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Polarized neutron reSection as a probe of magnetic films and multilayers
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The application of polarized neutron reflection (PNR) to the study of the magnetic properties of thin

films and multilayers is described. It is demonstrated that PNR provides a means of directly determin-

ing the magnetization-vector profile in multilayers of known layer thickness and layer density. Thus, the
magnetization reversal process in these systems can be directly studied. A matrix method is presented
which can be used to calculate the spin-dependent reflectivity from a multilayer with general in-plane

orientation of the magnetic moment in each layer. In addition, we show that behavior of the spin asym-

metry is dominated by multiple reflections and refraction just above the critical wave vector, but with in-

creasing wave vector, such processes become progressively less important, and the response moves to-
wards a "diffraction limit" in which a Fourier-transform approximation to the exact result can be used.
The ideas in this paper are illustrated by a number of examples, including the exchange-biased structure
Ag/Fe-Ni/Cu/Fe-Ni/Fe-Mn/Si.

I. INTRODUCTION

The coupling between ultrathin magnetic films has be-
come a subject of strong interest. An antiferromagnetic
coupling between two ferromagnetic layers has been ob-
served in Fe/Cr/Fe(001) using Brillouin light scattering'
and SPLEED. This interaction has been observed to os-
cillate between ferromagnetic and antiferromagnetic cou-
pling as a function of spacer thickness in Gd/Y superlat-
tices, Co/Cu/Co, and sputtered (Co/Ru)„and (Fe/Cr)„
superlattices. The length scale of this oscillation is be-
ginning to be understood in terms of the band structure
of the spacer layer, although several questions remain,
particularly concerning the detailed magnetic structure
resulting from the coupling. These couplings are of great
interest because of the large magnetoresistance (MR)
which is observed in antiferromagnetically coupled sys-
tems, although large MR effects are also seen in films be-
tween which exchange coupling is weak, as has been
demonstrated by recent experiments on Fe-Ni/Cu/Fe-
Ni/Fe-Mn. The large MR is interpreted in terms of a
"spin-valve" effect in which the relative orientation be-
tween the rnagnetizations in the two layers controls the
magnetoresistance. It is therefore of interest to study
directly the magnetization reversal processes in such
structures.

In this paper we wish to describe and demonstrate the
way in which the technique of polarized neutron
refiection (PNR) can be used to measure the
magnetization-vector profile of a multilayer system of
known layer thickness and layer density, in which the
magnetizations of individual magnetic layers need not be
parallel. It can therefore be used to determine the rela-
tive orientation of the magnetizations in a coupled film.
PNR has already been used to measure the magnetization
of single films (e.g. , Co/Cu, and Fe/Ag' } and to study
the magnetization profile in nanometer thick Co/GaAs"
and in a coupled Fe/Cr/Fe multilayer. ' In this latter

case, the interpretation is complicated by the fact that
multidomain formation occurs. PNR has also been used
to show that the magnetization in the ferromagnetic com-
ponent of an Fe-Ni/Fe-Mn bilayer structure is uniform. '

Here, we choose to illustrate our discussion of the tech-
nique with Fe-Ni/Cu/Fe-Ni/Fe-Mn; this is a convenient
model system in which the relative orientation of the Fe-
Ni magnetizations can be controlled, and in which the
ferromagnetic layers are single domain for appropriate
values of applied field. To understand the PNR tech-
nique, it is necessary to examine the re6ection, refraction,
and interference processes that can occur in neutron
re6ection from these systems. We show that the form of
the spin asymmetry is dominated by multiple reQections
and refraction just above the critical wave vector, but
with increasing wave vector, such processes become pro-
gressively less important, and the response moves toward
a "diffraction limit" in which a Fourier-transform ap-
proximation to the exact result can be used. We begin
with a discussion of these processes in simple systems.
The theory of neutron re6ection from multilayers will be
described in Sec. II, and this will be extended to a fully
spin-dependent theory in Sec. VI. Examples will be
presented in Secs. III—V and VII to illustrate these ideas.
The use of the technique in studying single layers has
been described previously. '

II. NEUTRON REFLECTION

The Schrodinger equation for the wave function of a
neutron in a solid 4(r), can be written in general as

