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An exact expression for the decay of the transverse magnetization of spins diffusing in a field

(Bo+g, z+g 2z )z reveals that a natural length scale I, =(8D/yg 2 )', and a frequency associated with it
Q0=4D/I, govern the problem. Here D is the diffusion constant and y is the gyromagnetic ratio. I, is

the size of the packet of magnetization at long times, i.e., Qot)&1. For porous media we estimate

I, -(R~l*)' where R~ is the pore size and I =D/Leo, where hco is the spread in Larmor frequency
(inhomogeneous broadening). For typical experimental conditions, l*-3 pm; therefore in rocks the
effects of the extrema of the magnetic field can be as important as the wall effects. To estimate finite-

pore-size effects we localize the spins in a potential well of size R~. We find that the effective pore size is

l, or R~, whichever is smaller. At short times, the magnetization density

~M(z, t )
~
-exp[ —Dy'(g, +2g~z )~t 3/3], l.e., it is permissible to use an effective local gradient. The mag-

netization decays rapidly where the magnetic field varies rapidly —thus the magnetization accumulates
at the extremum of the field. At long times, the magnetization decays as exp( —Qot/2), as opposed to
exp( —t'), in a uniform gradient. The phase distribution is not Gaussian, which leads the decay rate
Qo- Qg2 to be a nonanalytic function of gz. There is an overall shift Qo/2 (the "g-shift") in the effective
Larmor frequency, due to diffusion. The signal from a pulse-field-gradient experiment is similar to that
of an isolated pore of size l, . We compute the Hahn- and Carr-Purcell-Meiboom-Gill-(CPMG-) echo en-

velopes and find qualitative agreement with experimental data on porous media. Extracting g2 from the
observed inhomogeneous broadening gives correct crossover times toward the linear regime. The slopes
of the CPMG envelopes depend linearly on pulse spacing, as observed experimentally.

I. INTRODUCTION

Recently, there has been a vigorous interest in using
NMR techniques to obtain information about the micro-
geometry of porous media. Pore sizes, their connectivity,
and tortuosity control fluid flow and other transport pro-
cesses that are important in permeation in rocks (in the
oil industry, hydrogeology, and in the confinement of
wastes), heterogeneous catalysis, biological perfusion, and
numerous other phenomena in porous systems.

Much effort has gone into using the longitudinal-
relaxation-rate 1 /T, and transverse-relaxation-rate l /Tz
data to infer pore-size distribution in rocks. The rates are
enhanced by the paramagnetic impurities that are present
on the pore walls and therefore the decay rates depend on
surface area and pore geometry. But a major difficulty
in interpreting T2 data is the additional decay due to
internal field inhomogeneities.

The pulsed-field-gradient spin-echo (PFGSE) technique
has been used for many years now to characterize
diffusion and flow in such systems. In these experiments
the gradient pulse plays the role of a wave vector probing
the structure of the obstacles to the diffusion. Callaghan
et a/. have pointed out that the PFGSE technique is
particularly promising because it can provide spatial in-
formation at a resolution (submicrotneter) which is

higher than that achievable with conventional NMR im-
aging (NMRI), which is also used extensively in porous
media.

Application of NMRI to study fluid distribution and
fluid flow in porous rocks has become very active. The
position of the pore fluid is inferred from the local mag-
netic field, which is controlled via an externally applied
field gradient, whose direction can be changed. Both pro-
ton densities and T2 images have been studied. Finally,
using high magnetic fields, chemical shift has been used
to distinguish between water and oil in a pore space.

The main obstacle in fully exploiting PFGSE, NMRI,
and T2 data (usually derived by sophisticated spin-echo
techniques' ) is the influence of internal field inhomo-
geneities. When a porous medium, such as sandstone, is
placed in a homogeneous magnetic field, the internal lo-
cal magnetic field is generally inhomogeneous, i.e., varies
from point to point. This arises due to a difference be-
tween the magnetic susceptibility of the grain and that of
the pore fluid. ' '" ' Obviously, any inhomogeneity
would alter the local field and hence affect the spatial
resolution in NMRI, especially in sandstones, which
often contain enough paramagnetic impurities to make
the problem worse. Also, any discrimination between oil
and water due to the intrinsic difference in chemical shift
might be masked by local field inhomogeneity. For ex-
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ample, the local field at a given location may exactly can-
cel the expected chemical shift and oil may be indistin-
guishable from water.

In addition to the internal field inhomogeneities, there
are inhomogeneities of the applied field. In Ref. 11, it has
been emphasized that the coils which are used to produce
the external field gradients actually give uniform gra-
dients only near their center. Thus, much of the sample
volume could be exposed to a nonuniform gradient, espe-
cially when the coils are placed close to the sample, as
often is done to create large field gradients.

At present, there is no complete and exact theory for
treating diffusion effects in a general nonuniform gra-
dient. The purpose of this paper is to present a simple,
exactly solvable model of an inhomogeneous field in
which the gradient itself varies linearly, i.e., a parabolic
field. Although the choice of a parabolic field as the first
step beyond the uniform gradient is natural, not until
very recently was such a field produced and studied in the
laboratory by Bendel. ' Also, an apparatus' intended to
be used in oil fields actually produces parabolic fields. In
both cases, the parabolic field is externally imposed rath-
er than originating from the local inhomogeneities.
Often, such tools are calibrated by immersing them in a
large tank of water.

Recently, however Mitra and Le Doussal' have ob-
tained a general framework for treating random fields ex-
actly based on a connection with critical phenomena. Al-
though the decay of the magnetization at very long time
(e.g., diffusion over many pores) was obtained exactly us-
ing universality, the intermediate-time behavior, which is
of most interest for experiments on rocks, where the de-
cay is fast, is more difficult to compute in this framework.
We consider the simple model studied here as a first step
toward understanding intermediate-time behavior in
more complex inhomogeneous fields. This model is also
useful to assess the validity of various approximate mod-
els, for example, those based on the Gaussian-phase ap-
proximation. Finally we think that the parabolic field is a
good model for developing intuition for porous media,
where the field landscape can be pictured as a collection
of hills and valleys (parabolas and saddle points) of typi-
cal pore size (Fig. 1).

In the absence of a usable theory of inhomogeneous

Rp

FIG. l. A schematic diagram showing a possible terrain of
local magnetic Aeld, in a pore of a random medium, as a func-
tion of distance. Dots are to show the accumulation of magneti-
zation at the extrema.

gradients, the usual practice has been to replace the inho-
mogeneities by some effective fictitious uniform field gra-
dient. This is only an approximation, since, clearly the
local fields are more inhomogeneous than is suggested by
a constant gradient. Ingenious pulse sequences have been
proposed' to minimize the effects of this effective uni-
form background field gradient for PFGSE in infinite sys-
tems. Similarly, for T2, the usual practice ' ' ' is to
use the following formula, ' ' which strictly speaking is
valid only for free diffusion in a uniform unbounded gra-
dient 8, =Bo+g

—1/3Dy g &t t/T2g-Mt=e
Here D is the diffusion constant, y is the gyromagnetic
ratio, and T2& the bulk decay constant. Several algo-
rithms have been used for estimating this effective uni-
form gradient. For example, Glasel and Lee' propose
the use of the average gradient and Majumdar and
Gore' propose the use of the variance of the (random)
field gradient. There is now much evidence that this ap-
proach is not satisfactory. Kenyon' noted that the
transverse-magnetization decay observed during a Carr-
Purcell' spin-echo measurement could not be represent-
ed by the theories of unbounded diffusion in a constant
locally generated field gradient. Kleinberg and Horsfield
observed that even when the influence of pore walls was
included [using the Gaussian approximation, and an an-
satz for spin echoes, see Sec. VC (iii)j, the uniforrn-
magnetic-gradient approximation to the 1ocal field was
too crude to explain their rock data quantitatively.

On the other hand, Bendel' experimentally produced a
parabolic field and observed that the decay rate deviated
from the t dependence for the Hahn echo in the bulk
water. Unfortunately, he shows data only for early times
(signal decayed only to one fifth of its initial value) where
the nontrivial effects beyond an effective-local-gradient
approximation have not shown up. He found that the
uniform-gradient result, Eq. (1.1), with the gradient re-
placed by 2g2z, and integrating the amplitude, Eq. (1.1),
over the sample volume gave a reasonable answer for the
early times he considered. We show below that his model
would fail at longer times and we suggest that experi-
ments should be extended to longer times. The departure
from the average-gradient theory is manifest in his exper-
iments on water in the pores of a sand exposed to a large
external field (200 MHz). This latter system has extreme-
ly large pores and the wall effects are presumably small.
In this case his model failed both for the Hahn echoes
and the Carr-Purcell echoes. The data have features
similar to those observed by Kenyon, ' i.e., faster than
exponential decay at early times but exponential decay at
late times. The slopes of different decay curves for
different pulse spacing t, do not scale as t, , which is the
result for a uniform gradient. We show below that we
can explain his data at all times using the exact solution
for a parabolic field. We show elsewhere that for sphere
packing the interstitial field is reasonably well approxi-
mated by a parabolic field.

Most of the attempts to describe inhomogeneous fields
and wall effects beyond the effective-uniform-gradient ap-
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proximation have used yet another approximation, the
Gaussian-phase approximation. Tarczon and Halperin, "
for instance, have given a calculation for the influence of
an arbitrary inhomogeneous field but assume that the dis-
tribution of the total dephasing P(t)= I'odrco(r(r)} ac-
curnulated by a single diffusing spin is exactly Gaussian
[co(r) is the local Larmor frequency]. This is also called
second-cumulant approximation, and the magnetization
decay is set equal to

p[ —
—,'[(y(t)') —(y(t) )']], (1.2)

where ( ) denotes an average over all random walks.
Equation (1.2} is the first term of a systematic expansion
in higher cumulants. Although this approximation holds
for short times, and is exact for all times for a uniform
gradient in an unbounded medium, it was shown in Ref.
16 that for random fields the cumulant expansion usually
breaks down and that in three dimensions large correc-
tions arise for larger time, or stronger disorder. In low
dimensions (d =1,2} the Gaussian approximation is to-
tally incorrect. For example, the second-cumulant
analysis would predict a long-time free-induction decay
in one dimension exp( ct —~ } rather than the correct ex-
ponential decay. ' Here also we find that for the simple
models we consider, the distribution of phases is not
Gaussian, even in the absence of a wall. The walls ' also
cause a deviation from a Gaussian distribution. The
much-used calculation of Neuman for finite-size pores
is at best an approximation, and in particular the claim
that the distribution of phases tends to be Gaussian at
long times is incorrect.

