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The critical dynamics of the O(n )-symmetric relaxational models with either nonconserved (model A)
or conserved order parameter (model B) are studied below the transition temperature. As a consequence
of Goldstone s theorem, the transverse modes are massless, implying infrared divergences in the theory
along the entire coexistence curve. These Goldstone singularities can be treated within the field-

theoretical formulation of the dynamical renormalization group by using the generalized regularization
scheme as introduced by Amit and Goldschmidt, which has already been applied on the statics of the P
model below T, by Lawrie. We extend the formalism in several respects: (i) we generalize it to dynami-

cal phenomena, (ii) taking advantage of the fact that the theory is exactly treatable in the coexistence
limit, we do not use the e expansion; (iii) the flow equations are solved numerically, thus allowing for a
detailed description of the crossover from the critical isotropic Heisenberg fixed point to the infrared-
stable coexistence fixed point. We calculate the static susceptibilities as well as the dynamical correla-
tion functions for models A and B within the complete crossover region, identifying the asymptotic coex-
istence anomalies and also a pronounced intermediate minimum of the efFective critical exponents. Fur-
thermore, the longitudinal dynamical correlation function GL (q, co}displays an anomalous line shape.

I. INTRODUCTION

This paper is concerned with the critical dynamics of
he isotropic n-component time-dependent Ginzburg-.andau models A and B (according to the classification
n Ref. 1) in the phase characterized by a spontaneously
broken global continuous symmetry. Their purely relaxa-
ional behavior with either nonconserved (model A) or
,onserved (model B) order parameter constitutes the sim-
plest conceivable model for dynamical phenomena in the
icinity of a critical point. Above T„ the features of

n.odel A and B have been extensively studied by Halpe-
in, Hohenberg, and Ma using the dynamical renormal-
zation group and later also by De Dominicis, Brezin, and.inn- Justin within a field-theoretical formulation. We
hall apply the path-integral representation for the gen-
,ralized Langevin equations as developed for dynamical
:ritical phenomena by Bausch, Janssen, and Wagner and
)e Dominicis.

With an n-component order parameter, the situation
)elow the transition temperature is to be treated sepa-
ately, because parallel and perpendicular fluctuations
sith respect to the spontaneous magnetization have to be
.istinguished, and generally two different length and time
cales, characterized by the longitudinal and transverse
orrelation lengths, appear. If the model displays a glo-
al continuous symmetry which is spontaneously broken
elow T„ the transverse correlation length diverges in
he limit of zero external field. Although one of the
quivalent directions in order-parameter space is selected,
o (free) energy is required for an infinitesimal quasistatic
otation of the magnetization vector. This physical effect
s mathematically expressed by the Goldstone theorem,

where

0& @=4 d&2— (1.2)

parametrizes the space dimension d. In three dimensions
this result has been obtained by Holstein and Primakoff,
and it follows rigorously from Dyson's spin-wave
theory, ' which becomes exact at low temperatures. Wal-
lace and Zia calculated the equation of state, assuming
that the transverse fluctuations behave canonica11y. " A
complete exponentiation of the Goldstone singularities
was achieved by Nelson, ' who introduced a matching
scheme by which a partial summation of the perturbation
series is accomplished. In order to understand the coex-
istence behavior more deeply, Brezin and Zinn-Justin

stating that there is exactly one massless (bosonic) mode
for each generator of the broken-symmetry subgroup. In
the context of critical phenomena, massless modes can be
traced back to a divergent length scale, which leads to
characteristic infrared singularities in the theory. These
are reflected in the nonanalytical behavior of appropriate
correlation functions, the so-called coexistence anomalies
in our case, and are, at least in principle, subject to exper-
imental observation.

Therefore there has been considerable theoretical in-
terest in the effect of Goldstone modes on the behavior of
physical quantities in the low-temperature phase. Inves-
tigations by means of the renormalization group were
performed by Brezin and Wallace, who were able to
show that not only the transverse, but also the longitudi-
nal static susceptibility gt diverges for vanishing external
fields h as
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also investigated the nonlinear o. model. ' They
identified a new fixed point of Gaussian character govern-
ing the anomalies caused by the massless transverse
modes.

The influence of Goldstone modes on the dynamics of
the relaxational model A was examined in the limit q~O
and co~0 by Mazenko using a 1/n expansion. ' Further
exponentiation schemes have been proposed by Schafer
and Horner' for static phenomena, by Schafer' for
dynamical phenomena, and also by Nicoll and Chang. '

Based on a general crossover theory by Amit and
Goldschmidt, ' Lawrie's work' ' provides a certain
breakthrough, in the sense that his method leads to more
transparent results than the previous attempts, it
comprises exact statements in the regime dominated by
the Goldstone modes alone, and it neatly fits in the stan-
dard field-theoretical formulation of the renormalization
group.