2
V' + V(r} %(r)=Eel(r),

2mn

where m„and V(r) are the neutron mass and potential
energy. We will model the sample as a multilayer con-
taining n homogeneous regions numbered so that region
1 is vacuum, region n is substrate, and the evaporated
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layers are the regions in between, i.e., 2, 3, . . . , n —1. We
also assume that the multilayer has flat interfaces be-
tween these regions and so it possesses translational in-
variance in the (x,z) plane. We can then write the neu-
tron wave function %(r) in terms of k~~, the neutron wave
vector parallel to the surface,

lP( r):P(y)e

so that P(y) satisfies the one-dimensional Schrodinger
equation

2mn
(E—V) —k

II
p(y) 0

We then need to deal only with the perpendicular wave
vector q, given by

fi (q'+k',
~

) =(E —V),
2m„

so in the ath region we need only to solve

a+ 1) we can write

v
g =a e +b e fory, &y&y

+&[v v ], 'q +&[y
+a+ f a+] ++a+ 1 e

for y (y(y +, ,

where y =y defines the interface. The condition that P
and dg/dy are continuous aty =y can be met if

a +b =a +)+b +, ,

)=q +1(o +1 b +1)

which we can rewrite as

aa aa+&
D(q ) b

=D(q +') ba a+1

where the transmission matrices D(q ) and D(q +, ) are
given by

d2
+q i)'j(y) =0 for q

2m~
(Ei —V )

1/2
1 1

D(q )=
~a ~a

where q and V are the perpendicular wave vector and
potential energy in the ath region, and
Ei=E —R k~~ l2m„. (In the rest of this paper we shall
choose units so that A /2m„= 1.) Equation (2) has a gen-

iq y —iq yeral solution g(y)= Ae +Be ' . However, to deter-
mine the constants A and 8, we need to fit the boundary
conditions, namely, that f and d g/dy are continuous. It
is convenient to solve this using a transfer matrix
method. ' We can write the wave function in the ath re-
gion as the sum of a right traveling wave and a left travel-
ing wave

g() ~0~3 —
3 ~+b

—~q~3 —
3

a y aae e

and let us represent g (y) by a vector (t, ) at the interface
a

y =y . Then, at the first interface y =y, =0, g=(,'), and
at the last interface y =y„&, P=(0). These can then be
related by a transfer matrix M as

Mi2

M2) M22 0

The transmission and specular reflection coefficients, t
and r, are then given by t =1/M» and r =M2, /M».
The matrix M is given by

X —1

M=D '(q, ) g [D(q )P(q, d~)D '(qi)] D(q~),
j =2

(4)

where [D(q )] are transmission matrices and [P(q,d )]
are propagation matrices for the ath region, and
d =y —y, is the width of the ath region. We shall
now derive expressions for these matrices. Near the in-
terface between two adjacent regions (call them a and

Between the two interfaces bounding the ath region, it is
necessary to change the phases of the left and right trav-
eling waves using the propagation matrix

—iq d

P(q, d )=
0

lq d
e

III. SINGLE MAGNETIC LAYER

In this section we consider the simplest example of a
single magnetic film on a nonmagnetic substrate. The po-
tential energy in the ath region V [in Eq. {2)] can be
written as a sum of a nuclear term and a magnetic term

V= pb —p„B
27Tm n

where p„, b, 8, and p are the neutron moment, ,
coherent nuclear scattering length, magnetic field (due to
the magnetization in the region), and atomic density, re-
spectively. This gives rise to a reflectivity that depends
on the relative orientation of the spin of the incident neu-
tron and the magnetization of each magnetic layer. Let

Hence the transfer matrix for an n-region system can be
written in terms of transmission and propagation ma-
trices as in Eq. (4).

