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We present a variational approach to the Heisenberg antiferromagnetic model for spin —, and aniso-

tropic exchange, with an external longitudinal and transverse magnetic field. In the one-dimensional
case, we calculate exactly with our trial function the expectation values of energy, sublattice magnetiza-
tion, and magnetic susceptibility. On minimizing the energy, we obtain several phases, which depend on
the strength of the field and anisotropy parameter. Subsequently we approach the problem numerically
and solve it for a chain of 12 spins using the Lanczos method. The two approaches are in excellent con-
cordance, particularly for the critical fields of the transitions, over a wide range of the parameters of the
model. Beside its precision and mathematical simplicity, the method has the important advantage of ac-
counting for the different magnetic phases and their transitions with a single trial function that has a
compact mathematical expression. The formalism is expected to work better in higher dimensions, but
the corresponding calculations are omitted because of the lack of numerical field-dependent data with
which to compare.

I. INTRODUCTION

The discovery of magnetic order in the superconduct-
ing layered perovskites' has motivated a surge of in-
terest in the study of quantum Heisenberg models. In the
recent literature on the subject, there are many advances
over the models that were originally formulated, as well
as extensions of them intended to interpret the physics of
the superconducting ceramics. This effort has produced
several recent approximate formulations ' aimed to
gain insight into the ground-state properties of the anti-
ferromagnetic model, which are far from straightforward
even when the exact solution is known from Bethe's an-
satz. The exact solutions for the ground state in one di-
mension, known analytically if there is no external
field, ' ' and numerically for large clusters with a finite
field, ' constitute major achievements but have the disad-
vantage of dealing with major and minor terms on the
same footing. This obscures their physical implications
and often makes them impractical for further calcula-
tions. These shortcomings, and the necessity of a general
scheme able to be extended to more than one dimension,
confer interest on approximate approaches. Most of the
work has been on two-dimensional models since the
discovery of long-ranged antiferromagnetic correlations
in the Cu02 planes of the superconducting cuprates.

It has been proved recently that the physics of the anti-
ferromagnetic Heisenberg model with no external field
can be described neatly by a class of nonmagnetic excita-
tions, constructed with paired spin operators. ' The
corresponding approximate theory, which we will call
hereafter paired nonmagnetic excitations (PNME) theory,

clearly differs from conventional spin-wave theory be-
cause it introduces singlet magnetic excitations, as op-
posed to the triplet antiferromagnetic magnons of the
latter. The idea of using magnon-paired states was intro-
duced by Manousakis at the same time the basic con-
cepts of the PNME theory appeared in the literature.
The two approaches were developed independently and
differ in formal aspects. However, the essential physical
idea underlying both seems to be the same, which was
made explicit by Manousakis.

The PNME theory assumes antiferromagnetic order
and proves to be notably accurate when this hypothesis is
actually realized by the system. Hence the applicability
of the method in one dimension is restricted to anisotrop-
ic coupling with anisotropy toward the Ising limit
(a (0.5) and loses precision when approaching the iso-
tropic limit (a= 1). In two dimensions, the antiferro-
magnetic order prevails for anisotropies that range from
the Ising to the isotropic Heisenberg models (0 ~ a ~ 1),
and the approximate approach works exceedingly well,
much better than linear spin-wave theory, for all values
of a in this range.

In addition to its accuracy and mathematical simplici-
ty, the PNME theory has shown to be flexible enough to
be easily generalized to arbitrary dimension, spin, and
nonfrustrating second-next-nearest-neighbor interac-
tions. ' The extension to exchange anistropy toward
the XI' limit (a&1) has been made. ~ Specifically, for
two dimensions, isotropic exchange and S=

—,', the
ground-state energy deviates less than 0.5% from the re-
sults given by elaborate Monte Carlo calculations. On
reducing the anisotropy parameter a, the error becomes
even smaller.
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In this work we address the Heisenberg antiferromag-
netic model for spin —, and anisotropic exchange in exter-
nal longitudinal and transverse magnetic fields. First, we
employ a variational approach that uses as trial function
a version of the analytic expression for the ground state
given by the PNME theory, generalized in order to in-
corporate the external field. The calculations are done in
one dimension but can be extended to arbitrary dimen-
sion by the method described in Ref. 23. The ground-
state energy, sublattice magnetization, and magnetic sus-
ceptibility are obtained. Subsequently we approach the
problem numerically and solve it for a chain of 12 spins
using the Lanczos method.

