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The specific heat of the spin- —Blume-Capel model is investigated by the use of two formulations

based on the Ising spin identities and a differential-operator technique. In particular, the specific heat on
a honeycomb lattice is examined in detail for the system with a crystal-field constant in the critical re-
gion where the ground-state configuration may change from the spin- —,

' state to the spin- —', state. We find

many interesting phenomena in the system.

I. INTRODUCTION

The Blume-Capel (BC) model' is a spin-1 Ising model,
which presents a rich variety of critical and tricritical
phenomena. The Hamiltonian is given by

H= gJ; S—S' Dg(S—
)

where S,' is the spin operator, J; the exchange interac-
tion, and D the crystal-field interaction constant. The BC
model with S,'=+1 and 0 has been examined for many
years by using various techniques, and has also been used
to describe critical phenomena in magnetic systems and
in simple and multicomponent fluids.

On the other hand, it is important that the BC model
be extended to higher spin values, such as the spin- —,

' BC
model with S,'=+—,

' and +—,'. Here, for the BC model
with a spin value S (S ~ 1), one may generally expect the
tricritical behavior when the ratio D /J of the crystal-field
constant D and the exchange interaction J, is less than
—1. The magnetic properties of the BC model have not
been examined in detail especially for the region of
D/J ( —1, while the phase diagrams of a spin- —,

' Ising

system with quadrupolar interactions has been examined
in the mean-field approximation.

Very recently, we have given a statistical-mechanical
treatment of the BC model with a higher spin value by
the use of both exact Ising spin identities and a
differential-operator technique. ' This method, which
can include the effects of correlation through the van der
Waerden identity, provides results of transition tempera-
ture T, which are quite good in comparison with those
obtained by using a rigorous treatment for the Bethe lat-
tice at D =0.0. ' In particular, the phase diagrams and
magnetization curves of the spin- —,'BC model were exam-
ined. We have found that tricritical behavior does not
exist in the spin- —,

' BC model and instead the unstable
solutions of magnetization m [m = (S,') ] and quadrupo-
lar moment q [q =((S,') ) ] do exist in the region of
—1.7167 &D/J & —1.0 for the honeycomb lattice in ad-
dition to the stable solutions.

The purpose of this work is to study the specific heat of
the spin- —,

' BC model within the framework of our formu-
lation as an improvement over the standard mean-field

theory. Then, we pay attention to the region of
D/J (—1.0. The outline of the work is the following.
In Sec. II, we review briefly these two formulations. In
Sec. III, the general formulations for evaluating the inter-
nal energy and specific heat of the spin- —,

' BC model are
derived by using these formulations. In Sec. IV, the nu-
merical results of the spin- —', BC model on a honeycomb
lattice (z =3) are given, where z is the coordination num-
ber. We find many interesting phenomena especially for
the system with a value of D in the vicinity of the critical
value (D/J = —z/2) where the ground-state
configuration may change from S =+—,

' to S =+—,'.
II. FORMULATION

We consider the spin- —, BC model. The Hamiltonian is

given by (1). Here, the spins S located at sites i on a
discrete lattice can take the values +—', and +—,

'
~ The ex-

change interactions are restricted to the z nearest-
neighbor pairs of spins.

The order parameters of the system are the magnetiza-
tion m and the quadrupolar moment q given by

m =(S,') and q=((S ) ), (2)

and

with

q=((S )') =&g(E;))

E; =gJ;,SJ',

(4)

where the functions f(x) and g (x) are defined by

3 sinh( —,'Px )+e ~sinh( —,'Px )f(x)=-
cosh( —,'Px ) +e ~cosh( —,'Px )

and

1 9 cosh( —', Px)+e ~cosh( —,'Px )
g(x)=—

4 cosh( —,'/3x ) +e ~cosh( —,'Px )

(6)

where ( ) is the thermal expectation value. To evalu-
ate the mean values (S ) and ((S ) ), we start with the
exact Ising spin identities.