To summarize the above discussion, internal field inho-
rnogeneities cause major problems with NMRI, T2, and
PFGSE techniques and no exact theories of nonuniform
fields exist. In this paper we work out an exactly solvable
model as a first step.

The main results of the paper are as follows: We find
that for diffusion in the unbounded parabolic field

(Bo+g]z +gzz )z there is a natural length scale
l, =(8D/yg2)' . This turns out to be the size of the
packet of magnetization at long times, i.e., Qot))1,
where Q0=4D/l, is related to the inverse time of
diffusion over the distance l, . Using a simple estimate for
g2, we find that l, -(R I')' where R~ is the pore size
and l' corresponds to a diffusion distance over the time
interval given by the inverse of the spread in Larmor fre-
quency arising from the field inhomogeneities. For typi-
cal experimental conditions, l* is -3 pm. In rocks the
pore size is also of this order, therefore, the effects of the
extrema of the magnetic field can be as important as the
wall effects. At short times, it is permissible to use an
effective local gradient, and the magnetization decays
rapidly as exp( t ) where the —magnetic field has a rapid
spatial variation. The magnetization creeps towards
these extrema of the field. This property suggests that an
externally applied parabolic field may be used as a local
probe. By altering the location of its extremurn in the
sample, one may probe the magnetization from point to
point in the sample. At long times, the magnetization de-

cays as exp( —Qot/2). The phase distribution is very
different from a Gaussian since we obtain Qo-Qgz, i.e.,
a nonanalytic function as opposed to the Gaussian ap-
proximation (1.2), which always gives decays quadratic in
the field (and its derivatives). There is an overall shift
Qo/2 (the "g-shift" ) in the effective Larmor frequency,
due to diffusion. To estimate finite-pore-size effects we
extend the above model by further localizing the spins in
a potential well of size R . A change from t to t depen-
dence also happens when the system has a finite size. The
signal from a pulse-field-gradient experiment (PFGSE) is
similar to that of an isolated pore of size l, or R, which-
ever is smaller. The Hahn- and Carr-Purcell-Meiboom-
Gill- (CPMG)-echo envelopes show qualitative agreement
with experimental data on porous media. Extracting gz
from the observed inhomogeneous broadening gives
correct crossover times towards the linear regime. The
slopes of the CPMG envelopes depend linearly on pulse
spacing, as observed experimentally.

This paper is arranged as follows: In Sec. II, we derive
the expression for the diffusion propagator in a parabolic
local field in an unbounded medium. The propagator is
then used to compute the spin amplitude under various
circumstances in the following sections: in Sec. III, we
compute T2 by computing M(z, t). Section IV considers
an artificial model, originally used by Stejskal, for
bounded diffusion by the use of an artificial attraction to
the center. We compute Tz and the PFGSE signal. In
Sec. V we consider line broadening, the Hahn spin echo
and the CPMG echoes in this model. Section VI is the
conclusion.

II. GENERAL FORMULATION:
THE GREEN'S FUNCTION

In this section we derive the expression for the
diffusion propagator in a parabolic local field. The prop-
agator can then be used to compute the spin-echo ampli-
tude for any experimental pulse program. We will make
the assumption that the inhornogeneities are weak com-
pared to the uniform static field [see below, following Eq.
(2.1)]. This should be a good approximation because the
internal field inhornogeneities are created by the suscepti-
bility differences, which are typically of the order of 10
in rocks, and even less in biological systems. In this limit,
when one transforms to the rotating frame, only the com-
ponents of the internal field inhomogeneities that are
parallel to the static external field survive. The com-
ponents transverse to the external field rotate very fast
and may be neglected. Thus, we need only consider the
local inhomogeneities in Larmor frequency. A slightly
refined statement is that since diffusion is slow (adiabatic)
the adiabatic theorem implies that the spins (the random
walkers) precess around the local z axis, given by the lo-
cal direction of the field. The local deviations B,(r) Bo-
are assumed to be small compared to (i) the external stat-
ic field Boz, so the resonance condition is met by the
bandwidth of the rf coils and (ii) the field B&, which is
used to tip the spins by m. /2 or ~, so that the total field
causing the flip lies as close to the x -y plane as possible.
Note that these requirements imply that the local B(r)
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can be made consistent with Maxwell's equations by add-
ing compensating fields orthogonal to the z direction.
But these have negligible influence in the rotating frame.

The equations of motion of the transverse magnetiza-
tion density M =M~+iM~, in the rotating frame follow-
ing a ~/2 pulse, obey Bloch's equation as modified, by
Torrey, ' to include diffusion

Our key results can be stated in terms of these charac-
teristic length and time scales.

The propagator G satisfies the above diffusion equation

=Dig&G( t)
Bt

+iy(g, z+gzz )G(z,z', t), t &0
dM(r, t) =DU M(r, t)+iy(g, z+g~z )M(r, t) (2.1) (2.4)

8D
1/4

'Vg2
(2.2)

This length scale also sets a natural time scale 1/Qo, cor-
responding to a diffusion time needed for traversing this
distance I„

Qo= =(2ygqD)'4D

C

(2.3)

with exp(icoo I—/T~tt )t factored out, and coo=y80. Here
D is the diffusion constant y is the gyromagnetic ratio, g,
is the local field gradient and g2 is proportional to the
second derivative of the field, T2~ is the bulk decay rate.
It is important to note that for convenience we have
chosen g2 positive, real quantities being independent of
the sign of g2. If R is the dimension of the system in the
z direction, we will assume it to be sufficiently large for
the boundary effects to be negligible, yet g1R and g2R
are small compared to 80 and 8, . For example, in
Bendel's experiment, ' Bo-200 MHz and the overall in-

homogeneity is only several hundred Hz.
The above equation has a natural length scale, which

will turn out to be the size of the packet of magnetization
at long times,

and, as usual,

G (z,z', t =0+ ) =5(z —z') . (2.5)

In this section we will consider an infinite system with the
propagator going to zero, as the distances tend to infinity
(homogeneous Dirichlet BC). The Green's function gives
the local magnetization at z after time t for a packet ini-
tially concentrated at z'. Upon a simple shift of origin,
this becomes the Green's function of a particle with an
imaginary harmonic restoring force. The Green's func-
tion for the real harmonic force was worked out by Ray-
leigh, and it has a colorful history, which has been dis-
cussed by Kac. A key difference between the cases for
which an attractive potential is purely real (i.e.,
Rayleigh-Smoluchowsky) and the present case where it is
purely imaginary is that there is no decay in the previous
case, whereas there is decay in the present case. The
operator on the right-hand side (rhs) of (2.4) also coin-
cides with (minus) the Hamiltonian of a quantum-
mechanical oscillator with imaginary potential. Using
previously known results, ' it is straightforward to
show that the Green's function is equal to the following
complex expression:

G(z, z', t)= 0
4~D sinhQt

1/2 —0, 2 0 Qt
exp (z —z') cothQt — tanh zz'

g1 nt, 'r1 Qt
Xexp iy tanh (z+z')—0 2

Qt —2 tanh
2

(2.6)

where the complex frequency 0 is given by

Q=( 4iygzD)' =(—1 —i)Q0 . (2.7)

This Green's function can be verified by substitution. The total Green s function is obtained by multiplying the above
equation by the free diffusion Green s function for directions x,y,

' 1/2 1/2

C(r, r', t)=G(z, z', t)
1

4mDt

(x —x')
4Dt

1

4~Dt 4Dt
(2.8)

which we write only for completeness but we need not consider. Similarly, it is straightforward to consider saddle
points, since any quadratic magnetic field can be brought to a canonical form, for which Eq. (2.1) is separable, and can
be obtained from the above Green's function.

It is useful to consider two limiting cases (i) gz =0 and (ii) gz =g, =0. In the first case, taking Q ~0 gives

1
G(z, z', t)~

4mDt

1/2
(z —z )' i, (yg»'Dt'

exp — +—yg, (z +z')t-
4Dt 2 12

g2=0 (2.9)
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which is the Green's function in the presence of a uni-
form gradient, and which further reduces to the free
propagator when g2 =g, =0

' 1/2

G(z, z', t)~ 1

4mDt
exp

(z —z')
4Dt

g& g2 0 (2.10)

Since the Green's function (or the propagator) deter-
mines how the local magnetization evolves between the
pulses, it contains all the information needed to compute
the magnetization for any pulse sequence. A key feature
of this propagator is that the magnetization creeps to-
wards the center, i.e., the tip of the parabola. This is
somewhat surprising, considering the fact that the poten-
tial is purely imaginary. In Fig. 2 we have plotted the ab-
solute value of the Green's function, Eq. (2.6), without
the preexponential (Qo/4n. D)'~ factor and for g, =0 as a
function of dimensionless distance Z =z/(8D/ygz)'~ at
various dimensionless times r=t(2ygzD)'~ . The pulse
starts as a 5 function at Z =1 at v=0 and creeps toward
the center of the parabola. In the long-time limit ~~ 00,
we find

G(z, z', t)~ 0
' 1/2

t Z'+Z'
exp —Q —+

g)=0. (2.11}

10

Z =1.0

O
~r4I

m5.0

0.001

-2 -I 0 1
Distance &om center (dimensionless)

FIG. 2. Absolute value of the Green's function with g& =0 as
a function of dimensionless distance Z =z/(SD/yg2)' at vari-
ous dimensionless times v.= t (2yg2D)' . The pulse starts out as
a 5 function at Z =1 at ~=0 and creeps toward the tip of the
parabola.