The two approaches have excellent concordance over a
wide range of the parameters of the model. We show
that our analytic trial function represents accurately the
ground state of the system for anisotropies ranging from
the Ising limit to the almost-isotropic Heisenberg model
for all values of the field. Moreover, it accounts for the
several antiferromagnetic and ferromagnetic phases
occurring for different values of the magnetic field with
the same precision. The critical fields of the transitions
are also predicted correctly. All the calculations of the
variational theory in one dimension are exact and analyti-
cal.

It has been shown in a previous paper that the expres-
sion for the ground state used here in one dimension is
generalizable to higher dimensionalities with a large gain
in accuracy. ' ' Hence we conclude that our variational
ground state also represents well the physics of the model
in more than one dimension. We omit here these calcula-
tions because of the lack of reliable field-dependent nu-
merical data in two or more dimensions with which to
compare them. We must mention, however, that the suc-
cess of our trial function in one dimension makes its ex-
tension to more than one dimension highly reliable.

II. THE MODEL AND PNME TREATMENT OF IT

Assuming a bipartite lattice the Hamiltonian of the
S=—,

' Heisenberg antiferromagnet, with anisotropic ex-

change interaction and immersed in a magnetic field H,
can be written as

%=Jg S,(r)S,(r+5)+—[S+(r)S (r+5)
r, t)

2

+S+(r+5)S (r)]

—
gpss g [ H„S„(r)+H,S,(r)+H„S„(r+5)

+H, S,(r+5)],
where S„,S,S, denote the components of the spin associ-
ated to the lattice site settled in their arguments,
S+ =S„+iS,and a is a parameter determining the an-

isotropy of the interaction between the spins. The mag-
netic field is constrained to lie in the xz plane. Vectors r
characterize the sites of one of the two sublattices defined

by the antiferromagnetic order and 5 connects a site with
any of its z nearest neighbors. This way r and r+5 are in
different sublattices, for any r and 5.

To make clear the physical foundation of our trial
function we review here brieAy the main results of the
PNME theory ' for the antiferromagnetic Heisen-
berg model with zero magnetic field, whose ground state
is used as the starting point in the subsequent variational
approach. We define the zN 0-spin operators

Pat(k) = ge'"'S+ (r+5)S (r)+QADI o,
1

2S~Ã
(2)

where
1/2

aS
(2zS —1 )

(3)

&=(2zS —1)J g Ps(k)Ps(k) +E (6)

where

E = NJS2 NJzS a
2 2(2zS —1)

is the ground-state energy. It should be noticed, howev-
er, that the (t operators only revert pairs of antialigned
spins and cannot change the total spin. Thus one cannot
construct states with finite spin with them. This way the
description of the spin dynamics provided by the PNME
theory is restricted only to the manifold of states with
zero total spin. For the same reason, it is not adequate to
account for the dynamical consequences of the interac-
tion with an external magnetic field. In this sense the
Hamiltonian (6) is incomplete because it drops the spin-
carrying excitations, which are necessary to span the full
Hilbert space of states.

The ground state ~g(a) ) is determined by the set of
equations

y (k)~g( ))=O,
for any k and 5. Using the approximate commutation re-
lations of the P operators, it is not difficult to show that
the state '

~g( )) = p —g y[y (O) —y (O)] ~A')

In Eq. (2) the wave vector k is in the Brillouin zone of
one of the two sublattices. The expressions for the com-
mutation relations satisfied by the P operators are in gen-
eral quite involved. However, it can be shown that in the
asymptotic regime of high antiferromagnetic order
(a ( 1), they reduce to '

[Ps(k), Ps (k')]=0,

[0s(k»0s «')] =|'~,~ &s, s

[&,Ps(k)] =(2zS —l)Jps(k) .