Lawrie's idea was to change the point of view: not to
concentrate on the fact of n —1 modes being massless,
but rather to consider the freezing out of the longitudinal
fluctuation. He realized the already implicitly stated
similarity to the treatment of Amit and Goldschmidt's of
bicritical points, ' where a crossover takes place from the
critical behavior of an m-component subspace to the
softening of all n order-parameter fluctuations. In his pa-
pers Lawrie was able to reestablish and extend the former
results. ' ' Although in principle the complete crossover
region is accessible to the generalized renormalization
scheme, however, he merely studied an approximate
analytical solution of the asymptotic flow equations. We
shall extend Lawrie's method to dynamical critical phe-
nomena, but shall also go beyond his work by solving the
renormalization-group equations to one-loop order nu-
merically without making any use of further approxima-
tions. In particular, we shall refrain from the e expan-
sion, following the arguments by Schloms and Dohm, '

and especially exploiting the fact that the theory can be
treated exactly in the Goldstone regime. Thereby the
crossover itself can be thoroughly studied, and certain in-
teresting features will be found.

In this paper we use the general theory in order to cal-
culate the static and dynamical response functions. We
remark, however, that also other correlation functions
are within the scope of the formalism, e.g. , the
frequency-dependent specific heat, which constitutes the
ultrasound attenuation coefficient (see Ref. 22). Although
because of their neglecting of mode-coupling vertices the
relaxational models are usually too crude to describe real
systems, there are a few examples of normal-to-
incommensurate phase transitions whose dynamics fall
into this universality class, e.g., the crystals of the general
A &BX4 structure. As is shown in Ref. 22, sound-
attenuation measurements in these substances below T,
can be very well explained by our theory. Perhaps even
more important, because of the relative lucidity of
Lawrie s approach (with our extensions), it is feasible to
treat more complicated models, containing, for example,
anisotropies or mode-coupling terms; this has not yet
been possible with the former methods. We plan to come
back to this topic in a further communication. The exact

II. MODEL
AND DYNAMICAL PERTURBATION THEORY

In this section the O(n)-symmetrical relaxational mod-
els will be introduced, and a short outline of the path-
integral formulation of dynamical perturbation theory of
Bausch, Janssen, and Wagner will be presented. The
specific features of the theory below T, will be described
in Sec. III.

A. Isotroyic relaxational models A and 8

We are interested in the dynamical properties of ma-
terials undergoing a second-order phase transition which
can be described by an O(n)-symmetrical P Hamiltonian

H[[p ]]0=Jd x g Po(x) +—g [Vga(x)]

+ g $0(x)
4!

'2

(2. l)

The parameter ro is proportional to the distance from the
mean-field critical temperature T, , ro ~ T —T, , and

hence comprises a shift ro, of the transition temperature
from T, to T, due to fluctuation effects and the reduced
temperature variable with respect to T, :

statements in the vicinity of the coexistence fixed point
also provide an illuminating insight into the connections
with the leading order of the I/n expansion, which has
just recently been used to study dynamical coexistence
anomalies.

This paper is organized as follows: In the following
section we introduce the time-dependent Ginzburg-
Landau models A and B and give an outline to the gen-
eral dynamical perturbation theory in the form proposed
by Bausch, Janssen, and Wagner. In the third section
we shall extend the general formalism to the phase with
spontaneously broken symmetry. Special interest will be
devoted to the so-called coexistence limit where the
Goldstone modes dominate the entire physics. The con-
nection to the I/n expansion will be established there,
too. In the fourth section we shall proceed to discuss the
specific modifications of the renormalization concepts
which have to be introduced in order to describe the
low-temperature phase correctly. Furthermore, we

present the explicit one-loop results for the renormaliza-
tion constants and flow functions of the relaxational mod-
els below T, . The numerical solution of the flow equa-
tions will be extensively discussed and the scaling vari-
able identified. In Sec. V we shall apply the formalism to
the calculation of the static response and dynamical
correlation functions for models A and B in the entire
crossover region. Possibly observable effects will be em-

phasized. Finally, we shall discuss our results and pro-
vide an outlook on future developments. In the Appen-
dix we list a number of important dynamical Ward-
Takahashi identities and the diagrams and corresponding
analytical results for the two-point vertex functions to
one-loop order.
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T —Tc
PO POc + (2.2)

The positive coupling constant uo gives the strength of
the anharmonicity within the order-parameter Quctua-
tions described by an n-component field $0, a= 1, . . . , n.
In a state of thermal equilibrium, the Hamiltonian (2.1)
defines the probability density for a specific configuration
according to

—H(INo I l

together with (2.1) constitute the relaxational models A
and B, respectively, for dynamical critical phenomena.

The probability distribution for the stochastic forces P
is assumed to be Gaussian:

~exp ,'—f—d x fdt g p(x, t)[E0 'p(x, t)]

(2.5}
~[[{()oj]= —&r. Ikp I ]

(2.3)
Consequently, the first two moments read

The critical dynamics of the system under considera-
tion is then characterized by a set of generalized
I.angevin equations for the "slow" variables, which gen-
erally consist of (i) the order-parameter fluctuations (be-
cause of the critical "slowing-down" in the vicinity of a
phase transition) and possibly (ii) conserved quantities
that obey a continuity equation and therefore display
propagating or diffusive hydrodynamical behavior. If the
ordering field is the only relevant mode, the general
structure of the equation of motion is

$0(x, t) =K—o [ [$0 j ](x,t)+P(x, t), (2.4a)

where Ko [ I{()oa] ] contains the systematic part of the gen-
eralized forces, while the stochastic forces P subsume all
the "fast" variables. In the simplest case, the dynamics is
purely relaxational and no mode-coupling terms appear
within Ko.