(3)
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with

(8)

we can also obtain the identity for S=
—,
' as

exp(aS )= A(a)+B(a)S;*+C(a)(S ) +D(a)(S )

with

(12)

and

&S;&=&e ' &f(x)I =0

& (S )'
&
=

& e ' &g(x) I„=o,

(9)

(10)

By the use of the differential-operator technique, these
identities can be transformed into the convenient forms
for calculation: A (a)=

—,
' [9cosh(a/2) —cosh( —', )a )],

B(a)=—,', [27sinh(a/2) —sinh( —,'a )],
C(a ) = —,

' [cosh( —,'a ) —cosh(a /2) ],
D(a) =

—,
' [sinh( —', a) —3 sinh(a /2) ],

(13)

where V =8/Bx is a differential operator. Corresponding
to the van der Waerden identity

exp(aS, ') =cosh(a /2)+2S sinh(a /2) for S=
—,',

where a is a constant. By using the van der Waerden
identity (12), we can rewrite the identities (9) and (10) for
the spin- —,

' BC model as

and

(S;*)
=ttt[A

(a)+S(a)S*+C(a)(S*)s+D(a)(S*)s])f(x)[„
J

((S;*)s)=trt[ A (a)+S(a)Sf+C(a)(Sf) +D(a)(S))'])(((x)l,=c
J

(14)

(15)

where a =J;.V. These equations are also exact.
At this place, it is not so easy to treat the exact forms of S=

—, because of the complexity of (12), in comparison with
the exact form (11)of S=

—,'. Because of this fact, we have introduced an approximate but generalized van der Waerden
identity valid for any spin value in Ref. 5, namely

a
exp(aS )=cosh +a +—S sinh +a

a g
' a

where the parameter g is defined by

(16)

(17}

The parameter a must be selected as a=2 for the half-integer spin (S=—,', —', , . . . ) or a=1 for the integer spin
(S= 1,2, .. . ). As is easily understood from the definition (17},the generalized but approximated van der Waerden iden-
tity (16) becomes exact for S =

—,', since for S=
—,
' (17) must be given by rl/a= —,'. Using (16), the identities (9) and (10)

are given by

and

JVV +—S(sich fcV )f(x)[,a " q ' a (18)

((S,*) ) =tQ cosh
J

J; V +—S'sinh
a J V gx 0.a (19)

Expanding the right-hand side of (14) and (15) [or (18)
and (19)], one can obtain the multiple correlation func-
tions. The simplest approximation, ' and the one most
frequently adopted, is to decouple them according to

nearest-neighbor interaction J are given by

m =[A (JV)+B(JV)m+C(JV)q+D(JV)r]'f(x)l„

(21)
&S;(S')' . . S'& = &S'& &(S')'& . . &S'&J (20)

with jAkA . Al. Then, the magnetization m and the
quadrupolar moment q for the spin- —,

' BC model with

q =[A(JV)+B(JV)m +C(JV)q +D( J)Vr]'g( )xl„= o s

(22)
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from (14) and (15), and

m = cosh ~JV +—m sinh ~JVa
a 7l a f(x)i„

(23)

Z=3

S=-=3
2

k~T
-'-0

J

q= cosh ~JV +—m sinh +JVa
a 7l a g(x)~„

(24)

from (18) and (19). Here, the parameter r in (21) and (22)
is defined by

- 2.0

r =
& (S,')') . (25)

1.0

For the evaluation of (21) and (22), furthermore, one has
to calculate another order parameter r, which is also
given by

I

I

I

I

—10 -8 -6 -4 -2 0 2 4
I

8 10
yD&

r =[A (JV)+8(JV)m+C(JV)q+D(JV)r]'h(x)~„

where the function h (x) is given by

1 27 sinh( —,'Px ) +e ~sinh( —,'Px )
h (x)=-

cosh( —,'Px ) +e ~cosh( —,'Px )
(27)

FIG. 1. The variation of T, with D for the spin- —,'Blume-
Capel model with z =3. The solid line is obtained from the
second formulation based on Eqs. (23}and (24). The result of T,
obtained from the three coupled equations (21), (22), (26) lies
within the thickness of the solid line, although the values are
very little smaller than those of the second formulation. The
dashed line given by D/J= —1.5 separates the two ordered
phases (S =+—,