As a simple example, let us calculate the reflectivity of
the substrate alone. In this case, we have only two re-
gions, and the transfer matrix M is given by

M=D '(q, )D(q~)

1+q~/qi 1 —qz/qi

1 —
q~ /q, 1+qz/q &

and so the reflection and transmission coeScients are
r =M&&/M&& =(q& —qz)/(q&+qz) and t =1/M&& =2q& l
(q, +q~ ), the familiar Fresnel results.
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0
us consider the example of a 100-A-thick Fe film on a Au
substrate. In Fig. 1 (lower panel) we show the
refiectivities (R =

~r~ ) for the incident neutron spin
parallel (thick solid line) or antiparallel (dashed line) to
the Fe film magnetization. We also show the reflectivity
for a pure Au substrate (thin line) and the potential ener-

gy (inset) for the two configurations. These are plotted
against the incident wave vector q =q&, normalized to
the critical wave vector q, (which is equal to +V3 where

V3 is the substrate potential in this three medium sys-
tem). The quantity q/q, is known as the reduced wave

vector. We choose a convention where 1 (up) means that
the neutron spin is parallel to the film magnetization (and
hence the neutron moment is antiparallel to the film mag-
netization). Below the critical wave vector q„only
evanescent waves occur in the substrate, and all
reflectivities are unity. Above the critical wave vector,
the reflectivities all decrease from unity. We note that
R

&

~ R
&

because V& & V&, but that the reflectivities are
equal to the pure substrate reflectivity at certain values of
q/q, . At these values, which are different for the two
different incident spin directions, there are a whole num-
ber of wavelengths in the film and the wave field is per-
fectly matched on to the substrate. (This condition is
analogous to the boundary condition for sound waves in
an open pipe. ) We also note that R t (R

&
) attains a max-

imum (minimum) at different values of q/q„where there
are an odd number of half wavelengths in the film. (This
condition is analogous to the boundary condition for
sound waves in a pipe with one end closed. ) In addition,
R& can fall to zero if at its minimum, the condition
qz =q3q& is fulfilled. (This is the same matching condi-
tion as for the "blooming of lenses". ) We can directly
compare R (q) for the two incident spin states of the neu-
tron using a quantity known as the spin asymmetry, S,
given by

R —R

R)+Rg

I.O
0.5

M 0.0

-0.5-
-1.0

IV. EXCHANGE BIASED STRUCTURE

In this section we will next discuss a multilayer struc-
ture: (20 A Ag)/(60 A Fe-Mn)/(40 A Fe-Ni)/(20 A

Potential

vacuum

Fe-Mn

Fe-Ni up

Cu

Fe-Ni ti01%1!

si

(b)

vacuu

Fe-Mn

Fe-Ni

Cu

Fe-Ni

Si

(c)

This is shown in the upper panel of Fig. 1. Since this
quantity depends on the thickness and the magnetic mo-
ment of the film, measurement of the spin asymmetry can
lead to an accurate determination of these quantities.
The oscillation period is determined by the thickness, and
the magnetic moment determines the amplitude. It is,
however, a very weak effect in ultrathin films, and we will
describe a method to enhance it in Sec. V.

vacuu

LI

I

0 2
I I

4 6

a/a.
8 10

Fe-Ni

Cu

Fe-Ni

Si
FIG. 1. (a) The reflectivity for up {thick solid line) and down

(dashed) incident neutron spin is plotted against reduced wave
0

vector for a (100 A Fe)/Au film. The reflectivity for a pure Au
substrate is also shown (thin solid line). Inset: Profile of poten-
tial energy through the film for the two spin states. (b) The spin
asymmetry S=(R

~
—R ~ ) /(R ~ +R ~ ) for the same structure.

FIG. 2. The exchange-biased structure. (a) The potential en-
ergy for the two incident spin states (up=solid, down=dashed).
(b) Multiple reflections. (c) Single reflection approximation. (In
the experiment, the neutrons approach at glancing incidence. )
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V-
qj=+q, —

V, =q, —
2g1

if q, )& V . The transmission

j and j + 1 is given by

p2
+0

g)
coefficient between regions

r& ) + i =2q//(q) +qj + i) —1
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FIG. 3. The spin asymmetry for the (a) FM and (b) AFM
aligned exchange-biased structures. The thick solid line shows

the exact results, the thin solid line shows the single reflection

approximation worked out exactly, and the dashed line shows

the Fourier transform approximation of Eq. (10). This thin and

thick solid line overlap in both cases for q/q, greater than

about 3, i.e., the single reflection approximation is accurate for
this large wave vector range.

