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The frequency and temperature dependence of the conductivity of a one-dimensional fermion
system with attractive interactions is studied by using a renormalization-group technique. At half
filling the real part of the conductivity has it both a. b(v) part and a divergent frequency behavior

at Rnite frequencies, where v is a nonuniversal exponent depending on the interactions. For the
particular case of the attractive Hubbard model, logarithmic corrections appear and the conductivity
behaves as 1/[v ln (u)], plus a b(u) part. Away from half filling the conductivity has a 6(u) part
and a gap up to a critical frequency ~„where ~, is proportional to the doping with a prefactor
depending on the interactions. The results obtained for the fermion model can be straightforwardly
extended to the conductivity of an interacting one-dimensional boson model.

I. INTRODUCTION

Strongly correlated fermionic or bosonic systems con-
stitute nowadays one of the most interesting and chal-
lenging problems of solid-state physics. A possible ap-
proach to this very difFicult problem is by understand-
ing the physics of one-dimensional (lD) models. The
one-dimensional models are usually much easier to han-
dle than their counterparts in higher dimensions and can
sometimes be exactly solvable, for example the 1D Hub-

bard model. Even for more complicated models, very
efFicient techniques such as bosonization or renormaliza-
tion calculations are applicable and are expected to
give the correct physics. Besides the physical insight
that such one-dimensional interacting electron models
can offer to understand higher dimensions, they have
also proved to be of fundamental importance for purely
one- or quasi-one-dimensional specific problems, e.g. ,

quasi-one-dimensional organic conductors or conducting
polymers, where interactions are known to play a major
role.

As is well known in one dimension an interacting elec-

tron gas will be, for repulsive interactions, an insulator
at half filling due to the existence of umklapp process, "-

whereas away from half filling the umklapp is expected
to be irrelevant and the system is a conductor. There
is, therefore, a metal-insulator transition as a function of
doping, which has received much attention in the recent
past. For attractive interactions on the other hand
the system has a superconducting ground state, at or
away from half filling. A particular theoretical exam-
ple of such a model would be the negative-U Hubbard
model. More generally, in realistic one-dimensional con-
ductors, such models with attractive interactions can also
be viewed as reasonable effective models when electron-
phonon interactions are present. If the interactions
change from attractive to repulsive, the system will un-

dergo a superconducting-insulating or supercoiiducting-
metallic transition, depending on the filling. A similar
metal-insulator transition driven by interactions occurs
also for spinless fermions at half filling.

II. HAMILTONIAN

The Harniltonian describing, in the long-wavelength
limit, the most general one-dimensional system with spin-
isotropic short-range interactions, has been derived at
length in Refs. 2, 3, and 11. I will therefore just quote
the results here to fix the notations. The Hamiltonian is

H= Hp+H + 2g3
dz cos[v 8P p(z) + bz]

2giz
(2xn)2

dz cos[v 8$ (z)],

In this paper I will study such a transition and more
generally compute the full frequency and temperature
dependence of the conductivity of an electron gas with
attractive interactions at arbitrary filling, using the same
technique as for the repulsive case.

The interest of such a study is twofold. First it allows
one to address the question of the superfluid-insulator
transition in one dimension. It also provides an in-

teresting example of what the physical properties of a
strongly interacting superconductor can be. Secondly, in

one dimension, an attractive fermion gas can be mapped
straightforwardly to a repulsive boson gas. One can
therefore extract the conductivity of a boson gas close
to a superfluid-insulator transition as well as the various
exponents of the transition, This allows us to check and
complement the scaling hypothesis or numerical work
that has been performed on such systems.

