we discuss properties
of typical ground states of the double-chain system with
S=—,

' obtained in Sec. III. In Sec. V, discussions are
given.

II. THE MODEL AND PHASE DIAGRAM

We study the S =
—,
' spin chain with the Hamiltonian

L —1

[opjo2j+ I +o2j o2j + 1 +~o2j o2j + 1 ]
j=1

L
+p g(1 —o2, o2.),

j=l
(2.1)

where o; = ( o ";,o ~, o'; } are the Pauli matrices which act
on the spin at site i, and are related to the spin operators
by o; =2S;. In the limit P~ ~, the ferromagnetic cou-
pling dominates the Hamiltonian and spins on sites 2j —1

and 2j must form an S =1 triplet in the ground states.
By treating the antiferrornagnetic coupling with a degen-
erate perturbation theory, one exactly recovers the S = 1

chain with the Hamiltonian (1.1) with D =0. To get the
Hamiltonian (1.1) with nonvanishing D as the limit, it
suffices to add extra interactions (D/2)g, ozj, oz to
the Hamiltonian (2.1}.

Following Hida, " we define the den Nijs —Rommelse
string operator for the S =

—,
' chain by

S„„„s(k,n) = —crzkexP
2)i 2

Oj 02„
j=2k+1

2n —1

1)n
—k g a

j=2k

and the corresponding order parameter by

(2.2)

(2.3)

where ~+ &; and
~

—
&, are the eigenstates of o'; with ei-

genvalues + 1 and —1, respectively. For f3=0 and
A. & —1, the ground states of the Hamiltonian (2.1) are

where a=x, y, or z. It is straightfoward to check that
the string operator and the string order parameter
defined in this way converge to the corresponding quanti-
ties in the S =1 chain as P~ ~.

Let us briefly discuss the properties of the ground
states of the Hamiltonian (2.1) for various values of P and
A, . Figure 1 is the phase diagram that summarizes the ex-
pected properties of the ground states.

On the P= ~ line, the phase diagram should recover
that of the S =1 chain with the Hamiltonian (1.1} with
D =0. It is believed that the ground state of the S =1
chain is in the ferromagnetic phase for A,

—1, in the
massless XF phase for —1 ~ A, ~ A, in the Haldane phase
for A. , ~A, ~A.2, and in the Neel phase for A, 2 A, . It has
been observed numerically that A, , lies somewhere around
0, but its precise location is not yet determined. The
value of A, 2 is known rather accurately from numerical
calculations, and it is slightly larger than 1.

When the ferromagnetic coupling P is vanishing, the
model decouples into a collection of independent two-
spin systems. We can easily write down its ground states.
Let a valence bond (or a singlet pair) v;j be



3488 MAHITO KOHMOTO AND HAL TASAKI 46

' Unique ground state
with a gap

0 2

aerro

FIG. 1. The expected phase diagram for the ground states of
the S= —,

' chain with alternating ferromagnetic and antiferro-
magnetic couplings. The right most line with P= ~ corre-
sponds to the S =1 antiferromagnetic chain. In the shaded re-
gion around the line P=O, A, ) —1, we have rigorous control of
the ground states, and the existence of an excitation gap and a
hidden Z, X Z2 symmetry breaking is proved. (See Secs. III and
IV.) It is expected that the Z, XZ& symmetry breaking takes
place in the whole region of the parameter space labeled
"unique ground state with a gap" which includes both the
decoupled models with P=O and the S =1 models with P= ~.
There is also the Neel phase with long-range antiferromagnetic
order, the massless XYphase, and the ferromagnetic phase.

the following "dimerized states" which are simple prod-
ucts of the valence bonds:

(2.4)

Here a, b =+ are arbitrary. There are two free spin —,
''s at

the boundaries of the chain. The space of the ground
states has dimension four. Figure 2 shows a graphical
representation of the ground states. Although one has a
fourfold degeneracy in a finite chain, there is a unique
ground state in the infinite volume limit. This is because
the free spin —,

''s are infinitely far away and have no
consequences on the physical observations. There is a
gap above the ground-state energy which is equal to 4 for
X&1 and 2(A, +I) for 1&A, & —1. The model becomes
ferromagnetic for p=O, A. & —1, and the ground states
are highly degenerate. In fact, this line is a critical line.
For A,