Cu)/(40 A Fe-Ni)/Si. We will defer a full discussion of
the reflection from many different orientational
configurations in this system until Sec. VII. To begin
with we will simply suppose that the magnetic moments
in the two Fe-Ni layers are in parallel alignment. This
can be readily achieved by the application of an external
field (see Sec. VII). Using the matrix method of Sec. II, it
is easy to calculate the spin asymmetry resulting from
neutron reflection from this structure. However, to ob-
tain greater insight into the processes involved, we will

present an important simplification. The neutron poten-
tial energy in the film is shown in Fig. 2(a) for the two in-

cident neutron spin states. The neutron reflection for one
of these two states is illustrated schematically in Fig. 2(b),
clearly showing the abundance of multip1e reflections.
However, if the incident energy is large with respect to
the neutron potential energy anywhere in the film, we im-

agine that the process of reflection is very weak, and that
we need to consider only a single reflection from each lay-
er [Fig. 2(c)]. In this case, the wave vector in the jth re-

gion 1s

+O(V/q ), and the refiection coefficient is rj. . +, =(q,
—qJ+i)/(q5+qJ+i) =(VJ+i —Vi)/4q21+O(V/q i )

Hence we can write the total reflectivity of the multilayer
to first order as

—1r= g e ' '(V+i —V),
2 J J (10)

which can be rewritten as a Fourier transform of the gra-
dient of the potential energy of the film

r =(4q, ) f e ' [dV(y)/dy]dy since this gradient can
be written as a sum of 5 functions, one at each interface:
[dV(y)/dy]=g":, '(V+, —V )5(y —y ). (For the pur-
poses of this paper we will assume perfectly flat inter-
faces. ) In Fig. 3(a), the spin asymmetry calculated using
the matrix method in Sec. II is drawn as a thick solid
line. The thin solid line shows the contribution from the
single reflection [Fig. 2(c)] calculated exactly, without the
Fourier transform approximation outlined above. As ex-
pected, at large incident wave vectors (larger than about

3q, ), it agrees extremely well with the matrix calculation,
but fails near the critical wave vector, oscillating wildly.
The thick solid line is a sum of an infinite series, and so
the oscillations in the thin solid line near the critical wave
vector can be understood as resulting from the sharp
cut-off we have made to this series by only taking the first
term. These oscillations die away at higher wave vector
when the "one-refiection" approximation we have made
becomes a very good one, and the thick and thin solid
curves overlap for wave vectors above about 3q, . (This
value depends on the material parameters. ) The Fourier-
transform approximation is shown as a dashed line. Here
we have taken the "one-reflection" approximation and
additionally ignored refraction. This approximation also
fails near the critical wave vector, but improves for in-

creasing wave vector, as refraction becomes progressively
less important. The approximation does give the correct
shape, and can be used to understand the structure in

S(q). We conclude that just above the critical wave vec-

tor, refraction and multiple reflections dominate the
response. At larger wave vectors, the effect can be under-
stood in terms of diffraction alone, since refraction and
multiple reflections decrease in importance with increas-
ing wave vector. In Fig. 3(b) the same graphs are plotted
for the case in which the moments in the two ferromag-
netic layers are in antiparallel alignment, with the mo-
ment in the upper Fe-Ni layer rotated by m. (We will dis-
cuss how this may be achieved in Sec. VII.) The large
difference between the response for the parallel and anti-
parallel configurations is clearly seen in Fig. 4(a). In Figs.
4(b) and 4(c), we plot the probability density, ~1(j(y) ~, for
the parallel (FM) and antiparallel (AFM) configurations,
respectively, at four values of the wave vector marked in

Fig 4(a) for. incident spin up (solid) and spin down
(dashed) neutrons. (We stress that the two magnetic lay-

ers are only weakly coupled, so that the labels FM and
AFM refer to ferromagnetic and antiferromagnetic align-
ment, not coupling. ) In both cases, in Figs. 4(b) and 4(c),
at wave vector 1, which is below the critical wave vector,
only evanescent waves are present in the substrate, and in
the vacuum, we see the interference between the incom-
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1.0
1a a 4

0.5-'

0.0
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-0.5 —',

—1.0 I

2

q/q.