The plan of the paper is as follows. In Sec. II I re-

view the Hamiltonian of a general Luttinger liquid and
the general formula for the conductivity. In Sec. III
the conductivity is computed for arbitrary filling, tem-
perature, and frequency, by using a memory function
approximation. Such an approximation is valid if the
umklapp term is small. Section IV shows how the use of
renormalization equations allows one to find the conduc-
tivity even in the case of a general umklapp process at
and away from half filling. Section V discusses the boson
problem.
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where H~ and H are defined by i 2uK
o(~) =-

47 X
(2.5)

(2.2)

II and P are canonically conjugate boson fields, and
zll = 0 8. The p and o parts of the Hamiltonian (2.1)
describe, respectively, the charge and spin degrees of free-
dom of the system, The u, I&, and g are constants de-

pending on the microscopic model considered and are
the only ones needed to describe the low-frequency, low-
temperature, long-wavelength properties of the system. u
is the velocity of the excitations, and K controls the de-
cay of various correlation functions. The g~~ term is the
scattering between electrons of opposite spins with an ex-
change of momentum of 2k~. The umklapp process gs is
the only process that does not conserve momentum. The
term gs comes from the fact that the microscopic Hamil-
tonian, of which (2.1) is the continuum limit, is defined
on a lattice, and momentum is therefore only conserved
modulo 2n. The other interaction processes (hidden in
the u and I& parameters) conserve momentum. Also n
is a short-distance cutoff that can be identified with the
lattice constant, b = 4k' —2z/e measures the distance
to half filling, and z /(2a) would be the Fermi wave vec-
tor for a half-filled band. Therefore, if d is the doping
(d = 0 at half filling and d = 1 for a filled band), one
has d = (o.b)/(2z). Note that here we assume that we
work at fixed number of particles, since kF is directly re-
lated to the filling. For the Hubbard model the various
coefficients in (2.1) and (2.2) are given by

upKp ——u K = v~,

u~/I& = vF —U/z,

up/I&p ——vy + U/z,

e» =a3= U,

(2.3)

(2.4)

It is also easy to show that the conductivity is given by

in a perturbation expansion in U. If U is not small com-
pared to the bandwidth, the above expansion is no longer
valid but one can still extract the parameters in (2.1)
from the exact Bethe-ansatz solution for various
integrable models.

As visible from the Hamiltonian (2.1) there is for low-
temperature and -frequency properties a decoupling be-
tween charge and spin degrees of freedom. For the charge
transport properties, one need only consider the charge
part of the Hamiltonian (2.1). Note that such a decou-
pling is only exact in the asymptotic limit ~ ~ 0. The
corrections to the Hamiltonian (2.1) are finite at finite
frequencies and may aft'ect the conductivity by adding
regular corrections (going to zero when ~ ~ 0). Since
such corrections are regular and vanish when ~ ~ 0, I
will not consider them here and will restrict consideration
in the following to the pure Luttinger liquid described by
(2.1) for which spin charge separation is correct at all
frequencies.

For (2.1), one gets for the currentis ii

where g(~) is the retarded current-current correlation
function. In (2.5) and in the following the p indices are
dropped, since only charge variables will now be consid-
ered. Note that here what plays the role of the plasma
frequency in the usual formulas for the conductivityis is
uE. In the absence of umklapp (2.5) is easily evaluated
to give

i 1
o(~) = 2uI&

l b(~) + —P— (2.6)

'P being the principal part. Therefore, in the absence of
an umklapp process the system is a perfect conductor,
and the strength of the Drude peak is simply given by
2uK 8,13

The umklapp term gs in the Hamiltonian (2.1) is a
singular perturbation. The phase diagram and the renor-
malization equations of the various parameters in (2.1)
are well known,

= —zyszI&z Jo(b(l)a(l)),

= (2 —2K)ys,
2

= ——uI& Jz (b(l) n(l) ),dI 2
2

Ji(b(l)n(l)),

(2.7)

where ys ——gs/(z'u) and I describes the renormalization
of the cutoff' n by n(l) = ne' and J are Bessel functions.
The existence of the Bessel function is related to the use
of a sharp cutoff in real space, whereas a smooth cutoft'
would have led to nonoscillatory functions.