' state) and (S =+~ state) at T=O K.

k, T, =2.9188 at D =0.0,J (28)

Now, for the evaluation of the magnetic properties we
have the two formulations, namely the first formulation
based on (21), (22), and (26) and the second formulation
based on (23) and (24). In fact, the calculations and nu-
merical evaluation of the magnetic properties in the
spin- —,

' BC model based on the first formulation are very
complex even for z =3 (or honeycomb lattice) in compar-
ison with those of the second formulation. In particular,
the phase diagram (or the transition temperature) can be
obtained by requiring that the magnetization m (or the
order parameter r) continuously approaches zero, since
there is no tricritical behavior for any z in the spin- —, BC
model. Consequently, all terms of the order higher than
linear in m (or r) can be neglected. Especially for the first
formulation, this leads to a matrix equation. For the
latter discussions, we show the phase diagram of the
spin- —,

' BC model with z =3 in Fig. 1.
As is seen from Fig. 1, the phase diagram expresses

some characteristic behaviors. First, we should notice
that these two formulations lead to almost the same re-
sults; in Fig. 1 the results of the second formulation are
plotted, but the results of the first formulation lie within
the thickness of the solid line. In fact, the first formula-
tion gives

k, T,
J =2.6044 at z =3 (30)

III. INTERNAL ENERGY AND SPECIFIC HEAT

for the exact result on a Bethe lattice, although it is ob-
tained only for D =0.0. In particular, the value of
k Ts, /J approaches the two constant values when the
value of ~D~ becomes large. Physically, the constant
value for D~ac comes from the S =+—,

' state (q =
—,')

and for D ~—ao it results from the S =+—,
' state

(q =
—,'). The horizontal line part for D/J (—2.0 results

from the S,'=+
—,
' state, so that the transition temperature

is given by 4k' T, /J =2. 104. The transition temperature
4k' T, /J=2. 104 is equivalent to that of the spin- —,

' Ising

honeycomb lattice obtained within the framework of the
Zernike approximation [or the decoupling approximation
(20)]." The change of state from q

=—', to q =
—,
' happens

in the region of —2.0 &D/J & —1.0. By comparing the
values of the ground-state energies for S =+—', and

S,'=+
—,', the two ordered phases at T =0 K are separated

by' D/J = —z/2= —1.5. The dashed line in Fig. 1

denotes the fact. The two phases at T =0 K are separat-
ed by a first-order transition line (or dashed line). A
phase diagram similar to Fig. 1 is also obtained in the
mean-field approximation. '

and the second formulation gives

k, T, =2.9556 at D =0.0 .J
These values may be compared with

(29)

c aU
aT

(31)

Let us investigate the specific heat of the spin- —,
' BC

model. The specific heat is defined by
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U = —Jg (S;S;)—Dg ( (S;)') (32)

where U is the internal energy. The internal energy of
the spin- —,

' BC model is given by, for the system with

nearest-neighbor interaction J,

(37) as follows:

U 3m a, DL, +(2Li+L2) — m ——
qJN Za q J

with

(38)

or

—= ——&ES')—D&(S') )
U 1 z 2

N 2

with

L, =cosh sinh V f(x)~„=0,Jg . Jg

L2 =sinh V f (x) ~„
Q

(39}

E; =JgS+s,
5

where N is the total number of magnetic atoms. By using
the Ising spin identity and the differential-operator tech-
nique, the expectation value (E;S ) can be exactly given

by

(E;S )=&E;e ' )f(x}l.=o

where the coefficients L, and L2 are easily calculated by
using a mathematical relation

e' f(x)=f(x+a) . (40)

Even for z =3, however, the internal energy obtained
from (35) has an extremely complicated form and hence it
will not be reproduced here, although it can be straight-
forwardly derived after a tedious calculation.