—1 fixed, the model with p has a phase transition
at P=O. "

The calculation of the string order parameter for the
dimerized state is trivial" and we have

l @Neel )
[(L + 1)/2j

la &4, , la )4,j=1
[Lg2]

g l

—a&4, , l

—a)4,j=1
(2.5)

0„„.„=1for the string order parameter. Since the mod-
el with p=O is a collection of decoupled two-spin sys-
tems, there can be no long-range order in the usual sense.
Hida argued that the string order parameter can be un-
derstood as a measure of localized singlet (valence bond).
We shall see in the next section that the nonvanishing
string order parameter corresponds to a spontaneous
breakdown of a discrete hidden symmetry.

It is natural to expect that, in a finite region of parame-
ter space surrounding the above line P=O, I,) —1, the
model has a unique ground state with a gap. Such a
statement can be proved rigorously by using the standard
rigorous perturbation theory. In Ref. 10, for example,
such a rigorous perturbation theory is formulated in a
general manner. One finds that the above Hamiltonian
falls into class A of Ref. 10, and the following can be
proved rigorously. There is a constant c &0 such that,
for A, &0, lpl &c or 0&A, & —1, lpl &c(1+A,), the ground
state of the Hamiltonian (2.1) in the infinite volume limit
is unique, all the truncated correlation functions decay
exponentially in this ground state, and there is a finite en-
ergy gap. (See Fig. 1 for a schematic view of the region
where the rigorous perturbation theory works. ) One also
expects to have nonvanishing string order parameter in
these models. This is proved in Sec. IV by using the non-
local unitary transformation discussed in Sec. III.

Hida" studied the Hamiltonian (2.1) with A, =l, and
observed numerically that the gap and the string order
parameter found to be nonvanishing for p=O remain
finite all the way down to the S = 1 limit: p~ Oc. In this
limit, the gap is the Haldane gap and the string order pa-
rameter measures the hidden antiferromagnetic order.
This observation strongly suggests that the line of gapful
models for P=O belongs to the same phase as the S =1
Heisenberg antiferromagnet. (See the phase diagram,
Fig. 1).

The spin-1 chain (1.1) with D =0 is believed to have
two Neel-ordered ground states for X & 1. (The existence
of Neel order can be proved rigorously for suSciently
large A,). Since the limit P~oc of the present model
should recover the spin-1 chain, we expect the Hamil-
tonian (2.1) has two Neel-ordered ground states when P
and A, are large. When we have A, &)P&)1, the ground
states are essentially given by the following classical Neel
states:

for any n )k and e=x, y, and z. Thus, we see that

FIG. 2. A graphic representation of the dimerized states.
Each bond represents a valence bond (singlet pair).

where a =+. We expect there is a massless XYphase in a
part of the phase diagram as is indicated in Fig. 1.

Although we have no results concerning the ground-
state properties of H (2.1) for p not small, there is a solv-
able model which sheds light on the nature of the ground
state for large p. The solvable model is the VBS model,
reinterpreted as a model of spin- —,

' chain with bond alter-
nation. Consider the Hamiltonian
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FIG. 3. A graphic representation for the VBS states in the al-

ternating S=
2 spin chain. Two spins surrounded by a gray

oval are symmetrized to form a triplet.

L —1 L
~S=2

~~VBs ~ ~ 2j —1,2j,2j+1,2j+2 P X ~2j —1 +2j
j=1 j=1

(2.6)

where P, .=k is the projection operator onto the sub-

space where the total spin of four sites i,j,k, m is 2. This
can be written explicitly by the Pauli matrices as

—,], (o;+o +ok+cr )

Each term in the first sum of (2.6) favors that there is at
least one valence bond within the sites 2j —1, 2j, 2j +1,
2j +2. On the other hand, each term in the second sum
of (2.6) favors the spins at sites 2j —1 and 2j to be in a
triplet. Noting that the projection onto a triplet is noth-

ing but the symmetrization operator, we can write down
the ground states of (2.6) as

state, the two-spin correlation function is nonvanishing
for any pair of spins. (It decays exponentially. ) The
string order parameter for the VBS state is nonvanishing
and equal to —,'. (The easiest way to get this value is to
use the nonlocal unitary transformation of Kennedy and
Tasaki' which maps the VBS state to a simple tensor
product of local states. }