I
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ing and rejected waves, resulting in a spatial variation of
~g(y}~ . Above critical re6ection, at wave vectors 2, 3,
and 4, traveling waves can propagate in the substrate.
We notice that with the antiferromagnetic structure, the
two reAectivities for the two different spins are of nearly
the same magnitude, but because of the different distribu-
tion of potential barriers for the two spin states, there is a
difference of phase. In the ferromagnetic case, the up-
spin reflectivity is much greater than the down-spin

reflectivity, except at the resonance (wave vector 4),
where it drops down to a very low value. This is very
close to a matching condition, and we notice that there
are a whole number of wavelengths fitted into the film.
This analysis illustrates the fact that PNR depends upon
the complex interference of rejected waves.

V. OVERLAYER ENHANCEMENT

We have seen that the reflectivity at large wave vector
can be quite well approximated by a Fourier transform of
the gradient of the potential energy through the film.
The single thin layer of Sec. II had two interfaces, and
hence the refiectivity at large wave vectors was governed
by the Fourier transform of two 5 functions, i.e., a
sinusoidal function. This in agreement with Fig. 1. For
very thin films, the oscillation period is thus very large in
reciprocal space. Hence the spin asymmetry can be
diScult to detect because the maximum of the oscillation
can occur at a value of q much larger than is observable
experimentally (in a typical experiment, q is less than
about 6q, ). By evaporating a much thicker nonmagnetic
overlayer on top of the magnetic film, it is found that the
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FIG. 4. (a) The spin asymmetry for the FM and AFM
aligned exchange-biased structures. The wave field as a func-
tion of distance into the film is shown for the (b) FM and (c)
AFM cases, at four values of reduced wave vector marked in (a)
by vertical dashed lines.

FIG. 5. (a) The spin asymmetry for (10 A Fe)/Au and (100 A
Au)/(10 A Fe)/Au. (b) The 6 functions of Eq. (10) shown
schematically for the two structures, and for incident neutron
spin up and down.
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spin dependent response is substantially enhanced. We
have effectively added a third interface to the system, and
hence a third 6 function, and this gives an oscillatory
component to the reAectivity of a much shorter period.
Although the overlayer is nonmagnetic, the total
reAectivity depends on all the interfaces since we measure
R =~r~, not r, and hence the magnetic contribution,
measured by S, is brought lower in q and is thus easily
observable. In Fig. 5(a) we show the spin asymmetry
from (10 A Fe)/Au, and (100 A Au)/(10 A Fe)/Au,
which illustrates the above argument, The corresponding
5 functions are shown in Fig. 5(b). The magnetic effect is
similar in both cases, but the eftect of the overlayer is to
compress the oscillation in q in order to bring the max-
imum into the experimentally observable range.

VI. SPIN-DEPENDENT NEUTRON RKFLKCTIQN

Although we have assumed that the magnetic moment
of each region is constant in magnitude and direction
throughout that region, it may vary from region to region
not only in magnitude, but also in direction. If the direc-
tion of the magnetic moment changes between two re-
gions, then so does the axis of quantization, and it is
necessary to transform the spinor wave function accord-
ingly. In this paper we will restrict ourselves to changes
of moment direction in the plane of the 61m for simplici-

ty, although other changes can be treated similarly. For
example, if the angle of quantization changes from region
1 to region 2 by an angle of 8 in the (x,z) plane, then we
must replace Eq. (5) with

D(q]] ) 0 $1

D(q] )

8
cos —I

2

8—sin
2

6
2

I cos —I

0
sin —I

D(q2] ) 0

D(q] )

S

where p' =(„, ) is the left and right traveling waves of spin s =1,1, in region a=1,2, and I =(o ] } [Note that each
a

component of the matrices in Eq. (11) above is itself a 2X2 matrix. ] We can therefore generalize Eq. (4) and write a

4 X4 transfer matrix for the spin dependent potential in Eq. (g):

N —1

M=D '(q„q, )R(8, 2) g [D(q, q )P(q, q, d. )D '(q, q. )R(8, j+])] D(q~. ,q]v),
J=2

where

D(q",q])=
D(q])

0

0

D(q," )
(13}

is the 4 X 4 generalization of the transmission matrices,

P(q",d ) 0
P(q",q, d )=

0 P(qj, dj )
(14)

are the matrices for rotating the quantization axis by
8 +, at the j-(j+1)interface.