The asymptotic form of the propagator has an overall de-
cay in time and is a product of two Gaussian packets of
characteristic size I„bothcentered around zero. In oth-
er words, contributions to the Green's function at a given
point comes predominantly from distances I, near the
origin (g, =0). Thus at long times the parabolic field acts
as a local probe around the tip of the field with the
characteristic size I, . Clearly, I, has to be smaller than
any other length scales in the problem, for this con-

elusion to hold. Equation (2.11) should be contrasted
against the propagator in an unbounded uniform gradient
Eq. (2.9), which does not exhibit such an obvious charac-
teristic size except from the diffusion length (Dt)'~

The relation with the quantum-mechanical oscillator
(in imaginary time) is also apparent in (2.11), which has
the usual long-time form, dominated by the ground state:

G (z,z', t }~fp(z) gp(z' )exp( Eot—), (2.12)

where Eo=Q/2 and Po(z) =(Q/4mD)'~ exp( Qz —/4D)
are, respectively, the ground-state energy and wave func-
tion of the harmonic oscillator, analytically continued to
imaginary potential. It is interesting that the most salient
feature of the usual harmonic oscillator, e.g., the ex-
istence of a discrete spectrum of bound states, is
preserved under the analytical continuation. The intrigu-
ing question of the nature of the spectrum for more gen-
eral magnetic-field profiles is studied in more detail in
Ref. 22.

If we think of a porous medium as a collection of hills
and valleys of magnetic field, we can get a feeling for the
magnitude of the length scales and time scales (see Fig.
1), by using an approximation g &

— (a geometrical
factor) X bgBo/Rz, where bg is the difference between
the grain and the water susceptibility, R~ is the pore size.
Similarly, g2 — (a different geometrical factor)
X AgBo/R . So, when the geometrical factors are of or-
der unity, we find the characteristic length is a geometri-
cal mean of the pore size and a diffusion length I'

1/2
D

hyBoy
I -(R IJ)'

C P (2.13)

The diffusion length I' corresponds to a diffusion dis-
tance over the time interval given by the inverse of the
spread in Larmor frequency hco=hgBoy arising from
the field inhomogeneities. Using typical values of
yBO-10 MHz, bg-10, the spread hyBoy is of the
order of 100 Hz, which makes, using D —10 crn /s, l
of order 3 pm. It is rather coincidental that in many
porous media of interest, i.e., rocks, this is also a typical
size of the pores. This also implies that l, -3 pm. A
realistic model of a porous material should, in addition,
include the effects of restricted diffusion and treat the
wall effects in a realistic manner. This in itself is a
difficult problem beyond the scope of this paper. The
present estimates show that the effect of the curvature of
the magnetic field can be as important as the effects of the
walls, and should be included in any realistic theory for
magnetization decay in rocks. Note that by varying Bo
or the susceptibility contrast hy, I* and hence I, can be
made either greater or smaller than R, which could al-
low for some experimental verification of the above argu-
ments. To get a better idea on how the presence of the
walls can modify the above arguments we will study in
Sec. IV a somewhat artificial model of a pore of finite size
and show that if the pore size R ))I„the wall effects
can be safely neglected. As we will see in Sec. V, the usu-
al method of minimizing the field inhomogeneities is to
apply spin-echo technique, such as the method of Carr
and Purcell. ' When the Carr-Purcell pulse spacing is
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large compared to 1/Qo, which will happen if the inter-
nal gradients are large (e.g., at high 80), the diffusion
contribution to transverse relaxation overwhelms the wall
relaxation mechanism and T2 becomes much shorter
than T, . This was pointed out by Kleinberg and
Horsfield.

III. ATTENUATION IN A PARABOLIC FIELD
In this section we obtain the solution for attenuation of

the local magnetization following a n/2 pulse. In partic-

M (z, t) =fdz'G (z,z', t)M (z', 0) . (3.1)

Assuming that the initial magnetization is spatially uni-
form, integrating Eq. (2.6) over all z' gives

ular we find a crossover from a short-time exp( —t } be-
havior to a long-time exp( —t) behavior. The magnetiza-
tion is obtained from its initial value M (z, t =0):

M(z, t)= 1

coshQt

' 1/2

exp
—

y g(D2 2
tanhQt

(Qt —tanhQt)+i y(g, z+gzz )
Q

(3.2)

where Q is given by (2.7). In particular the absolute value is (in terms of real quantities):

~M(z, t) =[sinh (Qot)+cos (Qot)j '~ exp
Qo(z +g, /2g2 ) sinh(2Qot) —sin(2Qot)

4D cosh(2Qot }+cos(2Qot)
(3.3)

We recall the definition Qo=(2yg2D)' . Although in
unbounded space g, is inessential, since it only produces
a shift in the position of the tip of the parabola, we retain
it in order to study the crossover in local magnetization.

We see immediately that, for g2=0, we recover the
well-known t ultrafast-decay result' '

The behavior of M(z, t) will now be studied. In the
short-time limit, it is always permissible locally to
represent the field by an effective gradient, g, +2g2z.
Taking the limit Qot « 1, we indeed find from Eq. (3.2)

M(z, t)-expiy(g, zt+g2z t+gzDt )

D
M(z, t)=exp(iyg, zt)exp ——(yg, ) t, g~=O Xexp — —

y (g, +2gzz) t (3.6)

1

T2
22+ (yg, ) t—, go=0 .

2B
(3.5)

Note that for a uniform gradient the magnetization
remains uniform.

(3.4)

which leads to the well-known result for the effective de-
cay rate:

The oscillatory terms of course denote a dephasing due to
the local shift in the Larmor frequency. Note, however,
that there is an extra oscillatory term due only to
diffusion effect (see below). For short times the magneti-
zation decays rapidly where the magnetic field varies rap-
idly spatially, and thus the magnetization becomes very
rapidly inhomogeneous, leading to a totally different
physics from the uniform gradient model.

In the long-time limit, Qot »1,

2 2
.ger—i t

4g

1 . rg2 . gl
M(z, t)-exp — —(1 i)Qot+ — (1 i) z+—

2 2Q0 2g2
(3.7)

We see that the magnetization decays exponentially,
linearly in time, and uniformly in space, the final shape
approaching a Gaussian distribution. We obtain the de-
cay rate in an unbounded parabolic field:

1

T2

1/2
1 yg2D+

T2B 2
(3.8)

where g2) 0 as previously discussed. Note that strictly
speaking T2 must be extracted from a spin-echo measure-
ment, but here, as we show in Sec. V, it is also identical to
the decay rate of the local magnetization (3.8). The shape

of the asymptotic packet is a Gaussian of size I, centered
around the shifted tip of the parabola (at z = —g, /2g2),
e.g. , the extrernurn of the field. Since the last term in the
exponential (3.7) is precisely the Larmor frequency corre-
sponding to this extremum, an interesting feature of this
long-time behavior is that due to diffusion there is an
overall shift Qo/2 with respect to the frequency of the
minirnurn of the effective Larrnor frequency, irrespective
of the position. Thus the local magnetic inhomogeneity
will also show up as a g shift. This shift, the exponential
decay, and the Gaussian shape of the packet at long time
are totally missed if the field were replaced by an effective
gradient.
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Xexp — y gzt (Dt+2z )
2D (3.9)

Thus at z =0, the initial decay starts as t —which will
also be true for distances smaller than the diffusion dis-
tance (Dr)'~ . In Fig. 3 is shown the absolute value of the
local magnetization as a function of the dimensionless
time at the tip of the parabola (solid line). The initial de-
cay is quite slow -exp( —r ) (dashed line) and is slower
than initial decay at other locations but eventually it be-
comes exponential (dotted line}.

Figures 4 and 5 show the crossover from t to t behav-
ior in a region where the local gradient is nonzero
(Z = 1,2, respectively). An interesting feature is that for
Z large enough (for large enough local gradient} the de-
cay becomes nonmonotonic, so that in a certain time in-
terval the local magnetization actually slightly increases.
This feature is visible also on Fig. 2, but here it is more
surprising since the initial magnetization is uniform. In
Fig. 6 is plotted the absolute value of the local magnetiza-
tion as a function of distance (dimensionless) from the tip
of the parabola (z =0).

Thus, the physics of the parabolic field cannot be simu-
lated by an effective uniform gradient. Bendel's' experi-
ments, if carried out to longer times, would reveal the
crossover to the linear regime (3.7}discussed above. The
exp( —t ) decay (3.5) which is often used in interpreting
experiments is, in some sense, rather pathological and
atypical, and can only be used as a guide for short times.
The decay in any realistic system will rapidly cross over
to a much slower exponential behavior. It is interesting

We display the above results graphically in Figs. 3—6,
where for convenience we have set g, =0. Around the tip
of the parabola the t term vanishes in the small-time ex-
pansion and instead one has

M(z, t)-exp[i yg 2t(z +Dt)] 'a
O
6
C
O

~yE

4J
C
00

0.1

0.01

0.5 1.5 2 2.5
Time (dimensionless)

3.5

FIG. 4. Absolute value of the local magnetization at various
dimensionless times at Z =1 (solid line). The initial decay is
rather slow -exp( r') (thin—line), but eventually it becomes ex-
ponential {dotted line) (g& =0).

to notice that the result (3.4) is somewhat unstable. For
instance, using the Green's function (2.9), one finds that if
the initial magnetization instead of being perfectly uni-
form has the form M(z, t =0)=1+Eexp( —z /a ), e.g.,
has a small localized fluctuation, the long-time decay of
the local magnetization (for fixed z) becomes slower than
(3.5) and equal to eexp[ —(D/12)(yg&) t ]. The total
spin-echo amplitude, however, remains independent of
the initial distribution of magnetization (see Sec. V}. By
contrast the long-time decay rate of the magnetization in
a parabolic field is dominated by the ground state and
thus is independent of the initial distribution.