Therefore, in this approximation the P operators
represent Bose excitations of the Heisenberg model. The
PNME theory follows from using the above simple corn-
mutation relations instead of the true ones. The ultimate
justification of this deceptively crude procedure is its suc-
cess which has proved to be remarkable. The Hamiltoni-
an then turns into '
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satisfies them and is thus the ground state of the approxi-
mate theory. The excited states with zero total spin are
then

thogonal subspaces 4+( —,
' ),S(+1), . . .. This way we

have, in particular, that

(g(a)is+(r+5)S+(r')ig(a) &

[4s«)] '"
l[nsk]&=II lg(a)& nsk

Sk V nskI
(10)

and

= (g(a)is (r+5}S (r')ig(a) & =0, (18)

The utility of having the stationary states greatly depends
on the knowledge of how to calculate matrix elements
with them. For S=

—,
' and one dimension we developed a

method that allows us to calculate exact closed-form ex-
pressions for the mean value of any operator with respect
to the ground state (9). The procedure is described in
Ref. 20 and can be used to derive the formulas

(g(a)is, (l)S,(I+1)ig(a) &
= —

—,'[Jo(2a)+Jf(2a)],

(g(a)l[s (l}S (1+1}

+S+(1+1)S (l)]ig(a) &
= —Jt(2a), (12)

and

(g(a)is, (r+5)s+(r')ig(a) & =0 . (19)

III. TRIAL STATES FOR FINITE
EXTERNAL FIELD AND ENERGY FUNCTIONAL

Turn now to the generalization to HAO, which is our
main present purpose. It can be observed in the correla-
tion functions (11), (12), and (13) that the ground state
represents essentially a chain of spins oriented antifer-
romagnetically in the z direction with sublattice magneti-
zation diminished by quantum fluctuations. When apply-
ing a small magnetic field, say, in the x direction, it is ex-
pected that the direction of the spins will change by a
small amount. Consider then the trial state

(g(a) is, (l) ig(a) = [( —1)'/2] Jo(2a), (13) ig(8, , 8,,a') & =R (8„8,)ig(a') &, (20)

Sr= g[S,(r+5)+S,(r)] (15)

the total spin, one finds

S,'[y(k)', ]"[y(k ),, ]"iA& =o, (16)

where J„(x) is the Bessel function of order n, which will

be of use in what follows. For higher spin or dimen-
sionality, one can resort to finite expansions in powers of
a.

Before we extend the former results for nonvanishing
magnetic field it is convenient to call attention to a simple
but important property of the ground and excited states
(9}and (10) of the PNME theory. All these states can be
expressed as sums of terms of the form

[Ns(k)1 "[4s(k') ] l~& (14)

On the other hand, the P operators can only revert pairs
of antialigned spins and, denoting

where the unitary operator

R (8„82)=gexp[iH, S (r+5)]exp[i82S (r)] (21)

represents a rotation of the spins in the two sublattices by
angles 8& and 82, respectively, around the y axis. Vector
5 is any of the z vectors connecting adjacent sites. In this
scheme 8, , Hz, and a' are variational parameters and the
energy functional is

F(8&,82,a') = (g(a')iR (8&,82)&R (8&,Hz)ig(a') & .

(22)

Taking advantage of the unitary character of the opera-
tors R (8&, Hz), one can reinterpret Eq. (22) as the expec-
tation value of the transformed operator R VER with
respect to the states ig(a') &, with which we already know
how to work. To accomplish the transformation, just
substitute in Eq. (1)

for any n and m. The same applies to the states (9) and
(10), and

S, ig(a) &=S,'i[n,„]&=O .