III. THE UNITARY TRANSFORMATION

In the present section, we describe the nonlocal unitary
transformation which reveals the hidden Z2 XZ2 syrnme-

try of the Hamiltonian (2.1). Surprisingly, the transfor-
mation is essentially the same as that used by Kohmoto,
den Nijs, and Kadanoff' to demonstrate the relation be-
tween the highly anisotropic version of the d =2
Ashkin-Teller model (d =1 quantum system) and the
staggered XXZ model. It may be worth noting that the
present unitary transformation does not converge to the
Kennedy-Tasaki transformation in the limit p~ Oo.

We shall omit a constant in (2.1) and start from the fol-
lowing Hamiltonian:

L —1

X ( +2j +2j + ] ++2j +2j + ]+~+2j ~2j + ] I

j=1

First we perform a local gauge transformation by the uni-

tary operator

L

l@VBS . ~2j —1,2j l@dimer~j=1
(2.7)

[L/2]
G= ]3] exp (cr~4j ]+cr~4j)j=1 2

where the symmetrization operator is defined by

+2j —1,2j lu ~2j —]lb ~2j I lu ~2j —]lb ~2j+ lb ~2j —] l]2 ~2j }

for a, b =6 (Fig. 3). Note that the new states inherit the
fourfold degeneracy of the dimerized states. The above
VBS states are the exact ground states of (2.6) for all the
values of p) 0. (The ground states are highly degenerate
at p=0). Note that these ground states are nothing but
the VBS state of Ref. 4 defined for the spin-1 chain if one
regards a pair of ferromagnetically coupled spins as a sin-
gle S = 1 spin. Unlike the dimerized states, which are the
product of noninteracting valence bonds, the VBS states
cannot be written as products of decoupled states (unless
one performs a nonlocal transformation}. In the VBS

which generates a rotation of m. about the y axis on spins
in every other ferrornagnetically coupled pairs. This
makes the system look as ferromagnetic as possible:

L —1

( +2j+2j + ] ~2j ~2j + ] +~~2j ~2j + 1 1

j=1
L

P g &2j —]'O'2j .
j=1

Then we apply the standard duality transformation'
onto the whole system. In Appendix A, we have defined
the duality transformation as the unitary transformation
D of the Hilbert space. Using the relations (A2) and (A3),
we get

L —1

I~2j —]/2~2j+3/2+~2j —]/2~2j+]/2~2j+3/2 ~~2j +]/2I
j=1

j=1
z z z X Z ~ X

~2j —3/2~2j+1/2 ~2j —3l2+2j —1/2~2j+1/2 ' ~2j —1/2I
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where we set o.»2= 1. In the next step of the transforma-
tion, we merely change the labeling of the lattice sites by
the following rule:

R:r ~ ,' ( r +——,'
) .

After the relabeling, we shall rewrite the Pauli matrices
on the half-odd integer sites as ~. The Hamiltonian then
becomes

L —1

(RDG)H (RDG) = g t
0' 0' + 1+0' 7 + 1/20'

j=1
+~+j+ 1/2 I

L

1 X I +j —1/2+j+1/2

+j —1/2oj +j+1/2+oj ]

Finally we apply the inverse of the duality transformation
only to the ~ spins. If we denote by D' the dual transfor-
mation for the r spins (which brings a system on the
chain I 1,2, . . . , L ) onto that on the dual chain

I
1,—,', , L + —,

'
I ), our unitary transformation can be writ-

ten as

U =(D') 'RDG .

Using (A4) and (A5), we find that the final form of the
transformed Hamiltonian is

H = UHU-'

L —1

I 0 j0j + 1
+~rj rj + 1 +0j crJ + 17j+j + 1 lj=l

(3.1)

The first part in the Hamiltonian describes two ferromag-
netic Ising models coupled by four spin interactions,
while the second part is a kind of transverse field. The
symmetry of the Hamiltonian H can be easily read off. It
is invariant under rotations of m about the x axis applied
to o. spins alone or ~ spins alone. Thus, it has a Z2 XZ2
symmetry.