While we have not incorporated the inhuence of real
boundaries, partial results can be obtained for a semi-
infinite system, i.e., a single wall, provided that some sim-
ple symmetries are maintained, so that method of images

O
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C
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bO

I
0 ~ ~ ~

O~ 0 ~
Og

Z=0

O~ 0 ~ 0 g Og
~ ~

m/2
e & ~ 0.1
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6
O

~ &

0.01
C
bO

-x/2O~ O~~ ~~~a eO~~ 0 ~
O~ W~~ O~~ 0 ~~ O~

O~~

Z=2

0.1

0.4 0.8 1.2 1.6 0.001

Time (dimensionless) 0.5 1.5 2 2.5
Time {dimensionless)

3.5

FIG. 3. Absolute value of the local magnetization at various
dimensionless times at the tip of the parabola (solid line). The
initial decay is rather slow -exp( —~ ) and is slower than initial
decay at other locations, but eventually it becomes exponential
(dotted line) (g, =0).

FIG. 5. Absolute value of the local magnetization at various
dimensionless times at Z=2 (solid line). The initial decay is
rather slow —exp( —r ) (thin line), but eventually it becomes ex-
ponential (dotted line) (g 1 =0).
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Distance From Center {dimensionless}
1 2 3

= 0.2

discussing the Hahn and CPMG echoes. Note that we
find that the results of the previous sections hold when
the pore size R ~~. Our main result is that the pore
size is replaced by another effective size 1,.

In the presence of an attractive force f = 2z—/T the
Torrey' equation has to be replaced by the following
diffusion-convection equation for the Green's function
with an extra attraction, denoted G~:

r)G„(z,z', t) z=D p'2G& (z,z', t) —p —2—G„(z,z', t )

+iy(g&z+g2z }G&(z,z', t), (4.1)

w7

FIG. 6. Absolute value of the local magnetization as a func-
tion of distance {dimensionless) from the tip of the parabola at
several different {dimensionless) times, showing that the decay is
rapid away from the tip of the parabola, but decays slowly
around the tip (g, =0}.

can be applied. An example of this is when the field
minimum is at the wall, i.e., the wall is at z =0. Using
the image method on the propagator (2.6} with g, =0,
one obtains the Green's function G (z,z', t) +G (z, z', t)—
for a reflecting wall and G (z,z', t) G(z, z',—t) for a per--

fectly absorbing wall (p= De). In the first case the wall
does not change the asymptotic decay rate (although it
slows the decay, since the amplitude is multiplied by 2),
but in the second case T2 is given by the first excited state
of the harmonic oscillator and thus the decay rate, after
subtracting the bulk, is three times (3.8).

1G„(z,z', t) =exp — (z z' 2D—t) G—(z,z', t),

brings Eq. (4.1) back to the form previously studied (2.4):

r}G (z,z', t) D~zG (, )z z&z

+iy(g, z+g2z )G(z, z', t)

z2
G(z, z', t) .

DT
(4.2)

Thus, the solution of the restricted diffusion model is sim-

ply related to the result derived in Sec. II, through

with initial condition Gz(z, z', t =0+)=&(z —z').
the diffusion time to traverse the sample T=R /D.
Note that the attractive center is at z =0 but the tip of
the parabola is at z = —

g& /2g2, and that here g, cannot
be removed by shifting, but represents the average gra-
dient over the pore.

The following transformation:

IV. AN ARTIFICIALLY RESTRICTED DIFFUSION

In this section we compute the signal for a pulsed-
field-gradient spin-echo (PFGSE) experiment in a para-
bolic field in the presence of an artificial restriction on
diffusion. Since for typical experimental conditions I,
can be of the order of the pore size, it is important to un-
derstand the effect of the walls. A correct treatment of
the additional effects of realistic walls is beyond the scope
of this paper, but some of the effects of the boundaries
can be understood by studying a solvable model where
the diffusing spins are attracted to a center. As a result
they are localized in a harmonic well of size R, which
mimics restricted diffusion inside a pore. This model,
without the parabolic field, was used by Stejskal to study
the influences of boundary on PFGSE. It mimics a
boundary in the sense that the effective diffusion
coefficient goes to zero, but it is a soft boundary since the
density of spins goes continuously to zero at distances
larger than R . Note also that confining the spins in a
finite size removes some inessential problems of normali-
zation when computing the total magnetization, which
are associated with an infinite system. In this section we
only compute the total PFGSE signal coming from a sin-
gle pore. We will address the question of the total contri-
bution corning from all pores in the next section when

G (z,z', t) =exp — (z z' 2D—t}—
2DT

X G(z, z', t;Q~Q& ), (4.3}

with the substitution

0 =0+ 4
A (4.4)

In absence of external field inhomogeneities
(g, =O, gz =0),G„has a steady-state solution which
mimics the presence of walls:

taboo, G~ =
' 1/2

z
exp —,g&, g2 =0 .

(4.5)

This is precisely the initial transverse magnetization
when the ~/2 pulse is applied. We should emphasize
that the initial condition M„~exp( —z /Rt, ) is not due
to field inhornogeneity but is an approximation of a box
function which is the characteristic function of the pore
shape, i.e., a function which is unity in the pore and zero
in the grain. This Gaussian shape is meant to mimic a
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k =y5g (4.6}

magnetization which is uniform in the pore and which
goes to zero sharply at the boundary.

Now we obtain the echo amplitude in a pulsed-field-
gradient spin echo (PFGSE). The echo amplitude is
given directly by the Fourier transform of the propagator
with an average over the initial position. We have de-
scribed the detailed formulation elsewhere. ' Briefly, in a
PFGSE experiment, a short pulse of a field gradient of
duration 5 and strength g is applied (in the z direction)
to encode the spins. Then, the spins are allowed to
diffuse for a time t after which the decoding is done by
applying a short pulse of the same duration 5 and
strength but in the opposite direction —g . In the limit
5~0, ~g~ ~~ao with 5g~ fixed, the expression for the de-
cay amplitude, with the bulk decay exp( t/T2~—) fac-
tored out, is given by

M„(k,t)= f dz dz'G„(z,z', t)e '"' ' 'M„(z',0),

Mq(z', 0)= 1

DnT

1/2
&2

exp DT
(4.7)

The integrations are straightforward, albeit tedious, and
give

Here k =y5g, and t is the time between the gradient
pulses. Note that in order to keep the calculations simple
we have not included a m pulse in the sequence con-
sidered here, and thus our result will be sensitive to inho-
mogeneous broadening as discussed below. The echo am-
plitudes which are of more direct experimental
significance are also more complicated to compute and
will be considered only in the next section. However,
apart from some obvious modifications, most of the phys-
ics of the PFGSE is captured by the present calculation.

In the present case, we should take, from Eq. (4.5),

MA (k, t) =
' 1/2

Xexp

DTkXexp
1+(Q„T/2)coth(Q& t /2)

n„T
e t/T

[1+( Q & T/2 )coth( Q
„

t l2 ) ][1+( Q „T/2 )tanh( Q z t /2) ]sinhQ z t

y g]D y gfDTtanh (Qztl2)
[Q & t —2 tanh( Q

„

t /2) ]-
Q~ Q„[1+(QzT/2)tanh(Q& t/2)]

(4.8}

A. Meaning of restricted diftusion

Before we proceed to understand the above result, first
let us explain the meaning of the artificial barrier using
the limiting case of g&=g2=0, which corresponds to
Stejskal's case. In this case, Qz T =2, and Eq. (4.8) gives

M„(k,t)=exp[ DTk (1—e —' )/2], g& =go=0 .

(4.9)

In the short-time limit, the exponent is Dk t, which cor-
responds to diffusion in an unbounded medium where the
mean-square displacement is Dt. In a confined space, this
can be at most the pore size squared, i.e., R =DT in the
long-time limit, i.e., the diffusion coeScient goes to zero
in the long-time limit. However, there is a difference be-
tween the above magnetization and that in a system with
real walls. In a pore with a real wall, the exponent con-
tains higher powers of k, which reflects details of the
pore geometry. ' In this sense, the present model mimics
an artificial boundary only by limiting the mean-square
displacement. This model of attraction by a center has
also another important property, discussed in more detail
below, namely it is such that for g2 =O,g &

& 0 the Gauss-
ian phase approximation is exact for this model. This is
because the solution of (4.1) with gz =0 can be represent-
ed as an unrestricted Gaussian path integral in a standard
way. This is why all the dependencies in g, that arise in

I

the solution of this model are simple and analytic [typi-
cally as exp( —g f), see (4.8)]. This model is actually the
only model with bounded diffusion for which the
Gaussian-phase approximation is exact.

B. Effective length in PFGSE

Now we consider the most important feature of Eq.
(4.8},i.e., that the effective pore radius is 1, or R, which-
ever is smaller. To see this most clearly, let us consider
the ratio ln[M„(k,t)/M„(O,t)], which is the usual quan-
tity that is considered in the PFGSE experiments. This
ratio denotes the excess attenuation by the pulsed gra-
dient,

M„(k,t)—ln
M„(O,t)

Dk T
1+(Q „T/2)coth(Q

„

t /2)
(4.10)

This result is independent of g, , which would certainly
not be correct for a real wall, and is an artifact of this
simple model. However, as discussed below, it should be
the correct result for small g&. Now to see how the
effective range crosses over from R to l„let us note that
using the definition R =DT, l, =8D/yg2, we can write

R4
Q T =4 1—Si (4.11)

l,

When R « l„which implies Q „T=2, Eq. (4.10)



3474 PIERRE LE DOUSSAL AND PASITRA N. SEN 46

reduces to Stejskal's result, i.e., confinement to R, which
was discussed in the previous paragraph. As Q„Tin-
creases from its minimum value of 2, the size of l, be-
comes more and more important, and for R »l„i.e.,
the pore size much greater than characteristic size,
Q„T»2, Eq. (4.10) gives

-0.5-

0.02
I

0.04
time

0.06 0.08 0.1
I

Mg(k, t}—ln = tanh(Q„t/2),
A ~ A

(4.12)

-2.5.-

which, in the short-time limit Re(Q„)t/2«1, exhibits
free diffusion Dk t. But when Re(Q& )t/2»1, we find,
using Eq. (2.3), that

M„(k,t) 2Dkz k 1,(1+i)—ln M„(0,t) Q„4 (4.13)

which reflects a confinement over a distance of order l, .
Again, we emphasize that the boundary is soft, since
there are no higher powers of k in Eq. (4.13).