S„~cosHS„—sin HS, ,

S —+S„,
S,~ sinOS + cosOS, ,

(23)

Hence the ground and excited states not only give
(S, & =0 but, furthermore, are entirely contained in the
subspace of states $(0}spanned by the eigenvectors of S,
with eigenvalue zero. Consequently, our approximate
eigenstates of & are orthogonal to any vector in the or-

with 0=0, and 0=02 for sites in the spin-up and spin-
down sublattices, respectively. Then substitute the re-
sulting expression in place of R t&R in Eq. (22). Recal-
ling that S„=(S++S )/2 and S =(S+—S )/(2i) and
Eqs. (18) and (19), one readily arrives at

F(8„8~,a')
=( cosH, cos82+a sinH, sinHz)HI(a')+ —,'(a+a cosH, cosHz+ sinH, sinHz)H„~(a')

+ —,
' [( sinH, —sinHz)h„+ ( cosH, —cosHz)h, ]M,(a'), (24)
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where h, —=ghp&H, /J, and h =—ghpbH /J are the com-
ponents of the reduced magnetic field. The coeScients

IV. SOLUTION FOR TRANSVERSE MAGNETIC FIELD

H (a')=(g(a')~S, (l)S,(l+I) g(a')),
H., ( ') = (g( ')

l [S (I)S (t+ I)

(25)
For external magnetic field oriented along the x axis,

perpendicular to the preferred direction of the spins, the
extremum equations for 0, , t9z, and a' become

and

+S+(l +1)S (l) j ~g(a') ), (26) M, h
sing ( 1 —a ) H„— Hz—cosg — sing =0,

M, (a')=(g(a') S,(1)~g(a )) (27) (28)

do not depend on 6, and Oz, but only on a'. In one di-
mension they can be put in explicit form by using Eqs.
(11)—(13).

Our problem then reduces to minimizing with respect
to 0, , t9z, and a'. We study the two interesting cases of
transversal and parallel magnetic field separately. and

M, h
cosg ( I+a) H„~—+Hz sing — cosg =0,

(29)

H
, H„—,H„—( I+a)M, —( I+a)

2a
"' —M, sin'g4a'

H
+(1—a},+, +M, cos g+H„h„singcosg=0, (30)2a' 4a'

where we have defined the new variables g and g as

g= —,'(8, +8~), g= —,'(8, —8~) . (31)

2M, h

( 1+a )(H„+ 4' }
(32)

in the limit h «1 represents an antiferromagnetic state
slightly deviated from the z axis in the direction of the
magnetic field. It is expected to produce an absolute
minimum of the energy for small h and a. In this situa-
tion, a' =a and the rotation angles become

2M, h

( I+a)(H y+4H~)
—2M, h

( I+a)(H +4'�)
(b) The second solution is

(33)

g=~/2 . (34)

It corresponds to a ferromagnetic configuration (8, and

The a' dependence is entirely contained in the factors
Hz(a'), H„=H„(a'), and M, =M, (a').

This set of equations has four solutions. One of them,
giving the absolute minirnurn of F, is the only physical
one. However, the set of physical values for the varia-
tional parameters may correspond, in principle, to any of
the four solutions as the strength of the field is varied.
Crossovers yielding phase transitions are thus conceiv-
able. We have the following:

(a) the first solution of Eqs. (28)—(30),

8z are measured from the antiferromagnetic state) and is
expected to give the absolute minimum of the energy
functional for high values of the magnetic field. In this
limit a' —+0.

(c) The solution

g=vr j2, g=O (35)

represents an antiferromagnetic configuration in the
x —y plane. It is expected to yield the absolute minimum
of energy for small magnetic fields and a & 1.

(d) The last solution,

gWO, g =a /2, (36)

never gives an absolute minimum of the mean energy.
We solved Eqs. (28)—(30) numerically for a number of

values of the reduced magnetic field h„. The energy was
then evaluated for each of the four solutions. Figure 1

shows the results for exchange anisotropy a=0.5, depict-
ed as functions of the strength of the reduced magnetic
field. The mean energies given by the different solutions
are labeled (a), (b), (c), and (d). The curve associated to
the absolute minimum of the energy functional,
representing the true energy, is composed of two parts
determined by the crossover at h =1.3 of the solutions
(a) and (b). It is seen that at this point the solution
changes smoothly from an antiferromagnetic
configuration to a ferromagnetic one as the magnetic field
increases. In the high-field regime a' decreases to zero,
while 0& and Oz go to ~/2 and —m. /2, respectively.