If one is at half filling b = 0 one then recovers the
usual Kosterlitz-Thouless equationsz4 with a separatrix
at IC —1 = ~ys[/2 between a regime where gs is irrelevant
and a regime where it is relevant, and leads to a gap in
the charge spectrum In the . case I& —1 ) (ys)/2, which
corresponds to the attractive case [see, e.g. , (2.3)], gs
renormalizes to zero and the fixed point Hamiltonian is
the free one (2.2), with a renormalized I&' and u'. Away
from half filling, due to the oscillations from the Bessel
functions the renormalization due to gs is stopped when
b(l) I/n Note that i.f one is away from half filling,
since b g 0, there is always one length scale at which b

stops the renorrnalization; thus gs is always an irrelevant
operator. The fixed point Hamiltonian is again the free
one with renormalized u' and I~'.

For the attractive case I~ —1 ) [ys~/2, i.e. , the case
where g3 is an irrelevant operator and renormalizes to
zero, even at half filling; the system has divergent super-
conducting fIuctuations2 and is a true superconductor
at zero temperature although it does not possess long-
range order. 2 The repulsive case K —1 ( ~ys~/2 has
been examined in a previous paper.

To get the correct frequency behavior of the conduc-
tivity for a given initial value of gs, one has to take
into account the fact that the gs term leads to a sin-
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gular perturbative expansion at low enough frequen-
cies. One way to handle this difficulty is to vary the
cutoff u in the Hamiltonian (2.1) to iterate the renor-
malization equations up to a point where a perturbative
expansion in g3 can be performed, but with the renor-
malized parameters. 2 ~ In contrast to what happens for
repulsive interactions where the renormalization equa-
tions Row toward strong coupling, here one will always
remains in the weak-coupling regime allowing us to ex-
tract results up to zero frequency or temperature from
the renormalization-group equations.

where

(3.2)

[{FF)' —{FF)'=o]/~
—x(o)

(3 3)

The calculation of the memory function can be carried
out perturbatively to give at the lowest order

III. PERTURBATIVE CALCULATION

i2uIt
0' td

1

~+ M(~) ' (3 1)

Since such results will be needed for the full study,
and, since it also exhibits the salient points of physics,
let us look first at the pure perturbation expansion. As in
Ref. 11, the simplest way to handle such a perturbative
expansion is through the memory funct, ion formalism. I
will just recall here the main lines of the calculation and
refer to Ref. 11 for more details. If one assumes that the
system is a normal conductor (o finite) at zero frequency,
then from (2.5) one gets X(0) = —2uI&/z, and one can
express the conductivity in terms of the meromorphic
memory function M(u) by

The I" operators take into account that the current is
not a conserved quantity F = [j, H], and {F;F)o stands
for the retarded correlation function of the operator I"
at frequency ~ computed in the absence of the scattering
potential (gs —0).

The memory function approximation is valid whenever
an expansion in power of g3 is possible. This is always the
case at fixed frequency for a small enough initial g3, but
to get for a fixed g3 the correct behavior for all frequen-
cies one needs to-couple the memory function formalism
and a renormalization-group treatment as for the case of
repulsive interactions. ~~ This will be done in Sec. IV. As
pointed out in Ref. 11, the memory function approxima-
tion alone corresponds to !ys! ((!K—1!.

The memory function for the Hamiltonian (2.1) is
given by

4K —2

M(u)) = —[ B(I~ —iS, 1 —2I~ )B(I~ —iS, 1 —2I&)
7f' O'

B(Ii —iS+—, 1 —2'') B(Ic' —iS, 1 —2I&)] (3 4)

with Sp = (~ + ub)/(4zT) and Sg —— Sy(~ = 0).
B(&,y) = 1(&)I(y)/I'(z+ y) is the beta function.