For incident spin-up neutrons, we may in general write

M)i Mi2 Mi3 Mi4

u M21 M22 M23 24 0
0 M» M» M» M34

M4) M42 M43 M44 0

by analogy with Eq. (3), from which it is easy to show

that

is the 4X4 generalization of the propagation matrices,
and

cos(8, +, /2)I sin(8 . +, /2)I
»J+] —sin(8, ~+]/2)I cos(8,j+]/2)I.

(15)

0 M)] M)2 M)3 M)4
'

M2) M22 M23 M24 0

M32 M33 M34

M4] M42 M 43 M44 0

M]3/(M]]M33 M]3M3] )

td =M]] /(M]]M33 M]3M3] )

rd] =(M23M]] Mp]M]3) j(M„M33 M]3M3] )

re =(M43M]] M4]M]3)/(M']']M33 M]3M3 }

where the subscript d refers to incident spin down. The
spin asymmetry, Eq. (9), can now be written

M33 /(M]]M33 M]3M3] )

t„=—M3, /(M „M33—M, 3M3, ),
r„=(M2, M33 —M23M3, ) /(M „M33—M, 3M3, ),
r„=( M4 ]M33 M43M3] )/(M]]M33 M]3M3] ),

where the subscript u refers to incident spin up, and the
superscript refers to the spin state of the transmitted or
rejected beam. Similarly, for incident spin-down neu-

trons
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I
r„'I'+

I
r„'I'—

I
rd'I' —Ird'I'

Ir„' I'+ Ir.' I'+ Ird I'+ Ird I'
(16)

Hence the spin asymmetry is in general a function of four
reflection processes, resulting from the possibility of a
spin-flip reflection. We may now calculate the spin asym-

metry in multilayers whose coupling is more complicated
I

than simple ferromagnetic or antiferromagnetic. Howev-

er, before giving an example, it is useful to have a more
intuitive picture of the reflection process, analogous to
the Fourier transform result of Sec. IV. Consider a beam
of spin-up neutrons of unit amplitude approaching the in-
terface between two regions [Fig. 6(a)]. Using the formal-
ism above, it is easy to show that the transmission and
reflection coefficients through the interface are given by

2q i (q i +qz )cos(Hz/2)

cos (8z/2)(q, +qz )(q, +qz )+sm (Hz/2)(q, +qz }(q, +qz )

2q, (q, +qz )sin(Hz/2)

cos (Hz/2)(qi +qz )(q, +qz )+sin (Hz/2)(q, +qz )(q i +qz )

cos (Hz/2)(q~t —qzt )(q ~i+qz )+sin (Hz/2)(q& —
qz )(q& +qz )

cos (Hz/2)(q~t +qzt )(q~~+qz~ )+sin (Hz/2)(q~t+qz~ )(q~ +qz )

2qit cos(8zl2)sin (Hz/2)(qz —
qz )

cos (Hz/2)(q~t+qzt )(q t~+qz~ )+sin (Hzl2)(q ~t+qz~ )(q, +qz )

where Hz is the angle between the quantization axis (i.e.,
magnetic moment) in the second region, and the quanti-
zation axis of the incident neutrons in the vacuum.
Hence, in the large incident energy limit,

q, =q," ))max( V~t, V&~, Vzt, Vzi ), we have

V
t& =cos +0

2 q
2

where the spin index o is +1 ( —1}for 1 ( J, ) spin, and
where 8 is the angle between the quantization axis (i.e.,
magnetic moment} in the jth region, and the quantization
axis of the incident neutrons in the vacuum. This has all
been derived for an incident neutron beam which is spin
up. A corresponding expression can be derived for in-
cident spin down and the spin asymmetry, S, can be cal-
culated using Eq. (16).