Figure 2 displays the same as Fig. 1 but for a=1.5.
This corresponds to anisotropy toward the XY sector of
the anisotropic Heisenberg model. The results of Fig. 2
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FIG. 1. Ground-state energy of the Heisenberg antiferromag-
net in one dimension as a function of the external magnetic field

H„, whose direction is perpendicular to the z direction, charac-
terized by the anisotropy of the exchange interaction between
the spins. Dimensionless magnitudes are used. The anisotropy
parameter a=0.5 corresponds to a situation intermediate be-
tween the Ising (a =0) and isotropic (a= 1) Heisenberg models.
Two of the four sets of field-dependent variational parameters,
denoted (a), (b), (c), and (d), extreming the energy functional
participate in the curve giving the physical energy. They deter-
mine two different field-dependent phases of the model at T=O.
Their precise nature is discussed in Sec. VI. The black circles
represent the results of a numerical simulation for a chain of 12

spins.

show an additional transition because a contribution of
solution (c) now enters for field strengths below h„= l.
The crossover between (a) and (b) is shifted to higher
fields.

Figures 1-3 show how the ground-state energy of the
variational calculation compares with computer-
generated data, represented by the discrete points, for
several choices of the anisotropy parameter a. The com-
putational approach is based in the Lanczos method and

assumes a chain of 12 spins. Details of the numerical
procedure are provided in Refs. 30 and 31. Figure 3 om-
its the different curves associated with the several solu-
tions of the extremum equations and exhibits just the arcs
of them corresponding to absolute minima. The agree-
ment between the variational and numeric results is ex-
cellent, particularly for small values of a.

The sublattice magnetization, correlation functions,
and magnetic susceptibilities are obtained from Eqs. (11),
(12), and (13). One has

(S,(l)S,(l +1)) = —
—,'(H„+4M, H, ) cos(2g—)

8(H„~+4M—, +H„)cos(2' ),
(S„)= —M sinricosg,

and

(37)

(38)

FIG. 3. Ground-state energy as a function of the strength of
the external transverse field, for isotropic exchange interaction
(a=1) and two anisotropic situations. The magnitudes of the
plot are dimensionless. The filled circles, squares, and triangles
are the results of numerical simulations and the continuous lines
represent the results of the variational theory.

0.3

ay=M, ( sing cosg) . (39)

-0.3

& -o.s

-1.3

-1.8
0

o;d.5
Transverse he/d

2

hgpH IJ

(d)

|'a)

The former results for H=O reduce to those obtained in
Ref. 20.

V. SOLUTION FOR PARALLEL
MAGNETIC FIELD

In this situation h =0, and the corresponding set of
extremal equations

M, h,
cosg (1—a) H„Hl sing —— —sing =0,

(40)

FIG. 2. Same as Fig. 1, but for a=1.5, which corresponds to
anisotropy toward the XY limiting model (a~Do). Three of
the four solutions of the extremum equations contribute now to
the physical energy for different values of the external field H .
The system exhibits three phases at T=O. and

M, h,
cosri (1+a) H„~+HI ) sinai—+ sing =0,

4 xJP I 2

(41)
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2
1 2 a H H

, H„—,H —2aM, —(1+a),—,—M, sin ri2Q' " 2CL' 2a' 4a'

2
H~y H~y—(1 —a), +, +M, sin g

—H„„h, sinqsing=O, (42)

has again four solutions:
(a) In the first one,

g=ri=O, (43)

the spins remain oriented antiferromagnetically along the
z axis and corresponds to a local minimum of the mean
energy. The equation for a',

(44)

has the solution a'=a for small a, which is the relevant
case. The ground-state energy, magnetization, and corre-
lation functions correspond to those of the case in which
there is no external field and the magnetic susceptibility
vanishes.