a[[a]]g[I4]]a [ IPO
0 0 0

fiya
0

(2.4b)

Now two difFerent situations have to be distinguished.
Namely, either there is no conservation law for the
order-parameter field, and the system just relaxes into the
equilibrium state after a distortion [a =0 in Eq. (2.4b)],
or the order parameter is itself a conserved quantity and
hence follows a difFusion equation (a =2). According to
the classification by Halperin and Hohenberg, ' Eqs. (2.4)

(P(x, t)) =0,
( p(x, t)g~(x', t') ) =2E05 ~5(x x'—)5(t t')—,

(2.6a)

(2.6b}

and higher correlations either vanish or can be factorized
into products of (2.6b). The numerical factor in (2.5) was
precisely chosen in order to guarantee the Einstein rela-
tion (2.6b), which ensures that the equilibrium probability
density is indeed given by the expression (2.3).

~[[4oj]=f&[[ Ooj]~[Iso] [Oojl

~tI pI Ifpil (2.7a)

where the statistical weight for the configuration etio is
determined by the Janssen-De Dominicis functional

B. Dynamical perturbation theory

On the basis of Eq. (2.5), the path-integral formulation
of dynamical perturbation theory can be developed ac-
cording to Bausch, Janssen, Wagner and De Dominicis.
At first, using the equation of motion (2.4a), the stochas-
tic forces are eliminated, leading to a probability density
for the order-parameter fluctuations themselves. Howev-
er, the resulting Onsager-Machlup functional contains
strong nonlinearities and also the inverse of the Onsager
operator Eo, which diverges in the case a =2. Therefore
a Gaussian transformation that reduces the anharmonic
terms by introducing purely auxiliary Martin-Siggia-Rose
fields $0 is most convenient. One eventually finds

a K
Jl[4oj [kojl= f d'x f«X 4o&o&o &o

—Ko[—[&oj] ——
a 0

(2.7b)

Here the last term stems from the functional derivative originating in the change of variables from P to $0. However,
as can be easily seen, it precisely cancels those contributions from the perturbation series which correspond to acausal
diagrams and can therefore be dropped.

We now split the dynamical functional (2.7b) into the harmonic part Jo[[$0j, [$0 j ] and the interaction
J 1[ [{I}0j [$0 j ]. For the time-dependent Ginzburg-Landau models A and B, these are explicitly given by

Jo[[40 j Ipo j]=f f g [~oq'$0(q, o1)$0( —q, 01) $0(q, co)[i'—+A&y—'(ro+q')]$0( —q, co)j, —
q co

0f. . . f q1 X q X ' X {0(ql ~1)~0(q2 ~2){0(q3 ~3)'{f'0(q4 ~4)
i a,P

(2.8b)



3340 U. C. TAUBER AND F. SCHWABL 46

here we have introduced the abbreviations

1
d g

(2m )

f dN

(2.9a)

(2.9b)

The derivation of perturbation theory then follows the standard routes, and we shall give only a very brief sketch of
what happens, mainly to introduce the definitions and quantities needed. Further details can be found in textbooks,
e.g., in Ref. 24.

To start with, we define the generating functional
r

Z[{h j, {h j] f2)[{i@j]2)[{Pj]exp J[{P j, {@ j]+fd'x fdt g(h g+h P ) (2.10)

from which the N-point Green functions and cumulants are obtained by appropriate variational derivatives with respect
to the sources h and h

G, , ({x;,t; j;{XJ,tJ j)= pig'(x;, t;)y '(xj, tJ)
0I& 'll& 'I

5=n
i,j 5h '(x;, t ) 5h '(x, t )

CG', ({x;,t; j; {xj,t j)= p pl'(x;, t;)y '(XJ, tJ)

Z[{h js {h j ]l(ha) (ha) (2.11a)

5 5

ij5h , '(x;, t;) 5h '(xj, t, )

lnZ[{h j {h j]li (2.11b)

We remark that throughout this paper the index 0 denotes the unrenormalized, but interacting quantities, while their
renormalized counterparts are written without indices. Inverting the matrix which couples the bilinear terms in the
harmonic Janssen —De Dominicis functional (2.8a) yields the free two-point functions or propagators of the theory, as
follows from the evaluation of the corresponding harmonic generating functional. One gets two di6'erent kinds of non-
vanishing two-point functions, namely, the response propagators Go&&(q, oj) and the correlation propagators Go&&(q, to).
On the other hand, (2.8b) provides the relaxational interaction vertex. The contribution of vth order in the perturba-
tion expansion for the N-point cumulants

C

~ ({x; t, j'{x, t, j)= gPo'(x; t;)0o'(xj tj» —,(J;.t[{4oj {0oj])"
0

(2.12)

is then represented by the connected Feynman graphs with N external legs (propagators) and v vertices.
We shall also need the so-called vertex functions. To arrive at their generating functional, one uses the fields

51nZ[{h j, {h j]
5h

(2.13a)

51nZ[{h j, {h j]
5h

(2.13b)

to perform a Legendre transformation

1 [{Poj,{Poj]=—lnZ[{h j, {h j]+fd"x f dt g(h Po+h Po) . (2.14)

The N-point vertex functions are then defined via

r . . ({x„t,j;{x„tjj)=g 5 5

i,j 5@o'(x, , t; ) 5$o'(x, , t, )
~[{koj~ {loj ]llh- (2.15)
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There is a simple connection between the two-point ver-

tex functions and cumulants, namely,

Using the time-reversal invariance of the correlation
function, one finds

1
Go~ ~

(q, t0)=
pya4, a

r ..(q~)
6 (q, c0)=—

(2

(2.16a)

(2.16b)

Go ~(q, co) =
2A,pg

ImGo& ~(q,e} . (2.21b)

Thus, in order to calculate the dynamic susceptibilities
and correlation functions, we merely have to deal with
the response propagators.