2 V
t& =sin +0

2

02
r = cos (V —Vt)

4 2 2 2 1

q1

(17)

82 V+sin ( Vz~ —Vit ) +0

1 '92 . 2 ) ) V
r& = cos sin (Vz —Vz )+0

4q 2 2

In a multilayer [Fig. 6(b)], each interface will give a con-
tribution to the total reflectivity and in the high energy
limit, these contributions can simply be summed, since
multiple reflections can be ignored. It is important, how-
ever, to be careful to rotate all components back into the
frame of reference of the first region. After some manip-
ulations, this yields

n —1

r& = g e ' g —[ VJ+&(I+o cosHJ+i)
4q1 j=1 sr=+1

—V. (1 +cr cosH }],
n —1

r~=
z g e ' g —(V sinH. —V.+, sinHJ+, },

4q1 j=1 can=+1

VII. SENSITIVITY TO CONFIGURATION

We now return to the exchange-biased structure con-
sidered in Sec. IV. In small fields the Fe-Ni layer adja-
cent to the Fe-Mn is pinned by the unidirectional ex-
change anisotropy and so the direction of its magnetic
moment is fixed and independent of the direction of the
applied field. The other, uncoupled, soft Fe-Ni layer can
be saturated in the plane with a very small field, and is
thus free to rotate in the plane as this applied Geld ro-
tates, for appropriate values of the applied magnetic
field. In this way, the vector magnetization of the two
layers can be varied in a controllable manner, and we il-
lustrate our discussion of the PNR technique by consid-
ering the corresponding response in S(q).

The experimental arrangement is shown schematically
in Fig. 7(a). The sample is held in an in-plane applied
magnetic field (whose direction serves as the quantization
axis for the neutrons in the vacuum), and the moment in
the free Fe-Ni layer (Mz in the figure) becomes immedi-
ately aligned with the field. We can vary the direction of
the moment of the other Fe-Ni layer (M, ) in two ways.
First, by keeping the applied field well below the uni-
directional anisotropy field, M, remains pinned by the
Fe-Mn layer, and so its direction can be rotated in-plane
by rotating the entire sample about an axis normal to the
surface. Second, the sample can be mounted so that the
direction of unidirectional anisotropy is in-plane but at
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right angles to the applied field, and the spin dependent
reAectivity is then studied as a function of applied field.
Using a simple energy argument, we would expect this
magnetization change to occur by single domain rotation.
Experimentally, the second method is preferred, since the
first could be complicated by possible problems of sample
misalignment, inherent in the need to rotate the sample.
It should be noted that the second method allows 0 to
vary between 0 and ~/2 only (whereas the first allows any
angle) so that the 3n/4 .and rr simulations below could
not be realized experimentally by the second method.

In Fig. 7(b) we show the calculated spin asymmetry for
this structure as we rotate the pinned Fe-Ni layer in the
plane around from pure parallel to pure antiparallel
alignment. We first notice that the change in direction of
the moment of this Fe-Ni layer produces a marked
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FIG. 6. (a) The interface between two magnetic regions (re-

gions 1 and 2), showing the different quantization axes in the

plane for the two regions. (b) Part of an n-layer multilayer, at
the j-(j +1) layer interface.

Ag Fe-Mn Fe-Ni Cu Fe-Ni Si

FIG. 7. (a) The PNR experiment on an exchange-biased
structure shown schematically. The up- and down-spin direc-
tions of the incident neutron n are determined by the direction
of the applied field B. The moment in the free Fe-Ni layer (M2)
is aligned with the field. The moment in the pinned Fe-Ni layer

adjacent to the Fe-Mn layer (M&) is at an angle 0 to the applied
field (see text). Both MI and M& are in the plane of the film. (b)

The spin asymmetry for the spin valve structure for five

different orientations of the moment in the free Fe-Ni layer.
The angles 0, m. /4, ~/2, 3m/4, and m. are measured with respect
to the exchange biased Fe-Ni layer. (c) The 5 functions of Eq.
(18) shown for these five angles, and for reflected spin-up and
-down neutrons from incident spin-up and spin-down neutrons.
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change in the spin asymmetry which is easily detected ex-
perimentally. Using the approximation of Eq. (18}, the
up and down reflectivities are simply the Fourier
transforms of n —I 5 functions located at the interfaces
with amplitudes at the jth interface of
(4q, ) g +& —,'[V+&(1+cr cos8 +&}