(b) The second solution,

2M, h,
sing=

2
' (1 a)(H„—4HI )— (45)

2M, h,
g ~ +

2 (1 a)(H„4H—I)—
2M, h,

0 ———+
2 (1 a)(H„4H—I)—

(46)

for a weak magnetic field. The spins are ferromagnetical-

0.1 0

represents a configuration in which the spins of the two
sublattices point along the same direction and represent a
maximum of energy. The rotation angles are

I

ly correlated along the x direction and it never gives the
absolute minimum of energy.

(c) The third solution,

—2M, h,
2

' (1 a)(H—„y+4HI )
(47)

gives an antiferromagnetic configuration oriented along
the x axis. The angles of rotation are

2M, h,

2 (1+a)(H„+4HI )

2M, h,
6) ~ +

2 ( I+a)(H„y+4Hi)

(48)

This solution may correspond to the absolute minimum
for a) 1.

(d) Finally, for

g=g=m. /2, (49)

one has that 0, =~ and I92=0. Hence the spins align fer-
romagnetically along the z direction and the solution
represents an energy maximum.

Figure 4 shows the expectation value of & given by the
four solutions for +=0.5, that is, anisotropy toward the
Ising limit. The ground state exhibits three phases, cor-
responding to solutions (a), (c), and (d), whose physical
realization occurs sequentially on increasing the strength
of the external field. Figure 5 shows the same situation
for a = 1.5, which corresponds to anisotropy toward the
XY model. Just two phases, associated with the solutions
(c) and (d), do occur. Figure 6 displays the ground-state
energy of the model as a function of the field intensity at

-0.1 5
0.3

-0.65

-0.90
0.0

o,=0.5
Paral l el Field

0.5

L

1.0
hgpHz JJ

1.5

L (y)

2.0

-0.3

-0.8

-1.3
ex& .5
Parallel Reld

(c)

FIG. 4. Ground-state energy in one dimension as a function
of an external magnetic field H, applied in the z direction. The
parameter a=0.5 corresponds to anisotropy toward the Ising
sector. The model exhibits three phases, governed by the solu-

tions (a), (c), and (d), for different strengths of the field. The
black circles are numerical results for a chain of 12 spins.

-1 .8
0 2

hgpH, IJ

FIG. 5. Same as Fig. 4, but for anisotropy in the XY sector.
Just two phases do occur at T=O.
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0.0 m/2------

-0.5

-1.0

-1.5

-.--- e2
Transverse Reld

—u&.5
uh. 5

-2.0
0 2

hgpHIJ

-x/2
2

hgpH„/J,

FIG. 6. Same as Fig. 3 but for external field parallel to the
direction in which the exchange interaction between the spins is
anistropic.

isotropy (a= 1) and for two anisotropic situations. It is
evident that precision increases when approaching the Is-
ing limit.

VI. NATURE OF THE DIFFERENT PHASES
IN ONE DIMENSION

The character of the several phases that the model goes
through at T =0 when varying the strength of the exter-
nal field can be visualized from the values assumed by 0&

and 02. These are the mean angles subtended by the spins
in the two sublattices with respect to a perfect antiferro-
magnetic configuration oriented along the z axis. This
way, for example, 8, =82 and 8, = —82=m/2 correspond
to an antiferromagnetic and a ferromagnetic situation, re-
spectively.

Figure 7 shows 0& and 02 as functions of the intensity
of the transverse field for the same anisotropies of Figs. 1

and 2. The exchange anisotropy a determines interesting
difterences in the behavior of the field-dependent spin or-
dering. For the enhanced Ising term (a =0.5) the system
shows a low-field regime in which the spins maintain ap-
proxirnately their antiferrornagnetic alignment, but a uni-
form magnetization arises in the direction of the field as
the latter increases. The transition from solutions (a) to
(b) of Sec. IV correspond to a transition to a ferromagnet-
ic configuration. The transition is continuous but not
smooth. It should be noted that 0& and 02 establish only
the mean orientation of the spins because the ground
state (20) incorporates quantum fluctuations, which are in
general considerable for a&0.