From these relations and the Dyson equation for the
response propagators,

6
pea

a ( q s to ) 6
pea a ( qr t0 } ~p ( q, oi ) (2.17}

C. Dynamical response and correlation functions

To understand the physical meaning of the response
propagators made up by one order parameter and one
auxiliary field, let us add an additional term —g h Pp
to the Hamiltonian (2.1), corresponding to the applica-
tion of an external field h . This leads to a modified
Janssen-De Dominicis functional

J"[[Po],(go]]=J[[go],[go]]+f d x f dt g h'fogo

(2.18)

from which we calculate the dynamical susceptibility

5&{(';(x,t) )
yP(x, t;x', t') =

5h (x', t') g&=p

it becomes evident that the two-point vertex functions are
graphically represented by the one-particle irreducible di-

agrams for the self-energy Xp. [Note, however, the
diff'erent signs in the arguments of Eqs. (2.16a} and

(2.17).]

III. SPONTANEOUSLY BROKEN SYMMETRY
AND COEXISTENCE LIMIT

We now come to the description of the phase with
spontaneously broken symmetry. We start with the
derivation of the Ward-Takahashi identity and then dis-
cuss the necessary modifications of the dynamical pertur-
bation theory. Finally, we examine the so-called coex-
istence limit of the theory, which will turn out to be ex-

actly treatable.

A. Ward-Takahashi identity and Goldstone theorem

&~;) =&~.) =0. (3.1b)

In addition, we parametrize the order parameter accord-
ing to

Below T„a spontaneous magnetization appears, which

we assume to point in the nth direction of the order-
parameter space. It turns out to be convenient to intro-
duce new fields according to (a = 1, . . . , n —1)

'ya' '-a' 'ya' ' a

(3.1a}
~ ~

such that the longitudinal fluctuation also has zero expec-
tation value,

=
& Po(x, t)fo$(~)(x', t ') )

and its Fourier transform

(2.19a)
1/2

(('o= mo
Qp

(3.2)

where mp has the dimension of a mass (inverse length}.
The original dynamical functional (2.8) is invariant un-

der rotations in the n-dimensional space of the order-
parameter fluctuations Pp and simultaneously such trans-
formations for the auxiliary fields Pp. Consequently, also
the generating functional (2.10) displays an O(n} symine-

try with respect to the source fields h and h . If we
choose the transformation to afFect the a and n com-
ponents, an infinitesimal rotation about an angle c has the
form

ot'(q ~)=Xoq'G, p.p(q ~) . (2.19b}

Hence the response propagators are intimately related to
the dynamical response functions, while, on the other
hand, the correlation propagators are identical with the
correlation functions; these facts clearly explain the ter-
minology.

From the causal properties of the response functions

—h"

h

h' —h5h
(3.3)(2.20a) htn hn5h"

6' ([ t;x]; [x , t ])=0 if any t,. &.t.Vj, .
pf4 'f14 'f

I ([x,, t, ];[x., t.])=0 if an. y t &t, Vi, (2.20b).

and the behavior under time reversal, the following im-
portant fluctuation-dissipation theorem can be derived

yo (x, t;x', t') = —e(t —t'}—&P,(x, t)/to'(x', t')) .~ a

(2.21a)

(and analogously for 5h, 5h "). Hence we have

51nZ=. fd~xfdt ""Zr- ""Zr. —
5h" 5h

51nZh 51nZ h„
5h Pl 5h cx

(3.4a)
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&do &4o &(()o &No

=0

(3.4b)

The derivation of this dynamical Ward-Takahashi identi-
ty follows the same path as in the static case, of course
(see Ref. 24).

In the low-temperature phase, characterized by a non-
vanishing order parameter (3.1), and for a uniform and
time-independent external field h" [compare Eq. (2.18)],
variation with respect to $0 and Fourier transformation
yields

$010 (0,0)=h", (3.5)

which, via (2.14) and (2.15), can be rearranged into the
Ward-Takahashi identity for the generating functional of
the vertex functions:

defines the vertex functions without tensor indices. From
Eq. (3.5) it follows that the transverse static susceptibility
Gp (0,0)=10„„(0,0) ' diverges along the entire coex-
istence curve, i.e., for T & T, and vanishing external field
h "=0. This is an example of the famous Goldstone
theorem, and it implies that the n —1 transverse modes
are massless. Hence the theory is critical in the sense
that infrared divergences appear, leading to nonanalytical
behavior of measurable correlation functions.