A3

FIG. 7. Plot of 1n~M„(k=O, t}~ as a function of t from Eq.
(4.8) with dirnensionless parameters D =1,g2=8 (from top to
bottom) R~=2, 5, 32. In the units relevant for rocks (see Sec.
VB), D=2X10 ' cm'/s, g2=4X10 rad/scm, and R~=28,
70, and 450 pm, and times are in units of 100 ms.

C. The long-time behavior

Equation (4.8) has numerous interesting features and
we will discuss a few of them. In Fig. 7 we have plotted

1 n~ M(t, k =0)~ as a function of t, for fixed gz and for
several values of the pore size R . The behavior of
M(t, k) can be understood from various limiting cases:
In the long-time limit, Re(Q „)t» 1, we find

(8Q„T)'
M„(k,t~ ~ )= exp

2+Qq T
Q~t t y g)D

2 T Qz„Qq(l+Qq T/2)
Dk2T

1+Q „T/2 (4.14)

Now consider the case, R « l„which implies Qz T has
its minimum value of 2.

4Rp t
Mz(k, t~~)=exp i

l, T

(4.15)

From the linear time dependence of the exponent one
could extract T2 for this model, and this will be discussed
in detail in the next section. For now, notice that the fac-
tor multiplying t is T -R /D . This form of g fR t/D
is analogous to the results obtained by Robertson and
others for a uniform gradient in a restricted geometry.
This is not totally surprising since they use the
Gaussian-phase assumption, which is exact for the
present model for gz =0 (but incorrect for real walls ex-
cept in the limit of small g, }. Thus, we see that this ap-
proximation is also correct for R~ && I, (small gz). When
R » l, we find

2' "i, ~ Qo(1 i}t iy g,Dt-
M (k, t~ao}= exp i

R, 8 2

effective pore radius by the true pore radius 1, /R, and
the long-time limit shows that the decay rate is a nonana-
lytic function of gz. It is clear that as long as R /I, « 1,
we can make a binomial expansion of QA given by (4.11),
and, therefore, for finite R the decay rate itself will be an
analytic function of gz. In the other extreme, R /1, »1,
Q„~Q=(1—i)(2gzyD)'~ and hence the gz depen-
dence of the decay rate, signaling the breakdown of the

0.1

0.08

I
0.06

0.04

0.02

(1+i)Dk
Qo

(4.16)

0.0375 0.075 0.1125 0.15

Thus, the overall magnetization is down by a factor of
FIG. 8. 1/T2 shows a nonanalytic dependence on g2 (in arbi-

trary units) for ratios of R~/I, =5,2, 1 (from top to bottom).
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Gaussian-phase approximation. The dependence of the
rate on g2 for various pore sizes is illustrated on Fig. 8,
where one can see how rapidly the g2 result predicted by
the second-cumulant approximation becomes a very poor
approximation.

D. The short-time behavior and inhomogeneous broadening

The short-time limit of the expression (4.8) is very in-
structive. Expanding (4.8) for g, =O and k =0 (total
magnetization) one finds, substituting T =R~ /D,

R

(4.17}

Note that the second exponential, whose decay starts as t, is independent of D and thus originates only from inhomo-
geneous broadening inside a single pore. In fact this factor is exactly equal to the the total magnetization in the absence
of diffusion:

M(k =O, t, D =0)= f dz(nR )
'~ exp

Z' 2= 1
exp(ig2z t)=

R (1—ig2yR t)'~

It is also this factor that is responsible for the sharp ini-
tial decay for large R~ of the curves of Fig. 7. The first
exponential factor in (4.17), however, gives the decay
coming from diffusion only (motional narrowing), and
starts as t . At short times, the decay is controlled by the
t term, which arises from inhomogeneous broadening.

An interesting feature of (4.16} is the absence of inho-
mogeneous broadening at long times, e.g., the magnetiza-
tion decay rate is not controlled by the overall linewidth
within the parabola.

V. SPIN ECHOES

In the previous sections we obtained the solution for
the attenuation of magnetization following a m/2 pulse,
commonly called free-induction decay (FID). Experi-
mentally, however, the FID is not a convenient way to
measure the component T2& of the rate of transverse
magnetization relaxation arising due to diffusion in rocks.
This is because when the internal field inhomogeneities
are strong, the decay of the total magnetization is dom-
inated by inhomogeneous broadening, e.g., by interfer-
ences between spins precessing at different Larmor fre-
quencies at different points, which is a trivial effect in-
dependent of diffusion. For example, in Bendel's experi-
ments on sand packs' inhomogeneous broadening is
several hundred Hz. The detrimental effect of inhomo-
geneous broadening is removed by the spin-echo tech-
nique, where one npulse (Hahn e.cho) or a series of m

pulses [CPMG (Ref. 18)] are applied following the m/2
pulse. The purpose of this section is to show that the
conclusions of the previous sections continue to hold for
spin echoes. For the model of a parabolic field it is possi-
ble to compute exactly the echo amplitudes for the Hahn
echoes and the Carr-Purcell sequence. Although the cal-

culation does not present any conceptual diSculty, the
algebra is very tedious and we will only discuss the main
features in the text. The complete results and their
derivation are summarized in the Appendix. Here we
will first indicate how the echoes can be computed from
the Green's function in general and in V A, as a useful re-
minder, we will illustrate on the simple example of the
uniform gradient how the echo technique removes the
effect of the inhomogeneous broadening. In V B we will
analyze in detail the result for T2, extracted from the
Hahn-echo experiment, and how it compares with experi-
mental data in rocks. In V C we will analyze the results
for a CPMG pulse sequence and draw some comparison
with the experimental data of Kenyon. ' In V D we dis-
cuss the comparison with Bendel's' experiments.

This calcu1ation also gives some information about a
collection of pores. Indeed, when echo amplitudes are
real [e.g. , CPMG for odd echoes 2ti, 6ti, . . . , see Eqs.
(Al) and (A2)], the amplitudes corresponding to different
pores do not interfere with each other, and thus there is
no further inhomogeneous broadening effect when adding
contributions from many pores (for even echoes, the
effect is small). Thus it is not unreasonable to use the fol-
lowing results valid for a single pore to draw conclusions
for a collection of such pores, at least on intermediate-
time scales such that the interpore diffusion can be
neglected, i.e., t «R /D.

Following a ~/2 pulse, the total magnetization is ob-
tained from its initial value M(z, O):

M(t)= f dzM(z, t)= f dzdz'G(z, z', t)M(z', 0), (5.1}

which we will write in a matrix notation as

M(t)= f dzdz'(z~G(t)M(0)~z') .

Whereas (z~M(0)~z') =M(z, O)5(z —z') has diagonal ele-
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ments, (z~G(t}~z') =G(z, z', t) has off-diagonal elements
as well and is the propagator calculated in Sec. II or, in
the presence of an artificial boundary in Sec. IV [G
should than be replaced by G„given by (4.3} and (4.4)].
Now the effect of a m pulse at time t, is to change the
magnetization to its complex conjugate. Then, at time
t ) t&, the observed magnetization or Hahn-echo signal
(or first Carr-Purcell echo) is given by

MH( t ) =Mcp] ( t)
= f dz dz'(z G(t t, )G—'(t, ) M( 0)*~ z') . (5.2)

This amplitude reaches a sharp maximum, or echo, at
t =2t„where it is measured (see below). The measured
Hahn-echo signal is thus MH(t =2t, ) and one is interest-
ed in its decay rate Tz as a function of t =2t, . Similar-
ly the Carr-Purcell —echo sequence is obtained by apply-
ing a succession of m. pulses at times t„3t„5t&,. . ~, and
measuring the corresponding echoes at times
2t&, 4t&, 6t„.. . . Using this matrix notation it is simple
to write the measured amplitudes for the pulse sequences.
For example,

M(4t, )= f dzdz'(ziG(t, )G(2t, )'G(t&)M(0)~z'),

M(6t, )= f dzdz'(z G(t, )G(2t, )*G(2t, )G(t, )*M(0)'iz'), (5.3)

M (t =2nt, ) -exp[ t /Tz ( t, —)], (5.4)

which defines an effective decay rate Tz(t, )
' for fixed

pulse spacing. The standard definition of Tz is that when

t, ~~, Tz(t, )~Tz (seebelow).

A. Spin echoes and inhomogeneous broadening, g& =0

To illustrate how the echo technique suppresses inho-
mogeneous broadening consider now the simple case of
the uniform gradient gz =0 in unbounded space (e.g., in a
box of size 2L, very large compared to the diffusion
length). By integration of (3.4) one finds that the total
magnetizatic. i, or FID amplitude, is given by

M(t)= Re f dz M(z, t),
2L

which gives

(5.5)

DM(t)= exp ——(yg, ) t
yg)Lt 3

(5.6)

One should remember that for measured quantities in the
laboratory coordinates the above expressions should be
multiplied by cos(coot)exp( t /Tz~). We h—ave taken
M(0) =1/(2L). The first term of Eq. (5.6) is a decaying
oscillatory term which is due to inhomogeneous broaden-
ing and exists even if D =0. If yg, LTz ))1, it complete-

ly dominates the signal and makes direct measurement of
Tz difficult. Let us now compute the first Hahn-echo am-

plitude for the same model. Inserting the propagator
(2.9) in (5.3) one obtains

sinyg&L (t —2t, )
MH(t) =

yg, L (t —2t, )

and usually one plots the magnetization at the nth echo
(n =t/2t, ), as a function of t for fixed t, . One expects
for large t

M(t =2nt, )=exp[ (Dy g, t—/12n )]

=exp[ (Dy g ft,—t/3)],
a result which was obtained by Carr and Purcell. ' '

(5.8)

B. Hahn-echo amplitude and T&, g&%0

The Hahn-echo amplitude can be computed from (5.2)
as sketched out in the Appendix. The full expression val-
id at all times is obtained from (A8) by integration as in-
dicated in (A7). Here we will discuss only the short-time
limit, and the long time (e.g. , the determination of Tz).
The intermediate-time regime, the shapes of the decay
curves, and comparison with Bendel's experiments will be
discussed in Sec. VD.