For an enhanced XY term (a = 1.5) the system has an
additional transition. For h =0 it starts from an antifer-
romagnetic configuration in the x —y plane and stays in
it up to a finite value of the field strength. Then it goes
through a discontinuous transition to a new phase. Here
the spin components along the z direction exhibit antifer-
romagnetic order while their x projections have all the
same sign. A new transition, now to a true ferromagnetic
regime, takes place at a higher field.

Figure 8 plots 0& and Oz as functions of the strength of

FIG. 7. Mean orientation of the spins in the two sublattices
for transverse magnetic field H„. The angles 8& and 02, which in
our variational scheme are variational parameters, are such that
8&=02=0 correspond to an antiferromagnetic configuration
oriented along the z axis. For anisotropy toward the Ising sec-
tor (a=0.5) the spins are antiferromagnetically correlated for
H =0, develop a ferromagnetic component following the field
direction as the strength of the latter increases, and then under-
go a sudden transition to a true ferromagnetic configuration.
For anisotropy toward the XY sector (a=1.5) the model at
H„=O is antiferromagnetic in the xy plane. This kind of spin
ordering prevails up to a finite value of the field intensity, at
which the system jumps to a configuration behaving as in the
previous case.

m/2 .=:

0
0

—---e,

2

hgpH, IJ

—uW. 5
u&.5

Parallel Re/d

FIG. 8. Same as Fig. 7, but for the direction of the field,
which now is parallel to the z axis. Except for a rotation in m/2,
the behavior of the mean orientation of the spins in the two sub-
lattices resembles that of the previous case, in which the field is
perpendicular to the x axis.

a field parallel to the z direction, associated with the an-
isotropy of the spin-spin interaction. Again the behavior
for anisotropies toward the Ising (a =0.5) and XY
( a = l. 5 ) limits exhibits interesting differences. For
a=0.5 the system has three phases and two transitions.
For low parallel fields the spins persist in an antiferro-
magnetic configuration oriented along the z axis. When
the reduced magnetic field increases up to about h, =0.7,
the spins jurnp abruptly to a new configuration, which
may be thought of as an antiferromagnetic alignment of
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FIG. 9. Magnetization per site in units of Ap for field exter-
nal field in the x direction, i.e., perpendicular to the direction in

which the exchange interaction between the spins is anisotropic.
Notice the discontinuity of the curve for a = 1.5.
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FIG. 10. Same as in Fig. 9, but for the orientation of the
field, which in this case is parallel to the z axis. Now the mag-
netization for a=0. 5 is discontinuous.

the spin components in the x-y plane together with fer-
romagnetic order of the z components. The magnetiza-
tion along the z axis increases with h, and the system
stays in this regime until the reduced parallel field
reaches the point h, =1.5, where the x-y antiferromag-
netic component disappears and the system goes through
a true ferromagnetic phase oriented in the z direction.
While the first transition is abrupt, the second is continu-
ous.

For a=1.5, that is, anisotropy toward the XY limit,
the system behaves quite differently. In agreement with
previous results, at h, =0 the system has antiferromag-
netic order in the x-y plane. As h, increases the field
causes a ferromagnetic magnetization along the z axis.
Close to h, =2.5 the system enters a new phase, in which
the spin fluctuate around a perfect ferromagnetic
configuration.

Figures 9 and 10 display the magnetization along the
field direction for transverse and parallel external fields,
respectively.

Figure 11 shows the field-dependent magnetization for
a transverse external field, as given by our variational ap-

FIG. 11. Magnetization per site in units of Ap for three
values of the anisotropy parameter and for the transverse field.
The continuous lines represent the results of our variational cal-
culation and the black circles the computer simulation. The
stepped appearance of the results of the latter are due to the
finite size of the sample. The scale at the right represents the
magnetization in units of spins up and down for the 12 spins of
the sample.

proach (continuous lines) and by the computer simulation
(black circles), for three values of the anisotropy parame-
ter a. The computer calculation assumes a chain of 12
sites, which explains the stepped shape of the numerical
results. But for this technical aspect both approaches ex-
hibit very good agreement.