From the Ward-Takahashi identity (3.4b), a number of
important exact relations between different vertex func-
tions can be derived. Some of these which are relevant
for the renormalization procedure are listed in Appendix
A.

B. Equation of state
and dynamical perturbation theory below T,

where

I ~(q, co)=10 (q, a))5 i' (3.6)

Inserting (3.1a) and (3.2) into (2.8) yields the dynamical
functional for the ordered phase J =Jp +J;„,+J, +const,
with

Jp[[S~p] cTp [AT@] 0'p]= f f g ipq'AT@(q, co)50( —q, co)+—A qp' cd(q, co)00( —q, —co)
q co

mp—+50(q, co) ico+Apq' rp+ +q lrp( —q, —co)
a

—~0(q, co) ico+Apq' rp+
3m 0 +q2 crp( —q, —co) (3.7a)

J l[[~O] ~0 [~O] ~0]= 4),0"0f f
I

X +Sp(ql, col)n, (q2, co2)1Tp(q3, co3) lrp(q4, co4)
a, P

+X ~O(ql ~1)~0(q2 2)+0(q3 3)+0(q4 ~4)

+g op(q, , co, )mp(q2, co2)np(q3, co3)op(q4, co4)

+~0(ql ~1)~0(q2 ~2)~0(q3 ~3) 0('q4 ~4)

0
390

mpf f q5 gq, 5 +co,

X g 25@(ql,ci)1)~p(q2 &2)&0(q3 &3)

+& ~0(ql ~1)~O(q2 ~2)~0( 13 ~3)+ ~0( ll ~1)~0(q2 ~2)+0( 13 ~3) (3.7b)
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and

J, [rro] = —
Ao

3

Qo

1/2 2
mo

mo Po+

2mo
ro+ =A,

2

n —1 1A=- Qp
k ra+ma/2+k

1 1

k ro+3mo/2+k

(3.8a)

(3.8b)

X q'o. o
—q, —co (3.7c)

q C0

By evaluation of the condition (tTO) =0, we can elimi-
nate the temperature variable ro in favor of the mass pa-
rameter mo. Within the first order of perturbation
theory, only the Hartree loops are to be taken into ac-
count, and one arrives at

It is important to realize that by using the variable mo
instead of ro we have already taken account of the T,
shift ro, . Indeed, for m0=0 we must have ro=ro„which
with the help of (3.8c) allows us to determine the T, shift
to lowest order:

n+2
Roc

—
Qp Ad6e

' 2/e

(3.10)

Schloms and Dohm ' have emphasized that ro, does not
vanish in the dimensional regularization scheme if e ex-
pansion is not applied. Furthermore, ro, is obviously a
nonanalytical function of the coupling constant uo. If
we do not want to use the e expansion, it is therefore
essential to use a temperature variable which already in-
cludes the T, shift properly. In the ordered phase, cer-
tainly mo is a choice near at hand.

Using (3.8a), the Janssen —De Dominicis functional be-
comes J=Jo+J;„,+JcT, where the harmonic part now
reads

Of course, we could have derived the same result from
the original static functional (2.1) (see Ref. 19). The in-
tegrals in (3.8b) are ultraviolet divergent when the cutoff
in momentum space is extended to infinity. This unphysi-
cal singularity can be cured by a regularization pro-
cedure. Using the particularly convenient dimensional
regularization scheme invented by 't Hooft and Velt-
man and introduced into the theory of critical phenom-
ena by Lawrie, the counterterm A explicitly reads

2 1 —e/2
n —1 mo

QOAd ra+
6e

(a) Propagators:

I~ I ~ ~ a ~ a ~ ~
~ ~ ~ ~ ~ ~ I ~ 11

el I ~ ~ a ~ ~ ~ a
~ ~ ~ ~ ~ IIII ~

(b) Vertices:

1 p
~~+, Pp q2+a

1
—in+ Ap q'(m02+ q2)

2Ap q'
~2 y [P q2+a]2

2Ap q'
+ [AO qa (rnes+ q2)[2

1 —e/2
] 3m 0+ QOAd ra+

2E'
(3.8c) -,f 'T

I I II III I ~
~ I I I I I I I I

~6

Cr
~ ~ I I I I I I 1

0'

——%pup F ~~ q'
6

——Ap u06 q
1 &P 0

6

where Ad is a geometrical factor related to the surface of
the d-dimensional unit sphere (see Ref. 21):

7r

Ii I 1 I II ~ I CrII ~ IIIII ~ II

CT

1 aP I—Apop6 q6

A„=S I' 3——I' ——1 = . (3.9)
d d I (3—d/2)

2d —2qrd/2(d 2)

CT
q

Cr Iii l lilt I
~ ~ I I ~ I I ~ I

cr

~P
~I ~ I ~ ~ ~ ~ ~ I af

�1
ill ~ ~ II ~

CT

1——Ap upq'
6

0
3

7Ap

Note that the expression (3.8c) is singular both at four
(6=0) and two (a=2) dimensions, which is the formal
origin of the restriction (1.2). Physically, for d 4, be-
cause of the Ginzburg-Levanyuk criterion, fluctuation
effects are negligible, and the theory is essentially Gauss-
ian, with logarithmic corrections at the upper critical di-
mension d, =4. At two dimensions the Mermin-Wagner
theorem ' states that there is no long-range order for a
system with a continuous global symmetry and short-
range interaction. Therefore the really interesting case
for the study of coexistence anomalies is in fact d =3
(e= 1).