The transformation of the string operators can also be
calculated easily. We consider the string operator (2.2)
with a =x or z. Then the local gauge transformation 6
simply gets rid of the extra sign factor in the right-hand
side of (2.2) and we have

2n —1

GS„„„(k,n)G '= cr, (a=x,z) .
j =2k

Let us consider the case a=x first. Using (A2), we see
that the first duality transformation maps the string
operator into a product of two local operators as

(DG)O"„„„s(k,n)(DG) '=o'2k —1/2oz —1/2 .

The remaining transformation is the relabeling of the lat-
tice sites, and we get

(3.2)

UO;„;„(k,n)U (3.3)

The above (3.2) and (3.3) indicate that the nonlocal uni-

tary transformation maps the string correlations in the x
and z directions to the standard ferromagnetic correla-
tions of the o spins and v. spins, respectively. Conse-
quently, the string order parameters (2.3) with a=x and z
are mapped to the square of the ferromagnetic order pa-
rameters for o. spins and ~ spins, respectively, of the
double-chain system. These ferromagnetic order parame-
ters measure possible spontaneous breaking of the above-
mentioned Z2 X Z2 symmetry.

IV. TYPICAL GROUND STATES
OF THE TRANSFORMED SYSTEM

We discuss the properties of typical ground states of
the double-chain S =

—,
' system (3.1) obtained by the non-

local unitary transformation. We will see that the
Z2 XZ2 symmetry is fully broken in the following cases
A and C. In case B, the symmetry is partly broken or ful-

ly broken depending on the values of the parameters.
(A) P=O case. We have the simplest situation in this

case. The transformed Harniltonian

L —1

H Q I cr jcr/+1+ ji,/jrj+1+cr jcr j+irj7~j+1]
j=1

is diagonal in the standard basis, so its ground states are
classical spin configurations which minimize the energy.
One finds that, for k) —1, there are four ground states
given by

where ~+ ), ~+ )' are the states for the cr spin and r spin,
respectively, at site j characterized by cr',

~

+ )/=+~+ ), r,'~+ )'=+ ~+ )'. The above ground states ful-

ly break the Z2XZ2 symmetry. As is expected, we re-
cover these states by applying the unitary transformation
U to the dimerized state (2.4). See Appendix B for de-
tails.

The existence of similar Z2XZ2 symmetry breaking
can be proved rigorously in a neighborhood of the above

Next we consider the case a=z. Using (A3), we find
that the result of the first duality transformation is

n —1

(DG)8;„;„(k,n)(DG) '= S o2 +, /2 .
m =k

The relabeling transformation maps this operator into the
standard string operator of ~ spins. The second duality
transformation maps this to a simple operator as
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trivially solvable model. These models fall into class B of
Ref. 10, and one can prove rigorously that they have four
infinite volume ground states with nonvanishing fer-
romagnetic order. Therefore, the unique ground state of
the original Hamiltonian (2.1) has nonvanishing string or-
der. The region in which such a rigorous perturbation
theory works is the same as that described in Sec. II.

Based on Hida's numerical calculation, " we expect
this Z2 XZz symmetry breaking to continue to the region
of the parameter space with large P. But we have no way
of controlling this symmetry breaking theoretically. The
only case we can control the effect of large (or even
infinite) P is the generalized VBS model discussed in Sec.
II C below.

(B) A, »P, 1 case. Since the ground state for the part
of the Hamiltonian including A, is easily obtained in this
case, we shall treat the other parts by a degenerate per-
turbation theory within the states spanned by

L

Ic &e e I+&;j=1

and

L

Ie &e IS
I

—
&;j=1

where I4 & and I% & are arbitrary states for the cr spins.
Since the operators r" have no nonvanishing matrix ele-
ments between the above two types of states, we only
have to treat the Hamiltonian

L —1 L
H = —2 g o,'o,'+, —P g o"

j=1 j=1

for the cr spins. This is nothing but the solvable Ising
chain under transverse magnetic field. When P (2, the o
spins break the Ising symmetry, thus leading to the full

Zz X Zz symmetry breaking. When P& 2, the Ising sym-
metry for the 0. spins is restored, and the whole ground
state breaks half of the Zz XZ2 symmetry. Such partial
symmetry breaking is exhibited in the ground state for
A, »P&2:

L

—I(I+ &;+ I

—&;)I+ &;)j=i 2

or

which is also obtained by applying the unitary transfor-
mation U to the Neel state (2.5). (See Appendix B.)