First consider the long-time limit. At long times the
Green's function G„of(4.3) takes the following form,
dominated by the ground state:

G„(z,z', t)~exp
Z2

2DT fo(z)exp( Eot)$0(z')—

&2

X exp 2DT
(5.9)

where

Q~
1(o(z}=

' 1/4

exp
Q~z~ yg) yg )D+i z+

4D 0 ~ @3~

At t =2t, , the first term becomes unity and thus the
pulse height can be used to extract the decay rate Tz and
D, which may not be possible from examining the FID,
Eq. (5.6). Note we have neglected the simultaneous
inAuence of the boundary and diffusion in the above cal-
culation. A similar calculation for the CPMG pulse se-
quence shows that the echo amplitude at time t =2nt, is

Xexp ——(yg, )'[t', +(t t,)']—(5.7)
is the ground-state wave function, and

(5.10)
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Q~ 1 y giD
E = ——+

2 T
(5.11)

0.8.
is the ground state energy. We can now use (5.3}and the
initial magnetization (4.7) and obtain the Hahn echo at
time t =2t& for large pulse spacing t, as

MH(t)- Ae (5.12)

where the preexponential amplitude can be obtained sim-

ply in terms of the ground-state wave function fp(z):

g) i@ICL
K

44a
N

~~
C

I

I-

0.6.

0.4-

0.2'

z z z e ' z

(5.13)

We have thus obtained T2 from the Hahn echo as
Re(Ep }:

1

T2

1 Qq
+Re

T2B

y g]D

Q~
(5.14}

This result is the same as the long-time FID decay from
(4.14}.

For intermediate times the excited states will contrib-
ute and the decay will appear as a superposition of ex-
ponentials, as clear from the figures discussed.

We now analyze this result for T2 and show that it
leads to reasonable values for rocks. Let us define the
rate coming only from diffusion:

1

T2

1 1

T2B T2D
(5.15)

To understand the relative importance of the contribu-
tions of the curvature and of the average gradient, and
the different regimes it is natural to introduce the two di-
mensionless parameters:

yg2Rp 8Rp ygiRp
l4 ' D

C

in terms of which (5.14) takes the simple form

(5.16)

1

T2D

D F [gz]+ G[gz]
R

(5.17)

where.

F[u]=
1/2

1+(1+u ')'" —1
2

G [u]= 1

1+u

(5.18)

As previously noted the dependence in the average gra-
dient g, is simple and structureless, which is an artifact
of the model with soft walls (see below).

The decay rate is plotted in Fig. 9 as a function of the
dimensionless curvature parameter gz =8R /l, for
different values of the dimensionless average-gradient pa-
rameters g, (we have chosen R =1 and D =1 and the
natural units for rocks are explained below). In the small

2 3

gz=gz RQD

FIG. 9. Plot of 1/Tz in units of D/R~ from (5.17) as a func-
tion of the dimensionless curvature gz, for different values of the
dimensionless gradient g, .

This expression is quadratic in the derivative of the field
and thus is identical to the result of the Gaussian-phase
approximation for this model. The standard cumulant
expansion would give higher-order terms in g, and g2. It
is clear in Fig. 9 that the range of validity of (5.12) is very
limited. In the large-u limit, e.g. , for fixed average gra-
dient and strong curvature, F[u]-(u/2)' and
G [u]-1/u and thus the inffuence of both the gradient
and the boundary becomes negligible and one recovers
the result (3.8) for Tz in an unbounded parabolic well:

1/2
g2D

2
1

T2D
(5.20)

Finally, when g2 takes intermediate values, we observe on
Fig. 9 that for large enough average gradient the decay
rate exhibits a minimum as a function of gz (the
minimum exists for g 1 )2 ' ).

What are the order of magnitudes of these effects in
rocks? To facilitate the comparison with rock data, we
note that the decay rates range from 20 to 200 s ', thus
~=100 ms makes a convenient unit of time. With the
diffusion coefficient of water (we take D =2 X 10
cm /s) the unit of length is a = (Dr)'i —14 pm. In these
units the decay rates in rocks vary widely, but we can
take 2—20 as a typical range. Note that in these units D is
1. For other systems such as gases, the present results
can be used by simply changing the units in order to
make the new D equal to 1. We use the same assumption
as in Sec. II, e.g., that Rz sets the scale for the field inho-
mogeneities. Let us first consider a pore with zero aver-
age gradient, g& =0. From Sec. II, the curvature of the
field is

yhyBO

P

(5.21)

gz regime (R « l, ) the eff'ects of the curvature are weak
and one has (expanding F[u]-u /8)

2 2R6 2 2R4yg2 +yg&, (5.19}
T2D 8D 4D
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M„(r=2t, ) = coshQt, i

1/2
2m.D

Re (Q tanhQt, )

(5.23)
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FIG. 10. Plot of 1/T2 as a function of the pore size. For
rocks, the unit of length is 14 pm and the unit of time is 100 ms

for various geometrical factors (see the text), and g, =0.

where 42 is a geometrical factor. For y8o=10 MHz,
Ay = 10 we have, in units defined above,
yg2 =2+@2X 10/R~. Since 42 is unknown and since one
can also vary the external field and consider different
grain contrast, we have plotted in Fig. 10, T2, given by
(5.16), as a function of the pore size R using several
different relations, gz=3/R, gz=10/R, gz=30/Rz,
respectively, which lead to increasing decay rates. Note
that the decay rate has a maximum for pores of about
4—10 pm and attains values which are comparable with
values measured in rocks, certainly for those with the
slower decay rate. Equation (5.21) is, in fact, a conserva-
tive assumption because the local curvature of the field
might be determined by smaller length scales (grain sur-
face, etc.), in which case 4z can be larger, leading to fas-
ter decays. In reality, each pore will probably also have
an average gradient and we have represented in Fig. 11
the additional effect of a gradient g& =0,3/R~, 10/R~, re-

spectively, for the central value of Fig. 10, gz =10/R .
In the short-time limit, one can obtain from (A8)

MH(t =2t, )-exp( ', Dy g—zR—t
&

) (5.22a)

for g, =0. To lowest order this is identical to the usual t
decay in a uniform effective gradient provided this
effective gradient is taken to be equal to the average of
the square of the local gradient [the average is over the
initial distribution (4.7)]. This agrees with the general re-
sult of Tarczon and Halperin, "which was obtained using
the Gaussian-phase approximation. As expected, this ap-
proximation is valid at very short times (or for very small

gz, see above). Note, however, that the small-t expansion
is singular when R ~ ao (with fixed gz). To see that con-
sider again the unbounded parabola model of Secs. II and
III (R~ = ~). Assuming, as in Sec. III, a uniform density
unity over the whole space at r =0 (and thus infinite ini-
tial total magnetization), one gets from (5.2) and (3.2), the
exact result:

2.
I-
~ 1.5 .Ol

K
0

0.5-

0.5 1. 1.5 2.
Pore Size Rp

2.5

FIG. 11. Plot of 1/T2 as a function of the pore size. For
rocks, the unit of length is 14 pm and the unit of time is 100 ms
for various g& AO, see the text.

The total Hahn-echo amplitude becomes finite for any
t, & 0 because of the rapid decay in the regions far away
from the tip of the parabola where the gradients are arbi-
trarily large. Since the initial magnetization is infinite,
(5.23) diverges for small t, as in l, /(Dt, ) ~z. Although
this divergence is an artifact of the unbounded parabola
model, which, by itself, is an unphysical model, it has in-
teresting consequences for the case where R is finite but
large and where the total initial magnetization is chosen
to be unity, i.e., the density of magnetization is 1/R
rather than unity. Then from (5.23) one learns that in
that case there are really two short-time (within
t, « I/Qo) regimes: either Dy gzR t, «1 and (5.22a)
is correct, or Dy gzR t, »1 and, from (5.23),

I4
MH(r =2ti )—

R (Dti)
(5.22b)

where we have divided (5.23) by a factor R~, since, now
the total initial magnetization is unity. This illustrates
that for fixed g2 the order of the limits t, ~0 and
R ~ ~ must be treated carefully, and shows that for
large R and fixed gz (e.g., when large regions of high lo-
cal gradients exist in the system), formula (5.22a) is of
limited validity.

To assess the relative importance of the gradient of the
field versus its curvature, it is useful to define locally a
length scale l(z) =g&(z)/gz(z) in terms of the local gra-
dient g&(z) and consider the local Hahn-echo amplitude
restricted to walks starting at z (the total amplitude being
simply the sum of the local amplitudes over z, weighted
by the initial magnetization). For short times, the decay
is given by the effective gradient, as in (5.22a), but where
now both g& and gz come into play [as, for example, in

Eq. (3.6), which contains the total local gradient

g, +2gzz]. But when Q, t))1, the decay is determined

by exp[ —(Qot)] term. This is because the long-time be-
havior is dominated by the lowest eigenfunction, as dis-
cussed above, which is sensitive to the curvature only.
Note that when the crossover between the two (short-
and long-time) regimes occurs the local Hahn amplitude
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is of order exp[ —1 (z) /1, ]. Thus only the points near the
extrema that are within a distance 1(z)(1, [i.e., the local
length scale 1(z) is of order 1, or smaller], will determine
the decay of the total amplitude after that time t ) 1/Qo.