alIT

\ ~ ~ ~ ~ ~ I ~ II CTr 1111~ lilll
~P

—Ap mpb ~q
6

~l I ~ ~ ~ a ~ I Ir I 1 ill ~ I ~ I I

CT

(c) Counterterm:

g3 Tlp—Ap mp q'

A = — Qp — &0

FIG. 1. Basic elements of the dynamical perturbation theory
for the relaxational models below T, .
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Jp[ITro} op [~o},op]= f f X Apq 5o(q ro)Fo( q~ ro)+Apq o p(q~ro)harp( q~ ~)
CO

L —g ep(q, ro)[iso+ Apq'+']vrp( —q, —ro)

o—p(q, co)[ico+Apq'(mp+q )]op( —q, —ro)

clearly displaying that the transverse mass vanishes. From (3.11a) we can then determine the four propagators of our
theory, while the four- and three-vertices can be read off from the interaction (3.7b). The one-vertex (3.7c) is replaced
by the counterterm

3

u 0

JcT [ [77p } cT p I 7Tp } 0'p] = ApA f f q' g mp(q, ro)~p( —q, ro—)+o'p(q, ro)o'p( —q, ro—)
q co

' 1/2

mo A q'pro —q, —co
q co

(3.11b)

The basic ingredients of the dynamical perturbation theory below T„as well as the corresponding graphical representa-
tions, are listed in Fig. l.

C. Properties of the coexistence limit

The theory at the critical temperature T, is recovered from (3.11}and (3.7b} by setting mp =0, and in particular the
three-vertices disappear. We are, however, especially interested in the opposite limit mo~~, which, according to
(3.8a) and (2.2), corresponds to T =0. This is because the renormalization-group analysis of Sec. IV will show that the
renorrnalized counterpart of the mass parameter m indeed Bows to infinity when momentum and frequency tend to
zero. Physically, this simply describes the "freezing out" of the longitudinal mode, whose fluctuations eventually be-
come negligible, while the transverse modes stay massless. In the case of "maximal" symmetry breaking, the n —1

Goldstone modes will prevail. It may therefore be expected that this so-called coexistence limit can be simulated by let-
ting the number of components n tend to infinity, in which case the theory is tractable within the leading order of the
1/n expansion.

In order to come to a more accurate notion of the coexistence limit, we devote this subsection to the examination of
the unrenormalized model for the special case mo~ Do. As stated above, the relevance of this parameter study should
become obvious in the following section. For convenience we write'

so=mocro, so=moo. o ~ (3.12)

and take the limit mp~ oo in the dynamical functionals (3.11) and (3.7b), assuming that up Imp —+0. Only a few terms
survive this procedure, namely,

J„[[@p},sp, [np},sp]= f f gApg %p(q ro)FTp( q ro)
q cu

—g Sp(q, co)[ico+Apq +
]np( —q, —co) —Apq sp(q, co)sp( —q, —ro)

Xg Wp(q„ro, )harp(qz, co&}m~(q3, co3}mg(q4, ro4)
a, P

6 f f q'5 gq; 5 +co,

g 277@ ( q &, Co
&

)AT@ ( qg ro2 )s p ( q3 ro3 ) +g s p ( q ] c0 $ )1Tp (qp cog )1T (qp3 ro3 )

' 1/2
3—ApA f f q', g harp(q, ro)mp( —q, —co) —Ap

CO Qo
q'O. o

—q, —co (3.13)

Lawrie was able to show that by introducing a new longitudinal field the static functional could be mapped onto a
Gaussian Hamiltonian. ' Because the relaxational vertex is essentially of static origin, we expect an analogous situation
here. In fact, if we set
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+3u n —i

tp(q, co) =sp(q, pi)+ f f g mp(q', co')mp(q —q', pi —co'}+ A 5(q)5( pi ) (3.14a}

and, similarly for the Martin-Siggia-Rose auxiliary fields (with qAO in case of a conserved order parameter),

&3u ~a n —1

tp(q, co) =sp(q, co)+ f f g I'p(q', co'}irp(q —q', co—co'},
a=1

then the asymptotic Janssen-De Dominicis functional

(3.14b}

[[~o] tp I~o] tp]= f f X~pq'pro(q ~)harp(
—q —~)

q co

—g harp(q, a))[ico+kpq +']irp( —q, —co) —A~'tp(q, ro)tp( —q, —ro) (3.15)

becomes harmonic in these fields. The longitudinal mode has ceased to fluctuate at all, and only the Goldstone modes
persist. The transverse propagators are exactly those from zero-order perturbation theory,

G" ~(q, )= 5
1

leo+ A,pq

2A'0
(q, co)= 5 ~;

pe n ' ~2+ [g 2+a]2

(3.16a)

(3.16b)

hence the Goldstone modes behave canonically, as has been anticipated by Brezin and Wallace and also assumed by
Wallace and Zia" and Mazenko. ' We can already conclude that the field renormalizations for the transverse fluctua-
tions as well as the renormalization for the time scale A,p disappear in the limit mp ~~.