By y=V
(34) IV. NUMERICAL RESULTS

As noted in Sec. II, we can formulate the expectation
Ey

value (e ' ) in the two ways; by using the exact van der
Waerden identity (12) and the decoupling approximation
(20), Eq. (34) can be written as

(E;S ) = [ ,'D(JV)+—2—A(JV)m

with

+E(JV )q +2C( JV )r]

X[A (JV)+8(JV)m+C(JV)q

+D (JV)r]' 'f (x)~„0 (35)

E(JV)=
—,
' [3 sinh( —', JV) —sinh[(J/2)V]] . (36)

(E;S ) =zJ+ sinh V +m —cosh V
Jg a Jg

a a 7l a

On the other hand, applying the generalized van der
Waerden identity (16) and the decoupling approximation
(20), Eq. (34) is given by

In this section, let us study the specific heat and inter-
nal energy of the spin- —,

' BC model with z =3 by solving

Eqs. (48) and (35) numerically.
In Fig. 2, we plot the numerical results of U and C as

well as the thermal variation of r, when the value of D is
fixed at D =2.0J. In the figure, the solid line is obtained
from the first formulation based on (35) and the dashed
line is obtained from the second formulation based on
(37} [or (45)]. As is seen from the figure, the two formula-
tions give almost the same results for the thermal varia-
tions of C and U. As the two formulations are essentially
the effective-field theory depending only on z, the specific
heat may express the discontinuity at T =T„although in
the high-temperature region ( T)T, ) it takes a finite
value. In particular, notice that the correct values of
r = —", and U1JN= ——", expected at T=0 K are satisfied
in Fig. 2.

C

k~N 4—

X cosh V
Jq
a

+m —sinh
a. Jg
'g a

z —1

f(x)l =o . (37)
D=2. 0J

Thus, we have also the two formulations for evaluating
the internal energy and specific heat of the spin- —,

' BC
model. For the evaluation, it is necessary to know the
temperature dependences of m, q, and r. For the system
with z =3, they are numerically studied in Ref. 6. As dis-
cussed in the work, the thermal variations of m and q ob-
tained from the two formulations take almost the same
forms except the vicinity of D = —1.5J in Fig. 1.

Now, the internal energy of z =3 can be obtained from

U

JN

F&G. 2. The magnetic specific heat and internal energy of the
spin —

2
&C model with z =3, when the value of D is fixed at

D =2.OJ. The solid and dashed lines are, respectively, obtained
from the first and second formulations. The solid-dashed line
represents the thermal variation of r.
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CkN- 0.6—

0.4—

0.5—
0.2—

FIG. 3. The magnetic specific heat of the spin- —,
' BC model

with z =3, when the three values of D are selected in the critical
region (see Fig. 1). Here, the solid lines are obtained from the
first formulation based on (21), (22), and (26). The dashed lines

are obtained from the second formulation based on (23) and

(24).

FIG. 4. The thermal variations of the internal energy (solid
or dashed line) and order parameter r (solid-dashed line) in the

spin-2 BC model with z =3, when the two values of D are

selected in the critical region (see Fig. 1). The solid lines are ob-
tained from the first formulation and the dashed lines are ob-
tained from the second formulation.

Here, a particular attention should be paid to the
thermal variations of C and U in the system with a D
near the critical value (D = —1.5J) of Fig. 1. Figure 3
shows the thermal variations of C in the systems with the
three values of D, namely D = —1.5J, —1.6J, and
—2.0J. The solid and dashed lines are, respectively, ob-
tained by the first and second formulations. As is seen
from the figure, many interesting phenomena are found.
First, the solid and dashed curves in the system with
D = —2.0J give almost the same results and they show
the sharp maximum and jump at T = T, . Even in the
high-temperature region ( T & T, ), the specific heat of the
systems with D = —2.0J and —1.6J may exhibit a broad
maximum. The high-temperature behavior of C is clearly
different from the usual one, namely that of Fig. 2 and
curve c in Fig. 3. In particular, different behaviors are
observed in the low-temperature region (T(T, ) of C for
the systems with D = —1.6J and —1.5J; in each formula-
tion, the specific heat of the system with D = —1.6J
shows a broad maximum in the low-temperature region
and then takes a jump at T = T, . For the system with the
critical value D = —1.5J, on the other hand, the two for-
mulations give completely different behaviors for the
low-temperature variation of the specific heat. That is to
say, the two formulations give the same values in the very
low-temperature region (0 + T/T, +0.4), while they may

express different broad maxima in the vicinity of
T/T, =0.5. With increasing T, however, the dashed line