A. Half filling

g2K
M(~) sin(2z IC)I' (1 —2I&)

„-i~(2X-i) (3.6)

At half filling 6 = 0 and therefore S+ ——S . As shown
in Ref. 11, from (3.4) the temperature dependence of the
resistivity at u = 0 is simply given by

From (3.6), one can notice that M(~) behaves as ~4K

and is therefore negligible compared to cu when ~ ~ 0 for
attractive interactions. The real part of the conductivity
is therefore given at finite frequency by

2

p(~) = B (I~, 1 —2')

1 27rnTI
!x cos (+I')—T u

(3 5)

2g2uA2 4K —2
Reo.(~) sin (27t I&)I' (1 —2Ii)—x4a2 Cd 2Q

(3.7)

The physical implications of (3.5) have been examined
in detail in. ~~ Note that since p(T) T~4K s&, and for
attractive interactions one has K ) 1, the resistivity van-
ishes when T ~ 0. This is consistent with the fact that
the system has divergent superconducting fluctuations.

The frequency dependence (at T = 0) shows some
noteworthy features. One gets from (3.4) if T ~ 0

Fram (3.7), one sees that the frequency dependence of the
conductivity is o(u) u . Since for attractive inter-
action g3 renormalizes to zero, the system is described
in the long-wavelength regime by a fixed-point Hamilto-
nian, which is the free ane (2.2), but with renormalized
quantities u' and I~". Thus the conductivity is given
in the ~ ~ 0 limit by (2.6). The total real part of the
conductivity is
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Reo(~) = 2u'K" b(~) + Ags~ (3.8)

d~o(~) = (I~),
0

(3 0)

where the coefficient A can be obtained from (3.7).
For the imaginary part of the conductivity one has

also a ~4~ 5 correction from (3.6), negligible compared
to the I/ur part of the fixed point Hamiltonian. One no-
tices two interesting features, first, in contrast to what
happens for repulsive interactions, the finite frequency
conductivity is proportional to g3 because the expansion
in gs is well defined. Secondly, although the system is a
genuine superconductor at T = 0, the conductivity be-
haves quite differently from the usual higher-dimensional
case, where the real part of the conductivity is zero up
to frequencies equal to the superconducting gap. Even
if there is no gap in one dimension, one would naively
expect a regular conductivity at finite frequency (going
to zero for ~ ~ 0) reminiscent of the gap. This is only
the case for sufficiently attractive interactions (I& & 5/4);
otherwise the conductivity has, in addition to the b(~)
part, a divergent finite frequency part.

The I& = 1 case (more precisely the separatrix Ii 1=-
~ys~/2 in the Kosterlitz-Thouless equations (2.7), if one
considers a finite ys) needs special care. In particular,
it is easily seen that it is impossible for the conductivity
to have a real part behaving at finite frequency in I/u,
since this would violate the sum rule

where I& is the kinetic energy, by making the conductivity
nonintegrable. There are in fact logarithmic corrections
to take into account, as will be seen in Sec. IV. This
manifests itself in the expression (3.6) as a divergence of
the prefactor when K ~ 1.

B. Away from half filling

Away from half-filling the formulas for the conductivity
are identical to those for repulsive interactions and have
been derived in Ref. 11. I will merely recall the results
and discuss the physical properties.

Two interesting regimes occur depending on whether
T (( (u, ub) or T )) (u, ub). I will not consider here
the cases (u, T) )) ub, since in that case we are led back
to expressions similar to those obtained for the half-filled
case: at sufBciently large temperatures or frequencies the
system is unable to distinguish whether or not it is at half
filling.

The temperature dependence is formally identical
whether or not one has attractive or repulsive interac-
tions (putting of course the correct I&), and one gets an
exponential increase of the conductivity due to the freez-
ing of the umklapp process in a one-dimensional system.
More details can be found in Ref. 11.