Using the definitions (3.12) and (3.14), we conclude

&o,o, ) = +3up +3u,
X&[ o:]to&- Z&t.[:o]&

mp a a

Qp+ ' y &[~;~;][HA]&-
a,P Qp

' 1/2

A & tp ) + A g & [harp n~() ] ) (3.17a)

'1/ 3up
&~p~p&=, &tptp& — g &[~p~p]tp&

mp 3
' 1/2

+ y &[7r 8 ][fr 7T ])—2
a,P Qp

A&t, &+A y &[;;]& (3.17b)

where the symbolic notations [nn]and [F~.]. stand for the transverse composite operators defined by the integrals on
the right-hand side (RHS) of (3.14). With the properties of the asymptotic dynamical functional, we finally get, for the
longitudinal correlation functions in the coexistence limit,

T

1 n —1 (q/2+k)' 1

Apmpq' 3 & (q/2 —k) —iso/Ap+(q/2+k) +'+(q/2 —k) +'

1 n —1 1 1
Gp (q, ti)) = upRe

A,pm 0 k (q/2+k) (q/2 —k) —iso/Ap+(q/2+k) +'+(q/2 —k) +'

(3.18a)

(3.18b)

These exact results coincide with the one-loop expres-
sions for the longitudinal functions in the limit mp —+ Do

(compare Appendix B). Noting that the one-loop contri-
butions for the transverse functions vanish for large mp,
we have established the important fact that in the coex-
istence limit the one-loop theory for the two-point cumu-
lants becomes exact.

With the aid of (2.16), we can deduce another interest-
ing statement for the two-point vertex functions. By in-
spection of (3.17a) it is evident that they are given by the
geometric series of transverse loops depicted in Fig. 2.
Now these diagrams are precisely those that have to be
summed up within the leading order of the 1/n expan-
sion. * Therefore the coexistence limit for the two-



3346 U. C. TAUBER AND F. SCHWABL 46

(a)

I', - (q, ~) = %0 m,' q

(b)

I'0--(q, ~) =
71

Tl j

As the cutoffs in momentum space are pushed to
infinity, for d 4 dimensions also ultraviolet divergences
arise. Within the dimensional regularization procedure
by *t Hooft and Veltman, which has proved especially
fruitful in the context of phase transitions, they show up
as poles in @=4—d. The general idea of renormaliza-
tion-group theory is now to exploit the fact that at d, =4
these ultraviolet divergences are intimately connected
with the physical infrared singularities. Generally, if ~p is
a variable characterizing the separation from the critical
surface (note that here the T, shift is already included),
the dimensionally regularized vertex functions may be
written as

FIG. 2. Geometric series for the transverse two-point vertex
functions in the coexistence limit.

I 0 '(uo, qo, d)
V

00 Qp1 pN 1+ y &(N)(d)
v=1 E'

(4.1)

point vertex functions is correctly reproduced by the
spherical model limit n ~ 00. This renders our introduc-
tory heuristic arguments more precise. In fact, we can
even deduce that the asymptotic fixed point must be of
the form uc ~1/(n —1), for the n-dependent factors in
the series of Fig. 2 to cancel.

In the case of a conserved order parameter, i.e., model
B with a =2, the previous results have to be taken with
some caution, because the transformation (3.14b) cannot
be performed for the q=O component of the auxiliary
fields. However, after inspection of (3.14a) into the
dynamical functional, only one nonlinear term persists,
namely, a (qrqrtp) vertex, and because there is no (py}
correlation propagator, no loop diagrams can be con-
structed. Hence there is no problem with the dynamical
susceptibilities studied in this paper. Generally, one has
to be careful with the limits mp~ Do and q~O, which do
not commute.

IV. RENORMALIZATION AND DISCUSSION
OF THE FLOW EQUATIONS

In this section we describe the general renormalization
scheme and the specific modifications that have to be in-
troduced for the description of the phase with spontane-
ously broken continuous symmetry. We explicitly calcu-
late the renormalization constants to one-loop order and
derive the renormalization-group equation. The flow
equations are solved numerically and studied in the entire
crossover region. We emphasize the scaling behavior and
comment on the situation at the upper and lower critical
dimensions.

A. Dimensional regularization without e expansion
and generalized minimal subtraction

Critical phenomena are characterized by typical in-

frared divergences on a subset of parameter space. In our
case this critical surface is defined by T~ T„h"=0,
q=O, and co=0. At T, itself we have the usual critical-
point singularities, while below T, the coexistence
anomalies appear. Hence we have to describe a crossover
between situations of di8'erent critical behavior.

which corresponds to a perturbation theory with the ex-
pansion parameter up~p

' /e. ' The e poles sampling
the ultraviolet divergences are now collected in the renor-
malization constants (Z factors), which define the con-
nection between the bare fields or coupling constants (in-
dex 0) and the renormalized quantities. From the Z fac-
tors the anomalous dimensions are derived, which then
describe the correct infrared behavior for 7p~O. The
finite parts (for @~0},on the other hand, yield the ampli-
tude functions. Via the renormalization-group equation,
"naive" perturbation theory with small expansion param-
eters (q.o» 1) can be mapped onto the critical theory
displaying infrared singularities. By choosing an ap-
propriate matching condition, the flow parameter is re-
placed by a physical scaling variable. After this pro-
cedure the correlation functions factorize into an ex-
ponent function characterized by an anomalous dimen-
sion and the amplitude function which displays scaling
behavior when a fixed point of the renormalization group
is approached. Following the arguments of Schloms and
Dohm, ' for neither of these steps is an expansion with
respect to e necessary.