VII. CONCLUSIONS

Our main objective in this paper is to introduce the
method and to show that it constitutes a valuable tool in
the study of the Heisenberg model with magnetic field in
one or more dimensions. Most of the calculations and all
the specific results presented here are valid for the linear
chain. The general formalism, however, is not restricted
to one dimension. On the contrary, there are sound argu-
ments indicating that precision must increase dramatical-
ly with the lattice dimension. ' Whereas the linear
chain is the weaker case for our analytic variational ap-
proach, it is the only one that allows for a complete and
reliable numerical solution for the ground state with
finite magnetic field. Hence, the success of our trial func-
tion in one dimension constitutes the most stringent test
for the general approach put forward in Secs. II and III.

A detailed study of the ground-state properties of the
anisotropic Heisenberg antiferromagnet with higher
dimensionalities is now in progress, and the results are
planned to be published elsewhere. Our scope at this
stage is simply to show the accuracy and reliability of the
formalism. Beside its precision and mathematical simpli-

city, the method has the important advantage of account-
ing for the different magnetic phases and their transitions
with a single tria1 function having a compact mathemati-
ca1 expression.

ACKNOWLEDGMENTS

This work has received financia support from FON-
DECYT and DTI.



46 NUMERIC AND VARIATIONAL STUDY OF THE ANISOTROPIC. . . 3435

D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M.
Newsam, C. R. Safinya, and H. E. King, Jr., Phys. Rev. Lett.
58, 2802 (1987).

M. Sato, S. Shamoto, J. M. Tranquada, G. Shirane, and B.
Kleiner, Phys. Rev. Lett. 61, 1317 (1988).

G. Shirane et al. , Phys. Rev. Lett. 59, 1613 (1987).
4E. Manousakis, Rev. Mod. Phys. 63, 1 (1991)
5D. Gottlieb and M. Lagos, Solid State Commun. 79, 551 (1991).
D. A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988).

7D. Huse, Phys. Rev. B 37, 2380 (1988).
SH.Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1940 (1987).
E. Manousakis, Phys. Rev. B 40, 4904 (1988).
A. Auerbach and D. P. Arovas, Phys. Rev. Lett. 61, 617
(1988).

'D. C. Mattis and C. Y. Pan, Phys. Rev. Lett. 61, 463 (1988).
R. Wang, Phys. Rev. B 43, 3786 (1991).
T. Pang, Phys. Rev. B 43, 3362 (1991).

~G. Gomez-Santos, Phys. Rev. B 41, 6788 (1990).
H. Bethe, Z. Phys. 71, 205 (1931).

' R. Orbach, Phys. Rev. 112, 309 (1958).
J. des Cloiseaux and M. Gaudin, J. Math. Phys. 7, 1384 (1966).

~sH-g Ding, J. Phys. Condens. Matter 2, 7979 (19901.

M. Lagos and G. G. Cabrera, Solid State Commun. 67, 221
(1988).
M. Lagos, M. Kiwi, E. R. Gagliano, and G. G. Cabrera, Solid
State Commun. 67, 225 (1988).
M. Lagos and G. G. Cabrera, Phys. Rev. B 38, 659 (1988).
D. Gottlieb and M. Lagos, Phys. Rev. B 39, 2960 (1989).
G. G. Cabrera, M. Lagos, and M. Kiwi, Solid State Commun.
68, 225 (1988).
D. Gottlieb, M. Lagos, K. Hallberg, and C. Balseiro, Phys.
Rev. B 43, 13 668 (1991).
M. Lagos, Solid State Commun. 77, 597 (1991).
D. Gottlieb and V. Diaz, Phys. Rev. 44, 2803 (1991).
M. Montenegro and D. Gottlieb, J. Phys. Condens. Matter 3,
8641 (1991).
D. Gottlieb, M. Lagos, and M. Montenegro, Solid State Com-
mun. 81, 729 (1992).
T. Barnes, D. Kotchan, and E. S. Swanson, Phys. Rev. B 39,
4357 (1989).
E. Dagotto and A. Moreo, Phys. Rev. B 31, 865 (1985).

'E. Gagliano, E. Dagotto, A. Moreo, and F. Alcaraz, Phys.
Rev. B 34, 1677 (1986).