For the frequency behavior at T = 0, the memory func-
tion will depend on whether ~ & ub or not. For ~ ( ub

g~I& 4K-2 1
M(~) = s sin(2z IC)I' (1 —2'') — —([(ub) —~ ] —(u6) }. (3.10)

(1 —2')

By expanding in u, one sees that the first term is proportional to u

g2A (bo )'
M(~) sin(2zIC')I' (1 —2K) ~—

Ã A
(3.1 1)

The memory function has no imaginary part, which means that the resistivity strictly vanishes when ~ ( ub [except
for the b(u) part]. The fact that the real part of the memory function is proportional to ur traduces at the lowest
order the renormalization of I& by the gs term, and the fact that the conductivity will be given by the fixed point
Hamiltonian (2.2) as (2.6),

(3.12)

which is the result suggested by (3.10). Again irrelevant couplings between charge and spin or other irrelevant
operators could, in principle, modify these results and give a finite conductivity even if a ( ub. Such a contribution
should, however, vanish when ~ ~ 0.

If cu & ub, it is easy to see from (3.4) that M(u) acquires an imaginary part,

~I& 4K-2
ImM(u) = sin (2+Ii)I' (i —2K) (

—
)

—[w —(ub) ] (3.13)

If I& & 1 the correction due to the real part of M(u)
remains always small even if one goes closer to half filling
b ~ 0, since it behaves in b ~. This is to be contrasted
with what happens for repulsive interactions, where this
correction diverges, traducing the fact that the umklapp
term g3 becomes pertinent at half filling. For ~ ) ub the
conductivity start to increase as

[~2 (ug)2]2K —i
o(~) - gs (3.14)

IV. FINITE gg

We are now in a position to combine the results of
Sec. III with the renormalization equations (2.7) to get
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the full temperature or frequency dependence of the con-
ductivity.

A. Half filling

In this case only the temperature or frequency stops
the renormalization. The simple limit of Sec. III is equiv-
alent to neglecting the renormalization of K due to g3 and
to considering only the renormalization of gs itself. "

Since for a finite gs the renormalization of Ie has to
be taken into account, the simple power law (3.7) is no
longer valid. By numerically integrating (2.7) and using
(3.5) one can obtain the full temperature or frequency
dependence of the conductivity for various values of the
interactions. The results are shown in Fig. 1, for vari-
ous values of ys and Ii. One notices that the power-law
behavior ~4 (T +) that is valid at high frequency
(temperature) is modified by the renormalization of Ii,
and the exponent is weakened to become at low frequency
(temperature)

The asymptotic expression (4.1) is valid as long as one
has I&(l) —I~' (( ys(l). It is easily seen from the equa-
tions (2.7) that this is the case at sufficiently low fre-
quencies (or large I) unless one is exactly on the sep-
aratrix I& —1 = )ys)/2. In that case one has always
I&(1) —1 = ys{l)/2 and (4.1) never correctly gives the
low-frequency behavior (here I&" = 1). Such a case cor-
responds in particular to the attractive Hubbard model
as can be seen from the weak-coupling expressions (2.3).
For the attractive Hubbard model one remains on the
separatrix even at strong coupling, since at half Ailing
a particle hole transformation on one spin species maps
the attractive Hubbard model into the repulsive one. The
charge part of the former becoming the spin part of the
latter. The fact that one sticks to the separatrix is then
just a consequence of spin isotropy in the transformed
Hamiltonian.

On the separatrix IC—1 =' ~ys ~/2 one has from (2.7)

(4.2)

~(cu) = 2u'I&'b(u)) + Ags2~~~

o(id) - ~T—3-4K' (4.1)
cx(l)cu

20
(4.3)

where l = In[n(l)/o, (0)] and K = 1+ y(l)/2. If one
chooses to stop the renormalization when

where K' is the renormalized value of the I&. The ex-
act value of K' can be obtained from renormalization in
weak coupling and is 1+ 2i /4(Ii —1)~ —ys~ or, for some
models, directly from the Bethe-ansatz solution. '
The renormalization of the exponent from 4K —5 to
4I&' —5 can change qualitatively the behavior of the con-
ductivity, as can be seen from Fig. 1. Since I& ( I~ and
there is a nonzero conductivity at finite frequency, this
traduces the fact that the umklapp term, although irrel-
evant, will steal some weight from the b(u) part to push
it at finite frequency.