C. CPMG pulse sequence

For the ordinary Carr-Purcell sequence in an unbound-
ed uniform gradient the pulse height is
exp[ (Dy—g, t, t/3)]. Thus, when inM&p(t) is plotted as
a function of t, the envelope curves for different spacings
t, should be straight lines intersecting at the origin and
separating from each other due to their different slopes
-t, . Experimental data of Bendel' on sand packs and
Kenyon' on rocks show quite a difFerent picture: (i) The
decay curves have noticeable curvature at short times:
the initial decay is much faster than the long-time decay.
(ii) The observed separation among the curves corre-
sponding to different pulse spacing is a much weaker
function of the pulse spacing than t &, which is predicted
by the above equation. Attempts have been made to ex-
plain these deviations from the unbounded uniform gra-
dient picture. Kenyon' could reproduce decay curves
with some curvature by using superposition of curves for
decay in an unbounded uniform gradient, but with
different strengths and weights. Kleinberg and
Horsefield3 pointed out that one should include more
properly the efFect of the boundary, but also assumed that
the local inhomogeneous field can be represented by a
uniform gradient. They used the results of Neumann,
which assume that the phases have a Gaussian distribu-
tion and furthermore, they extended Neumann's calcula-
tion for a sequence of pulses using the assumption that
the magnetization remains uniform. They pointed out
that the gradient g& needed to explain the data was too
high.

We have computed the pulse height for the CPMG se-
quence for the parabolic field model with artificially re-
stricted diffusion. The calculation can be found in the
Appendix. Let us discuss the main results as illustrated
on Figs. 12—16.

(i) The slopes 1/Tz(t& ), as defined by (5.8), are shown
in Fig. 12 using Eq. (A17) normalized by its asymptotic
value for zero average gradient and various values of the
pore size. The small-time behavior is found to be

0.8.

0.6

0.4

0.2.

0.2 0.4 0.6 0.8

FIG. 12. Plot of 1/Tz(t&) from (A17), normalized to its
asymptotic value 1/T&, as a function of pulse spacing t &, for
g& =0, and dimensionless parameters D =1, g& =8 for R~ =1
(lower curve), R~ =5, R~ =0.3. In the units relevant for rocks
(see Sec. VB), D =2X10 ' cm /s, g&=4X10' rad/scm, and

R~ = 14, 70, and 4.4 pm, and times are in units of 100 ms.

8.

large gz, one would have to replace t, by l, /DR~, a
choice not obvious a priori. One can show that for larget„1/Tz(t&)-1/Tzn C/t„—where C is related to the
ground-state wave function (see the Appendix). Thus the
approach to the asymptotic value is relatively slow (not
exponential), which is also in agreement with some exper-
imental observations. It is interesting to note that in the
unbounded parabolic field (R = ~) the packet at large
time t also takes a Gaussian shape, but now characterized
by a length scale l, (t, ))l„which crosses over to 1, as
t&~00. This effective length scale is plotted in Fig. 13
[from formula (A15)]. 1,(t, ) )1, because the repeated re-
focusing by CPMG pulses reduces the effect of regions of
high local gradients, thus reducing the effective curvature
of the field inhomogeneities. Finally Fig. 14 is a plot of

2Dy g~Rp
1/T~(t, )-

3
(5.24)

This equals to (5.8) with g f replaced by the average of the
squared gradient. However, a very noticeable feature is
that this initial t, behavior holds only for very small t, ,
and is rapidly replaced by a linear behavior, and finally
saturates to a constant value independent of t &, which is
in agreement with the observations of Kenyon. ' More
precisely, in the small-gz regime (weak curvature) this
saturation can be accounted for by replacing t& in the
above expression by R /D recovering formula (5.19).
But this holds only for very small gz for, as soon as gz
takes intermediate or large values the above substitution
is not correct because I, is now the relevant length. For

2.-

0.2 0.4 0.6 0.8

FIG. 13. Size of the magnetization packet 1,(t, )/l, for a
CPMG experiment in an unbounded parabolic field as a func-
tion of pulse spacing t&, in units of 100 ms. The upper curve is
for g~=4X10 rad/scm, and the lower one for g&=5X10'
rad/s cm .
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FIG. 17. In~M(t}~ as a function of t for the second Hahn
echo envelope for t =4t&. The parameters, which correspond to
Bendel's experiment on sand packs, are given in the text.
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Flax. 18. In~M(t)
~

as a function of t for CPM' envelope for
various tl =5.1 and 13.1 ms (from top to bottom). The lowest
curve is the second echo envelope for t =4tl. The parameters,
which correspond to Bendel's experiment on sand packs, are
given in the text.

externally applied parabolic field (ii) in a sand pack. For
the first experiment, Bendel' gives yg2 = 1150 rad/s cm .
From that we find that 1/Qo in Eq. (2.7) is about 5 s. It
is not surprising, as we have shown here, Eqs. (5.22) and
(5.23), that the short-time (i.e., & 1 s) data can be fitted by
a distribution of gradients. However, for times longer
than a few seconds one should observe a crossover to a
linear regime. Also we suggest that a nonanalytic depen-
dence on g2 could be observed from the long-time decay
rates.

Data on sand packs reveal a strong departure from the
model of Bendel, ' which uses a distribution of gradients.
The reported inhomogeneity bco/2m is a few hundred
Hertz. The particle size is about 1 mm in diameter so the
pore size is about 170 }um. Using Eq. (5.21) with a
geometrical factor of 2 gives g2 =2 X 10 rad/s cm . This
gives a 1/Qo in Eq. (2.7) of about 50 ms, which coincides

with the observed crossover time to the linear regime
(Fig. 4 of Bendel' ). Note that I, —13 pm, which is about
ten times smaller than the pore size R . Here we want to
make only a qualitative explanation, since the parabolic
field is not sufficient to describe the exact local fields, and
it would not be meaningful to try to fit more accurately
Bendel's curves. However, we would like to emphasize
that although the parabolic field is simple, it has the right
ingredients which show the crossover to a linear regime.
Figure 17 shows the Hahn echo for the parabolic field
and corresponds to Fig. 4 of Bendel. ' Figure 18 shows
CPMG with the same pulse spacing t, that was employed
by Bendel' and corresponds to his Fig. 3. By changing
the external field one can change g2 and thus check the
predictions of our model, in particular the nonanalytic
dependence on g2.

VI. CONCLUSIONS AND DISCUSSIONS

Our main conclusion is that in porous materials there
are intrinsic length scales, associated with the variation
of the field gradients, which govern the decay of the mag-
netization. In this work we have focused our attention
on the effect of the curvature of the field, using a simple
and solvable model of a parabolic field, but we expect
that in more complex fields there will be other length
scales. This point has been missed previously, mainly be-
cause the approximations widely used in the literature,
e.g., the effective uniform gradient or the Gaussian-phase
approximation, do not introduce such length scales. For
example, the Gaussian-phase approximation for restrict-
ed diffusion shows" that the linear exponential behavior
sets in only for t -R /D, and that the magnetization de-
cays as exp( t ) as long —as t «R2/D. This is incorrect
when the field has some curvature, e.g., when the gra-
dient is nonuniform, and we find instead that the linear
exponential behavior sets in for t -lz/D, and that l, can
be smaller than R . In fact, within the model of artificial
pore studied in this paper, the conclusion is that for a sin-
gle pore the pore size R can be effectively replaced by l„
if R~ &&I,. This is a strong indication that the curvature
of the field plays an important role. If this conclusion
holds also for a connected system of pores, it will imply
that what is currently thought of as a pore size in porous
media should be replaced by the local l, . We find that at
long times the magnetization accumulates in the ex-
tremum of the field, and that there the decay is slower
than what is generally believed based on constant gra-
dient models of local field. The decay rate is also a non-
analytic function of the curvature g2, which, again, is a
reflection of the breakdown of the Gaussian-phase ap-
proximation. Since the internal inhomogeneous field is
directly proportional to 80, the applied field, the former
can be varied by varying the latter and can be used to test
some of the results in this paper.

A very simplified, but suggestive picture which
emerges from the present work, is illustrated in Fig. 1.
At very small times the magnetization decays at each
point following the exp( Dy g, t /3) law in th—e local
uniform gradient g&(z). At intermediate times it collects
around local maxima, minima, and saddle points of the
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field, and the echo amplitudes should then be adequately
described by the parabolic model studied in this paper, at
least if the distances between the hills and valleys of the
local field terrain are larger than 1, =(8D/yg2)' . At
longer times, the diffusion between the regions with
minimal gradient becomes important. It is then essential
to consider the tunneling between the local extrerna of
the field, which is implicit in the theory of Ref. 16. By in-
cluding some microscopic features such as the curvature
of the field, the present theory is a very crude attempt to
bridge the existing gap between the well-understood very
small time limit and the long-time theory of Ref. 16.

The problem of realistic walls will be presented else-
where. We find that length scales emerge due to the
combined effect of wall and inhomogeneity. For instance,
in a restricted geometry, such as a slab of size R with
rejecting boundaries, even a uniform gradient g& along
the restricted direction gives rise to a natural length
scale:

l(1)—(D/ )1/3

and a natural scale 1/T2=D' (yg&) for the decay
rate (or bound-states energy). We wish to stress that the
above length scale emerges even in the absence of field
curvature. Note, unlike the Gaussian-phase approxirna-
tion, there is a nonanalytic dependence on g&. The
different physical regimes are controlled by the dirnen-
sionless parameter g& =yg, R /D =(R /I,'") . For
g& «1 the Gaussian-phase approximation will apply and
give a long-time decay rate proportional to Dg &R, as ob-
tained by Robertson and others. However, the validity
of this result will be rather limited. As soon as g, ceases
to be very small, the magnetization will become nonuni-
form and will collect near the boundary (there will be
bound states). Thus in general, we expect that T2 will

take the scaling form, analogous to the first term of
(5.19):

1 D
T2 R2

with H [v]-v for small v, and H [u]-v for large u.

This should be true at least for an isolated pore. The ex-
act form of the function H [u] will depend on the details
of the geometry, although the asymptotic forms for large
and small g& are related to simple geometric properties of
the pore space.

Actually, the wall effects in porous materials are con-
siderably more complicated, because of, for instance, the
presence of paramagnetic impurities. The impurities are
often modeled by adding to the Torrey' equation (2.1) a
killing factor at the wall surface as a boundary condition.
Note that another interesting consequence of the effects
of the curvature of the field is that the killing factor at
the boundary might be screened out and considerably re-
duced if l, «R and the magnetization is trapped away
from the boundaries (its density close to the wall is re-
duced).