(C} Valence-bond-solid case. Let us discuss the VBS
model with the Hamiltonian (2.6} introduced in Sec. II.
As has been stressed, this is the only model in which we
can control the effect of large or infinite P. In the exact
ground state of this model, the ground state is much
more complicated than the trivial model with P=O, since
the interaction between two ferromagnetically coupled
spins are taken into account.

A tedious but straightforward calculation described in
Appendix B shows that the VBS states (2.7) transform as
follows:

L

, —, (3I+ &;I+ &;+ I+ &;I
—&;+ I

—&;I+ &

1
—, (3I —

&;I
—&;+ I

—&;I+ &;+ I+ &;I
—

&;
—I+ &;I+ &;)

UI@vBS& L

—, (3I+ &; I

—&;+ I+ &;I+ &;+ I

—
&; I

—
&;

—
I

—&;I+ &;)

L

—, (3I —
&;I+ &;+ I

—&'I —&'+ I+ &'I+ &'—I+ &'I —&')

These states clearly break the full Z2XZz symmetry.
Unlike the case for P=O, there is a correlation between
the 0 spins and the ~ spins. It is notable that, as in the
case of the Kennedy-Tasaki transformation in the S =1
chain, ' the VBS states have been transformed into a sirn-
ple tensor product of single-spin states. This is a highly
nontrivial fact since the VBS states cannot be written as
products of local states in the standard basis.

V. DISCUSSIONS

We have presented some results which indicate that
the S =

—,
' chain (2.1) with alternating ferromagnetic and

antiferromagnetic couplings fully breaks the hidden
Z2XZ2 symmetry in a wide region of the parameter
space. The region includes both the decoupled models
and the strongly coupled chain, i.e., the S =1 model.
Since the full breaking of the Z2XZ2 symmetry is be-
lieved to be a fundamental property of a Haldane gap sys-
tem, ' this observation provides further support of Hida's
conclusion" that the Haldane gap is continuously con-
nected to the gap in the inodel with P=O.

The ground state of the S=
—,', chain (2. 1) with

P=O, A, & —1 is a product of local valence bands. Note
that the physical idea behind the construction of the solv-
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able VBS model of AfBeck, Kennedy, Lieb, and Tasaki
was that the ground state of the S =1 chain in the Hal-
dane phase may be understood as a modification of such
valence-bond states.

Hida's and the present observation suggest that the
S=1 chain exhibiting the Haldane gap belongs to the
same phase as the decoupled S=—,

' chain with P=O.
Even though the latter model has a gap generated by a
trivial reason, one should not regard that the mechanism
that generates the Haldane gap has been resolved. These
observations simply lift the problem to a different stage.
Now the really hard problem is to find out why the gapful
phase continues all the way to p~ 00 when A, is close to
1. As far as we know, such a problem is understood only
in the solvable VBS models.

To see that this is really a nontrivial problem, consider
the model with X=O. For p not too large, the behavior of
the model is more or less the same as that with A, =1.
However, the two models behave quite differently as P be-
comes large. The model with X=O is expected to under-
go a phase transition and is massless at p= ~, while the
model with A, = 1 is believed to be massive even at p= ~.

Den Nijs and Rommelse pointed out that the phase
diagram of the S =1 Hamiltonian (2.1) is similar to that
of the Ashkin-Teller model in the strong anisotropy lim-
it. ' Then den Nijs' argued that the two models have
the same Coulomb gas representation in the continuum
limit and should be in the same universality class.

One might imagine that the transformation of Sec. III
provides further support to this mapping since the
double-chain model (3.1) obtained by the unitary trans-
formation is of the Ashkin-Teller type. However, the
Hamiltonian (3.1) lacks the positivity property which
would allow one to rewrite a quantum system as a classi-
cal system in one higher dimension. Our transformation
maps the spin chain to the "outside" of the standard
phase diagram of the Ashkin-Teller model. It is interest-
ing that the quantum antiferromagnetic chain is related
to the Ashkin-Teller-type model in two different ways.