5 ~ I I I
l

I I I
l

I I I

I

I I I

l
I I I

3 2
b

Q
0.0 0.2 Q g 0.6 0.8 1.0

FIG. 1. Frequency dependence of the conductivity at half
filling. W u/n is half the bandwidth, and all curves
have been normalized with o(W). The full line, dashed line,
and dash-dotted line are for (K, ya) of (2, 0.5), (1.5, 0.5), and

(1.3, 0.5), respectively. The renormalized K' is, respectively,
of 1.87, 1.35, and 1.027.

Replacing l by its value, the conductivity reads

(4.5)

which at low frequency ys ln[(2u)/(czar)] )) 1 gives

8 1
o (~) 2~ ln (2u/o. ~)

In addition to the expected I/u behavior correspond-
ing to a renormalized value of K' = 1, logarithmic cor-
rections to the frequency dependence with an exponent
—2 appear at the superconducting-insulator transition.
Such corrections also exist on the critical line for other
correlation functions but here seem to arise only from
the logarithmic variation of the coupling constant g3 and
not from the need to renormalize the correlation func-
tion itself. so Note that the ln (u) correction is sufficient
to make the singularity of Ir(ur) integrable and therefore
keep it compatible with the sum rule (3.9). On the sepa-
ratrix (K' = 1) the stiff'ness constant is D = 2u. There-
fore, using (4.6), one can see that o(~)/u should be a
universal quantity up to the order 1/[coin (1/Id)]. It is
unclear whether this result remains true when one goes
beyond the Luttinger-liquid approximation. A similar
treatment for the temperature dependence would give

(4.6)

2u ln [u/(2z. nT)]
T (4.7)

then the memory function reads

,y'(l)Ii(l) (. 1 1

z n'(l) ( xy(l) ~I'[2I&(l)]
'

(4 4)
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B. Away from half filling which can be integrated to give

In this case there are two possible cutoH's for the renor-
malization equations, T or u and b. If T && ub, the renor-
malization equations are stopped at a length I ln(W/T)
and 6 introduces few changes in the renormalization fiow

(2.7) except for a small renormalization of the velocity u.
One therefore basically recovers the half-filled behavior
described in Sec. IV A. On the other hand, if u « ub, the
renormalization will be cut off by the Bessel functions.

An interesting quantity to compute is the frequency at
which the real part of the conductivity vanishes, which
was just ub if g3 —+ 0. For attractive interactions, one
can obtain its dependence on gs analytically. For small
6 one can use J„(z) (z/2)". The renormalization of 6

becomes

In[6(l)/6(0)] = dl
Q 2X

(4 9)

Q2
s(l) = (4.10)

sinh [Al+ arctanh(A/g6z + ysz)]

one stops the renormalization when the condition (4.3)
is reached. Then the critical value of ~ is given by u =
ub(1), where we have neglected the renormalization of u
due to gs, since it would be of higher order. From (2.7)
one gets

db ys~ 6(l)
dl 4x (4.8)

where 4 = 2(I4' —1) = +4(K —1)z —yss and b, = 0 on
the separatrix. From (4.8) one has

t'6(l)) 1 (
n = — b.z+ ys-j 4z' ( tanh[b, /+ arctanh(A//hz + ysz)])

(4.11)

The conductivity starts to be nonzero when
6(1). Since one stops the renormalization when /'

In[u/(era)], one has for small 6

energy properties of the interacting boson gas are de-
scribed by the Hamiltonian~s

~, = 6(I') 6(oo) = be&'~ l l+ '+~' ~l (4.12)
dz (v K )(&-4)'+ (&-g)',

2z' (Kg)
So in the case where the doping is small the critical value
of ~ at which the real part of the conductivity of a Lut-
tinger liquid starts to be nonzero is still proportional to
the doping but with a prefactor depending on the inter-
actions and greater than one.