(the second formulation) decreases monotonically from
the broad maximum and takes a jump at T= T, . But, the
solid line (the first formulation) decreases from the broad
maximum, shows a minimum in the vicinity of
T/T, =0.7, and then takes another maximum and a

jump at T=T, .
In order to understand the anomalous phenomena

found in Fig. 3, the thermal variations of r and U are de-

picted in Fig. 4 by taking the two values of D, namely
D = —2.0J and —1.5J. For the curves labeled a, the

internal energy (solid and dashed lines) and the order pa-
rameter (solid-dashed line) take the correct values
U=r= —,

' at T=O K. Then, the two formulations (solid
and dashed lines) give almost the same values for the
internal energy. The thermal variation of r exhibits a
normal behavior. On the other hand, the solid and
dashed lines labeled b may express rather different
features, while at T=O K they take the correct value
U =0 satisfied for D = —1.5J. Here, the main difference
comes from the following fact: The first formulation
(solid line) includes the temperature dependence of r,
while the effect is not taken into account in the second
formulation (dashed line). In fact, the solid-dashed line

(or r) labeled b in Fig. 4 may express the anomalous tem-

perature dependence, which is clearly in contrast with

the normal one, such as the solid-dashed curve labeled a
in Fig. 4 or in Fig. 2. That is to say, the thermal varia-

tion of U in the region where the anomalous behavior of r
is observed is clearly different from that of the dashed
line.

V. CONCLUSIONS

In this work, we have studied the specific heat of the
spin- —,

' Blume-Capel model on the honeycomb lattice

(z =3) by the use of the two formulations based on both
Ising spin identities and a differential-operator technique.
As shown in Figs. 2 —4, these formulations give essential-

ly the same behavior for the specific heat and internal en-

ergy in the system with a value of D, except the critical
region where the two configurations (S,'=+—,

' state) and

(S;=+—,
' state) are separated by D/J= —z/2= —1.5 at

T=O K. In particular, we have examined in detail the

specific heat and internal energy of the system with a
value of D in the critical region. As shown in Fig. 3,
many anomalous phenomena are observed in the thermal
variation of the specific heat. Here, one should notice
that only the stable solutions of m and q are of course
selected for the evaluations, although the two (stable and
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unstable) solutions of m and q do exist in the region of
—1.7167 &D/J & —1.0.

A particular attention should be paid to the system
with the critical value (D = —1.5J). As depicted in
curve c of Fig. 3 and curves b of Fig. 4, the thermal varia-
tions of C and U take completely different features in the
low-temperature region ( T & T, ), when we apply the two
formulations to the problem. However, a broad max-
imum of C is observed commonly in the vicinity of
T/T, =0.5 for each formulation. From the theoretical
point of view, we have only introduced the decoupling
approximation (20) in the first formulation. In the second
formulation, on the other hand, we have introduced two
approximations, namely the generalized but approximat-

ed van der Waerden identity (16) and the decoupling ap-
proximation (20). Therefore, the results obtained from
the first formulation seem to be reasonable. However,
these results pose an important theoretical problem
which should be clarified: What is the correct result of
the specific heat in the spin- —,

' Blume-Capel model with

the critical value of D/J = —z/2?
Finally, the specific heat of the spin- —,

' Blume-Capel
model on a honeycomb lattice is examined in this work.
The formulations can be applied to the spin- —,

' BC model
with any z as well as many related Ising spin problems.
However, it should be noted that the critical phenomena
given in this work are because of the decoupling of (20) of
the "mean-field" type.
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