The Kennedy-Tasaki unitary transformation' for the
S=1 chain not only reveals the hidden symmetry, but
also provides a useful basis to study the Haldane gap and
the related phenomena. Kennedy and Tasaki developed a
simple but powerful variational calculation for the
ground state of the S= 1 chain (1.1). Kennedy' con-
structed a one-parameter family of SU(2) noninvariant
S =1 chains which includes the VBS model. We believe
the unitary transformation studied in the present paper
can be used to extend these ideas to the S =

—,
' chain with

bond alternation.
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of the spin operators. [See (A2) —(A5) below. ] Here we
shall define the transformation explicitly as a unitary
transformation of the Hilbert space on which the spin
operators act. Such a formulation is necessary for us
when we calculate the transformation of various states
explicitly as in Sec. IV and in Appendix B.

Consider a chain I1,2, . . . , MI of S=—,
' spins. o,.

(j =1,2, . . . , M) denote the Pauli matrices. The duality
transformation D is an unitary transformation which
maps a state of this system onto a state of the "dual
chain" [ —'„—'„.. . , M + —,

'
I of S=

—,
' spins. cr, +,zi

(j=1,2, . . . , M) denote the Pauli matrices for the dual
chain.

In the original system, we take the x axis as the quanti-
zation axis and define basis vectors by

I
+ &,

"= —(I + &; + —&;),
2

We define a classical configuration c* on the dual lattice
by

CJ*+1/2—
k=1

ck (Al)

In the dual system, we take (as usual) the z axis as the
quantization axis, and denote by Ic*)' a basis state
defined by

M
=

We define the duality transformation as

D =D exp

The main body of the transformation is defined by

where y, are arbitrary complex coefficients. It is clear
from the definition that D is unitary. Note that we do
not have a relation like D = 1.

The transformation of the operators by D are given by
the following:

x~ —1 — z z
j j—1/2~ j+1/2 (A2)

where I+ )i are the standard basis vectors. Let the classi-
cal configuration c = tc I be a collection of variables
c =+1 for j =1,2, . . . , M. We denote by Ic)' a basis
state defined by

M

Ic&"= Ic, &;.

APPENDIX A: THE DUALITY TRANSFORMATION

Here we define the duality transformation' used in
Sec. III. The transformation, which is quite standard, is
usually defined by writing down the transformation rule

M

Do jD = 0 k+1/2k=j

~ —1 x ~ z z~j+ 1/2~ ~j~j+ 1

(A3)

(A4)
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J

j+1/2 kk=1
(A5}

The relation (A2) should be read Dcr",D '=o3/2 for

j =I, and (A4) should be read D 'oM+, /2D=o'si for

j =M. The transformation rules for 0." follow from the
I

identity o J
=i cr"o.' for the Pauli matrices.

We show the relations (A2) —(A5) in the rest of the Ap-
pendix. Let us start from (A5), which is the easiest. By
applying the operator on the left-hand side onto an arbi-
trary basis state (quantized in the x direction) of the origi-
nal system, we get

Xc D 'oj+i/2lc*&'

=exp '
gc, D 'c,'+„,Ic'&'

i~=exp gc, P c„exp
4 lory I

&»

J
= o"„lc&",

k=1

which is the desired (A5). Similarly we apply the left-
hand side of (A3} to a basis state to get

Do jD 'Ic* &'=exp — gc; Doj Ic &"

=exp — gc; Dic, c &',

where c is defined by

f«kAj
c —c for k=j .J

From the definition of D we get

Neel state. Consider a Neel state (2.5) with a =+. By
applying the local gauge transformation 6, it becomes
the ferromagnetic state as

2L 2L

Glc„,„&=e I+&;= e -(I+&,"+il —
&,") .j=l j=l

We then apply the dual transformation D. The first part
of the transformation is the multiplication by a phase fac-
tor, and we get

exp go", Gl@N,.„&=e'~/2 g (I+ &,
. +I —

&,
". )

i=1 2

Do'D 'Ic' &'
J

=exp
4 gc; ic exp gc; I(c)'&'

=const X
c.=+1
J

(j =1,2, . . . , 2L)

2L

lcj &jj=1

M

I(c ) & 8 0' i/2lck=j

where

ck+1&2 for k &J
(c)"+' —

ck+1&2 for k &j,
by the definitions. Thus, (A3) follows. The other two re-
lations I(A2) and (A4}] follow from (A3) and (A5) by not-
ing that (o; ) = l.