V. ONE-DIMENSIONAL BOSONS

(5 1)

where p(z) is the particle density operator and P(z) the
phase of the boson field. Taking the discrete nature of
the particle density into account, the density operator is

p(z) = — ) exp[2img(z)],
1 0$(z

(5 2)

where DP(z)/Bz = z [po+4(z)], pp is the average density,
and 4(z) obeys the canonical commutation relations:

[g(z), 4(z')] = ib(z —z'). (5.3)

If one sets 4(z) = 8 P(z), the long-wavelength —low-

The results obtained in the preceding sections and in
Ref. 11 can easily be applied to a boson gas with repulsive
interactions in one dimension. To see that fact, we use
a representation of boson operators in terms of phase
fields introduced by Haldane. The single-boson creation
operator is written

(5.4)

where from Galilean invariance one has vq/(zK~)
ps/m, and svqKq ——~/(zzpsz), where ~ is the compress-
ibility. Clearly, the excited states of H are sound waves
with phase velocity vy, which from (5.1) are the phonon
modes typical of a Bose superfluid. The existence of such
modes is sufBcient for true superfluidity to exist. The
coefficient Ky determines the asymptotic behavior of the
correlation functions:~s

2

+Apo(por) '~ ' cos(2z-por)

(5.5)

with some numerical constants A and B.
A commensurate potential with the periodicity of the

lattice will give rise to terms similar to the umklapp
term~9

H, m —— dxcos2 z +br, (5.6)

where 6 = 2z'(1 —v)/o; is again the distance to commen-
suration. Here o. is the lattice constant and v the filling of
the lattice (v = 1 for one boson per site). If one rescales
the P field by ~2 then the boson Hamiltonian becomes
exactly the charge part of (2.1) with the identification
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I& = I/(2I~t, ).
(5.7)

A. v=1

This Hamiltonian is also identical (for v = 1) to the
one studied for the spinless fermions metal insulator
transition.

One can therefore straightforwardly use the above re-
sults and the results derived in Ref. 11 to study the con-
ductivity of a one-dimensional boson system. Note that
here the coefficient of the b(~) part in the conductivity
can be identified with the superfluid stiffness of the bo-
son gas. All the formulas for the conductivity obtained
for fermions have to be divided by a factor of 2 because
of the absence of spin degrees of freedom for the bosons.

istic of the Luttinger liquid and enters into the decay
of various correlation functions. K depends on the in-
teractions and I& ) 1 for attractive ones. For a fii-

nite umklapp, the renormalization of K by the umk-

lapp has to be taken into account. The temperature de-

pendence becomes o. —T, and the frequency one

o(u) = 2u'I&'b{~)+A~, where u' and Ii' are the
renormalized values of the velocities of excitations and
the parameter Ia. The conductivity has therefore both a
b(u) part and a divergent finite frequency part at least
for not too attractive (Ii* & 5/4) interactions. This is to
be contrasted with what one would expect for a super-
conductor in higher dimensions.

For models that are exactly on the transition line
(I&' = 1), as is the negative U Hubbard model, loga-
rithmic correction appears and the finite frequency part
becomes

The system undergoes a superfluid —Mott insulator
transition for I&i, = 1/2, of the Kosterlitz-Thouless
type. The superfluid stiffness is simply given by
vb j(2I&t, ) and therefore has a jump at the transition, since
it is zero in the insulating phase. In the superfluid phase
the conductivity is a power law of the temperature or
frequency as given by formulas (3.5) and (3.7) by using
the substitution (5.7) or in general, similar to the one
given in Sec. IV A. Exactly at the transition the conduc-
tivity exhibits logarithmic corrections as given by (4.6)
and (4.7).