Finally, it is interesting to note that although the usual
motional narrowing arguments are based on the
Gaussian-phase approximation, and thus cannot reveal
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APPENDIX: CALCULATION OF SPIN ECHOES

In this appendix the calculation of the successive spin
echoes is summarized. This is done using the matrix
form for the Green's function as indicated in the text, for
the parabolic field with artificially restricted diffusion.
We have dropped the subscripts A. We recall that the
successive echoes are given by (5.3) and (5.4):

M(2t, )= f dzdz'(z G(ti)G(t, )*M'(0)iz'),

M (4t, ) = f dz dz'(z~ G (t, )6 (2t, )'G (t, )M (0) iz' ),
M(6t& )= f dz dz'(z ~6(t& )G(2t& )*G(2t& )

XG(tI ) M(0) iz ) (Al)

and so on. An asterisk denotes complex conjugation.
First note that G(2t)=G(t)G(t) and thus in the above
equations it is clear that the unit which repeats itself is
the matrix S(t, )=G(t, )G(t, )'G(t, )'G(t, ), in terms of
which one can write

M(4nt, )= f dz dz'(z~S(t, )"M(0)~z') . (A2)

The long-time (large-n) behavior and T2(t&) are obtained
from the lowest eigenvalue of the matrix S ( t, ).

the length scale l„it is possible to reconcile a posteriori,
at least qualitatively, the prediction of the motional nar-
rowing argument with our result. The usual motional
narrowing result is

I/T~ =1/T2v+y (H, ),„r,.
Here (H, ),

„

is the mean square average of the (random)
field seen by the (random walker) spin and r, is the corre-
lation time. It is assumed that r, « t « T2. r, =L, /D,
where L, is the correlation length for the random field.
According to the argument of Wayne and Cotts spins
diffusing in a restricted uniform gradient see a periodic
field, and Eq. (6.1) gives the correct result if one takes
L, =R~. Then (g fz ),„-g&Rz and using L, =R, one
obtains 1/T2-y g,R /D, which is the usual second-
cumulant result. ' It turns out that the correct result,
i.e., 1/T2-y gal, /D, i.e., I/T2-Qv~+g2 can be ob-
tained from this argument, at least qualitatively, if one
uses l, for all the lengths in the motional narrowing re-
sult.
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The exact calculation is possible because the Green's
function is a simple Gaussian function of its arguments
[from Eq. (4.3)]:

(zlG(t1)lz') =f exp[ —a(z +z' ) 2b—zz'+c(z+z')],

b2
a =a—

1 b =—
a+a
c+cci=c b a+a*

a+a

(A9)

where

(A3)
1/2 {c+c*)

exp
4(a +a*)

lg)g
c = tanh

Qti =s(a+b)

with

Finally,

i4Dg &y 4
Q = —&4Dg y+

Q 2

a = coth(Qt, ), b =— Q
4D sinh Qt,

(A4)

Note that f, and b, are real. From this expression one
can obtain a (complicated) expression for the first Hahn
echo.

The second echo is computed from the matrix
S(t, )=G(t, )G(t, )'G(t, )'G(t, )=RR*. One finds that
again it has a Gaussian form identical to G itself although
with different coeScients:

(zlS(t1) lz') =F exp[ —A (z +z' ) 2Bzz'—+C(z+z')]

(A 10)

with
' 1/2

4' sinhQt,

b2
A =a)—,B=-

2Q )

b2

2Q )

t) g)y D Qt)
Xexp —— Qt

&

—2 tanh
Q 2

c 1C=c b—
1 1

a&
(Al 1)

(A5)

r

F=lf l'
2Q )

' 1/2 (c» )2c)
exp

2Q )

t =lal'+ Q y=2 (A6)

Note that b =a (Q/4D) —. We will also need the fol-
lowing definitions:

'2
and, as noted above the even echoes are given by

M(4nt1)= I dzdz'(zls(t1)"lz') . (A12)

Note that when T is finite there is an extra factor
exp[ —(1/2DT)(z z' )] multip—lying the above expres-
sion. However, this factor is both real and antisymmetric
in z,z'. Thus, when successive matrix Green's functions
are multiplied it cancels out and only appears at the
edges of the product. Thus we have to keep in mind that
for finite T we will have to consider expressions of the
form (taking into account the stationary initial distribu-
tion}

Thus we discover that S itself is a Green's function of
yet another quadratic Hamiltonian resembling the one we
studied. Since G =exp(t1H) where H is the Hamiltonian
equal to minus the operator in the rhs of (4.1), we are
computing products of the form exp(t1H)exp(t, H')
and since H and H* do not commute, these are nontrivi-
al. The simplification here is that the Gaussian distribu-
tion is stable under convolution, i.e., the resulting opera-
tor still has the same Gaussian structure.

I dz dz' 1

' 1/2
z2+z 2

2DT

1. Determination of T,(t, )

The matrix S has P(z)=exp( —rz —pz) as its ground
state and eigenvalue A, with

x(zlG(t1)G(t1) lz') . (A7)

For convenience we will thus not write explicitly this fac-
tor in what follows, but of course it will be taken into ac-
count when performing the final spatial integrations.

The first echo is computed from the matrix
R =G(t, )G (t, ). One finds that is have a very similar
Gaussian form {except for the complex conjugates):

(zlRlz') =f,exp[ —(a,z +a1z' ) 2b, zz'+c, z+c', z'—]

&
—

( A 2 B2)1/2 =C A B+(A —B )'—
A+B+(A' —B')'" '

' 1/2 (A13)

A +( A 2 B2)1/2

A +(A B)'/—
Xexp C

[A+B+(A —B )' ]

Thus one has, for large n,

with

(A8} M(4nt, ) —exp[ —ln(A, )n]=exp — t
1n(}(,)

4t)
(A14)
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l, (t, ) = [Re(r)] (A15)

where r is given in (A13).
Using (A9)—(A14) we finally arrive at the following re-

sult for Tz(t, ) as the sum of two decay rates:

1/Tz(t, )=l/T'"+1/T' ' (A16)

Note that this is very similar to (5.9) and (5.10) and that
P(z) is similar to t}jo(z) in (5.10). Thus for fixed t, when
t ~ ~ there is also a characteristic size 1,(t, ) of the pack-
et of magnetization in the CPMG experiment. For
R =Do it is givenby

T(1) 8t
ln[y+(y —1)'~ ]——

T ' (A17)

where y is given by (A4) and (A6).
The second piece T' ' is proportional to Dg, and van-

ishes when g2=0. When T= ~ and g2) 0 it does not
depend on g& (because in that case the second term can-
cels exactly the term proportional to tanh in the first).
One finds

T'" depends only on gz and T (and not on g&). It van-
ishes for any T when g2 =0 as expected since then there
is no decay. It is the only piece which remains when

g, =0 (or for T= ~ for any g, ):

y g1D
T'" n'~

=Re [Qt —2tanh(Qt /2)]1

1+, 2IRe[(a +b)s]] +Re(s a) —Isbl —4Im(s)Im(sa "b)—4(Ims)
—1 z z z „zRe(a b' a) —Ia Ibl

4t&(a +a') lal' —Ibl'

(A18)

It is interesting to compare this result for the decay of the CPMG echoes to the decay of the local magnetization of Sec.
IV (FID), which is easily obtained from the Green's function (A3) and (A4):

M(z, t)= 1

m.DT coshQt

' 1/2

exp
2 2Dr gl

(Q hQ )+ tanhQt

0
2

yg&z exp — —+Qtanh(Qt}
4D T

When g2 =0, T' ' simplifies and becomes equal to

(A19)

1

T(2)

y2g 21D

(Qt, —tanhQt, ),0 t1
(A20)

where now Q=2/T. Thus, in this particular case we find that it is identical to the decay of the local magnetization
(A19}, e.g., the product rule for the decay is correct. It fails, however, as soon as gz & 0. Since gz =0 is precisely the
case where the phase distribution is exactly Gaussian (see Sec. IV) we conclude that the product rule is wrong precisely
when the phases are not Gaussian.

For large t, it is possible to obtain the decay for the CPMG sequence quite nicely using the property of ground-state
dominance. We give the derivation here because it can in principle be used to study other field profiles dominated by a
ground state. Using (5.9) one gets for large t,

M(t =2nt, )= f dz
1

(~DT)'" f dz I/0(z) exp[ —Re(EO)t], (A21a)

where for even echoes (n even) the absolute value squared
in the first term is replaced by a simple square. There is
thus an even-odd effect. Thus we find the following gen-
eral expression for large t, :

1

Tz(ti )

IQI
ln +h. o.t.

TzD 4t, Re(Q }

particular, for g, =0 we find simply

(A22)

1

Tz(t, )

1

T2D
ln f dzlfo(z)l +h. o.t,

2t1 2. Determination of M ( t =4nt &) as a function of t
(A21b)

where the higher-order terms (h.o.t.) are exponentially de-
caying functions of t, (if the spectrum is discrete). In

In the last subsection we obtained the asymptotic de-

cay rate for a large number of echoes. In fact it is also
possible to obtain an exact expression for an arbitrary n.
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For simplicity we choose here g& =0. We observed that
S (t, ) has a form very similar to G (t&). In fact, defining

one sees from the convolution rules of the Gaussian that
S(t

&

)" has the same form as S (t
&
}with A, B replaced by

A =r coth(4), B = —r/sinh(4) A„=rcoth(n4), B„=—r/sinh(n4) (A24)

or equivalently,

r = ( A B—)
' @=ln( A + r) —lnB, (A23)

I

(which is precisely why the harmonic oscillator Green's
function is solvable). Thus it is now simple, copying the
result (4.8) (with k =0) to obtain

M(t =4nt, }= 4rDT
[1+2rDTcoth( n 4/2) ][1+2rD T tanh( n 4/2) ]sinhn 4

' 1/2

(A25}

which was used to plot Figs. 15 and 16. Replacing in the above expression n by t /(4t, ), we find that ln[ ~M(t) ~ ] starts
linearly for small t with a slope

(A26)
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