—
VJ (1+0 cos81)]

and (4qf) g +, (a/2)(V sin8. —V+tsin8J. +, ) for
up and down spins, respectively. These amplitudes are
shown in Fig. 7(c) for the cases of incident up and down
spin and for each of the five configurations shown in Fig.
7(b). The angle between the moment of the two Fe-Ni
layers is denoted by 8. We notice that spin-fiip reflection
is not observed for 8=0 or m.. This is because it is only
when there is some component of the magnetic moment
in the film which is perpendicular to the incident neutron
spin, that Larmor precession of the neutron spin can
occur. Also, we notice that the spin asymmetry, S, calcu-
lated in Eq. (16), is the result a combination of the
modulus square of four sets of Fourier transforms, one
from each column of the schematic table in Fig. 7(c). We
stress that these results only apply to the case in which
the ferromagnetic layers are single domain. If they are
not, it is necessary to perform some "average over
configurations, " although it is normally not clear how
this average should be taken, unless independent informa-
tion about the domain distribution is available. However,
it is clear from this simulation that changes in the relative
orientation of the ferromagnetic moments produces large
and easily measurable changes in the spin-dependent
reflectivity.

In this paper we have calculated the spin-dependent
reflectivity assuming certain specified magnetic
configurations. The experimental situation requires an
analysis which is the reverse of this process: given a mea-
sured spin asymmetry S(q), can we deduce the
magnetization-vector profile, M(y)? For a structure in
which each magnetic layer is single domain, our calcula-
tions suggest that this is possible. We have demonstrated
that measurably different S(q) result for each magnetic
orientation, although certain symmetry related
configurations do produce identical S(q } behavior.
Therefore, by comparing the results of experiment with
simulations, the magnetization vector in each layer can
be determined provided these vector magnetizations are
the only unknown variables. The appropriate experimen-
tal procedure is as follows: S(q) should be initially mea-
sured for a given sample in an in-plane applied field
greater than the saturation field. With the moment in
each layer thus aligned, it is then possible to adjust the

estimates of the values of layer thicknesses, layer densi-
ties, and layer moments to obtain the best fit to the mea-
sured S(q). In subsequent measurements at lower ap-
plied fields, the moments in each layer will no longer be
necessarily aligned, leading to different S(q} behavior.
The only remaining adjustable parameters in fitting this
data are the directions of the magnetic moments in each
layer, and by comparing S(q) calculated for a range of
angular orientations 8;, S(q) can be fitted. For a system
with a large number of magnetic layers, this procedure
will be computationally demanding, but nonetheless pos-
sible. However, the technique is ideally suited to study-
ing the coupling in bilayer systems. In the case in which
each ferromagnetic layer breaks up into domains, the
neutron reflectivity will be much more complicated in
general, and PNR measurements are insufficient to deter-
mine the spatially varying magnetization structure. Ap-
propriate averaging procedures, depending on whether
the coherence length of the neutrons are larger or smaller
than the domain size, will however allow some estimate
of the spatially averaged vector magnetization within
each layer. Nonetheless, PNR measurements can be ex-
tremely valuable in providing an assessment of how close-
ly such a system approximates to single domain behavior.
Furthermore, in contrast to surface sensitive techniques,
PNR can be used to probe embedded layers.

VIII. CONCLUSION

We have shown how the magnetic moment of thin
films and the magnetization-vector profile of multilayers
can be measured using polarized neutron reflection. A
transfer matrix method has been described for calculating
spin dependent neutron reflectivities. The form of the
spin asymmetry is dominated by multiple reflections and
refraction just above the critical wave vector, but with in-
creasing wave vector, such processes become progressive-
ly less important, and the response moves toward a
"diffraction limit" in which a Fourier transform approxi-
mation to the exact result can be used. PNR is a sensi-
tive probe of the orientation of magnetizations in magnet-
ic multilayers and therefore can be used to study the
magnetization reversal process in detail.
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