B. vol
Then the transition exponents are just those of the

commensurate-incommensurate phase transition. z One
has P—P, = P, (v —1) = (P —Pc)~iIzl, where P is the chem-
ical potential and p„p, are the values of the chemical
potential and the density at the transition. If I&y & 1/2
the stiffness is given by

b p pc pc(v —1) (5.8)

where b, is the Mott gap for v = 1. Close to v = 1 one
has I&i, ~ l,z'" which fixes the decay of the various
correlation functions. Note that these exponents agree
with the one obtained by a different method in. The
frequency or temperature dependence of the conductivity
is the same than obtained in Sec. IV B for Iib & 1/2 or
in Ref. 11 for Iii, & 1/2.

VI. CONCLUSION

I have studied in this paper the influence of umk-

lapp scattering on the conductivity of a one-dimensional
Luttinger liquid with attractive interactions. By using
a renormalization group method and a memory func-
tion approximation, it is possible to obtain the temper-
ature and frequency dependence of the conductivity for
arbitrary fillings. For a very small umklapp term the
conductivity behaves at half filling as o(T) T
or o(u) w, where Ii is an exponent character-

Q 1
cr(~) =

2~ ln (2u/neo)

Away from half filling there is a crossover temperature
above which the temperature behavior is similar to the
one at half filling and below, which the conductivity
starts to increase exponentially with the temperature.
At T = 0, for the pure Luttinger liquid the conductivity
has a gap for frequencies lower that a characteristic fre-
quency u, and a b(u) part with u, = Aub, where b is the
doping and A a prefactor depending on the interactions
and A —+ 1 if the umklapp becomes infinitesimally small.

The results for the fermion system as well as those
obtained for the repulsive case in Ref. 11 are straight-
forwardly extended to the metal-insulator transition of
repulsive boson system. A superfiuid-localized transition
occurs now for increasingly repulsive interactions. The
conductivity is similar to the one obtained for the fermion
system and depends in particular whether or not the bo-
son system has a density commensurate with the lattice.
For a commensurate density the same logarithmic cor-
rections appear at the transition.

As for the repulsive case, a question of interest would
be the inHuence of disorder on both the b(~) part and on
the divergence at finite frequency. Although the purely
disordered system and the purely commensurate sys-
tem are reasonably well understood, the situation when

both are present is yet unclear. If one neglects the for-
ward scattering due to disorder, keeping only the back-
ward scattering part, the disorder becomes pertinent only
if A & 2/3 for the boson gas and therefore should not
affect the behavior in t,he commensurate case, since the
interaction-driven transition occurs for A' = 1/2. Away
from half filling or for the fermionic system where the
disorder is strongly pertinent, the situation is much less
clear. If forward scattering is taken into account the sit-
uation changes and disorder kills the commensurate po-
tential, at least if the commensurate potential is weak

enough. Again the situation for a finite commensurate
potential and weak disorder is unclear. The renormaliza-
tion equation for the disorder in the boson case are also
Kosterlitz-Thouless like but in the variables (I~, D ~ ),
where D is the disorder. Nevertheless, since the conduc-
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tivity at finite frequency has an expansion in D (instead
of ys2 for the umklapp term), one would expect, from a
similar analysis that the one in Sec. IV A, the same kind
of I/[u ln (~)] behavior to hold even if the transition is
disorder driven. This is consistent with previous results
and the scaling analysis of Ref. 31.

Another interesting question is how irrelevant opera-
tors, coming from the curvature of the band or higher-
order umklapp, not taken into account in the Luttinger-
liquid Hamiltonian (2.1), would affect the conductivity.
Although they give a vanishing contribution to any cor-

relation function in the limit ~ ~ 0, they may change
the finite frequency, or temperature, conductivity and,
in particular, suppress the gap that exists in the optical
conductivity of a Luttinger liquid away from half filling.
Such a question is still open.
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