APPENDIX B: UNITARY TRANSFORMATION
OF TYPICAL STATES

Here we outline how to calculate the unitary transfor-
mation of typical states discussed in Sec. IV. In the fol-
lowing calculations, we consider only one typical state
from each class. The other states can be obtained in a
similar manner. We also omit the constants multiplying
the states since they do not have any physical informa-
tion.

2L

I
Cj+ i /2 &j + 1 /2

C. +&y2 +1
(j=1,2, . . . , 2L)

2L

=const (I+ &j+I/2+ I &j+i/2) .j=1

DG
I 4N;, i & =const X

After the trivial relabeling and renaming of the spin
operators, we have to apply the inverse duality transfor-
mation to the following state for r spins:

L

(I+ &j+i/2+I &j+i/2} .j=1
But the result of the transformation is obvious from the
above calculations. Our final result is

It is clear from (Al) that, when we sum over all the possi-
ble f cj j, the dual configuration f c.'+i/2 J is also summed
over all the possible combinations with c,*+,&2=+1.
Thus, we get
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L

Ulc&N;, 1&=const (I+& +I —
&j )I+&j".

J=1

Dimerized state. We consider a dimerized state

a phase factor, we get

im- 'L
exp g o'", Gl@d, „)=constl+ )1

i=1
L —1

l@d; „&=I+&1N v2, , 2, +1j= 1

(I+ &2L+l I &2L—)

The valence bond is written in the present basis as

U,, = (I+ &",
I

—
&,
"—

I

—
&", I+ &,") .1

21

After the gauge transformation and the multiplication by
I

where

The above can be rewritten as

L —1

. g2j 2j+1j=l

im 'L
exp g 0"; G 4d; „)=const X

i=1 u. =+1
J

(j=1,2, . . . , L)

L —1

I+ &l luj &2, lu, &2j+1 I~L)2Lj=l

For a fixed {u I, the corresponding dual spin configuration can be easily obtained by using (Al) as

2j —1/2 & 2j+1/2 j
Thus, we get

DG I@d; „)=const X
L

I
+ )2j —1/2 j )2j+1/2

u. =+1
J

(j =1,2, . ~ . , L)
L

+ )2j —1/2( I
+ &2j+1/2+ &~2j+1/2)j=1

Fortunately, we find that the inverse dual transformation (after the relabeling) is exactly the same as the previous
Neel state. So we get

L

Ule; „&=const S I+ & I+ &

1=1

VBS state. We consider the VBS state obtained by applying the symmetrization operator onto the dimerized state
considered above. Then the calculation similar to the above shows that

exp g u"; G l@vBs) =const X
4 u. =+1

J
(j=1,2, . . . , L)

L

'. &2, -1,2,j=l

L —1

I+ &lee, Ill, &,",
Ill/ &z/+1 IllL &2Lj=l

For a fixed I uj I, the corresponding dual spin configuration can be obtained by using (Al) as

u lu exchanged
2j+1/2 ~j

1 unexchanged,

where the condition in the first equality refers to whether the spins at 2j —1 and 2j are exchanged by the symmetriza-
tion operator or left unexchanged. Thus, we get

DGI+vBs) =constX
L

X . I( I
+ )2j —1/2+ I~j —l~j )2j —1/2) I j &2j+1/2l

u =+1
1(j=1,2, . . . , L)

After the relabeling transformation, we should apply the inverse dual transformation to the state for ~ spins. By letting
cj*+1/2 =uj and solving (Al) for j c I, we get

L L

(D ) 8 IQ. ) .'+1/2= xp Q 1ll Ill 1Q) )j=1 j=1 4

Noting that
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e
exp — v, lv, ),"'= — (I+ & +v, I

—
& },

and writing u 1u. =v. , we can express the fina result as

UI@vBs & =const x
L

(I+& +lv, & )(I+& +v, l

—&J')l
v. =+1
J(j=1,2, . . . , L)

L

=const (3I+ )' I+ &*'+I+ &'~l —&"+
I

—&' I+ &"—
I

—&'
I

—&")
1=1 j J J J J J J J
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