However, the perturbation series (4.1) usually diverges
or is merely asymptotically convergent. To cope with
this problem, one can either apply a suitable resumma-
tion analysis (as in Ref. 21) or use the e expansion, which
provides a suSciently small expansion parameter. In our
case now, we can take advantage of the fact that the per-
turbation expansion for the cumulants in the coexistence
limit reduces to the zero- and one-loop contributions.
Hence we do not have to use any further approximations
and may refrain from e expansion without any resumma-
tion procedure. In the vicinity of the critical point, of
course, the one-loop results for the cumulants will only
approximately reflect the physics.

A very elegant method to describe the crossover be-
tween critical and coexistence behavior is to modify the
widely used minimal-subtraction prescription, following
Amit and Goldschmidt' and Lawrie. ' ' Let us exam-
ine, for example, the contribution to Go (q, 0) con-

structed from a loop of two longitudinal modes (see Ap-
pendix 8). Using dimensional regularization and Feyn-
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man parametrization, the integral for q =p is proportion-
al to

yields the primitive ultraviolet divergency

2 2
AdP 1 1 z2 mp+

0 4 p

—e/2

(4.2a)

4—
5~N =d~~ —(4—d }v4— v3 a—N (4.4b)

As long as mp is finite, there is an e pole to be collected in
the corresponding Z factor. For mp~ ~x}, however, the
integral vanishes and the ultraviolet singularity disap-
pears. Now, if we write

Adp 1

(1+m /p )'

f 1+m 0/p,
X

(1—x )/4+ma/p
dE, (4.2b)

instead of (4.2a}, obviously the parameter integral reduces
to 1 in both limits a~0 and mp~ 00, and taking the pre-
factor as a contribution for the renormalization constant
would correctly include the behavior in the coexistence
limit. The Z factors are then functions of the coupling
constant up and the mass parameter mp. '

In order to elucidate further how the specific infrared
singularities caused by the Goldstone modes enter the
theory, let us investigate the singular part of the typical
integral mo f k 1/k (ma+a ). As long as mo is finite, it
is ultraviolet convergent and there is no e pole. However,
in the case mp —+~, it reduces to the singular integral

f k 1/k . Indeed, using the generalized minimal-

subtraction scheme, one gets

P7l
1

k k ( pyg +k 2
)

Ad@ 1— 1

(1+m /JM )' (4.3)

where the resulting pole for @~0 in the limit mp~oo
can be eventually traced back to the infrared divergency
of the integral.

Thus we can formulate our conditions for the general-
ized minimal-subtraction procedure: The renormaliza-
tion constants have to be determined in such a way that
the renormalized correlation functions are finite when
E—+0, both for finite mp and in the limit mp~ (x). We re-
mark that a similar scheme has been successfully em-
ployed to investigate the crossover from the Heisenberg
fixed point to asymptotic behavior dominated by the
long-range dipolar interaction in both isotropic and uni-
axial dipolar ferromagnets. '

y& —z 1/2 777T 7TQ

cT =Z'/2'
y Q

a Z1/2 a
7TQ

=Z1/2
g Q

(4.5a)

(4.5b)

(4.5c)

(4.5d)

taking careful account of the symmetry breaking. Simi-
larly, one has to distinguish between the transverse and
longitudinal timescales A,~ and A,

~~,
being attached to a 5

or cr field, respectively. The dimensionless renormalized
parameters thus read

AJ Zg AQ (4.6a)

A —ZA. A (4.6b)

for a diagram with v4 four-vertices and v3 three-vertices.
Thus, for d (2(4, the contributions become less diver-
gent with increasing orders of perturbation theory and
also for higher N when X= 1 is fixed. The theory is then
called (super)renormalizable, and a finite number of Z
factors will be sufficient to cure the ultraviolet infinities.

To one-loop order, in fact, only I 0 20, I 0», I 0 12, and
I Q 13 display singular behavior. With the aid of the
Ward-Takahashi identities listed in Appendix A, we note
that the difFerent four-point functions are renormalized
by the same Z factor, and we shall not have to distinguish
between several renormalized couplings u. Furthermore,
the same is true for the three-point functions, and we
realize that finite I 12 already imply finite I 13. Finally, we
see that it is even sufficient to eliminate the singularities
within the two-point functions. Of course, this is true
only in the ordered phase where I „AI', but here it
provides a considerable facilitation.

In the limit mp~ ~, these arguments fail because the
analysis of primitive divergencies is not sufficient any
more (longitudinal propagators 1/mo may compensate
factors mo in the three-vertices). But as we have seen in
the last section, the asymptotic theory can be treated ex-
actly, and only the transverse loops persist in the coex-
istence limit. Their infinities can obviously be absorbed
into renormalized quantities m and u, with u /uo
~m /mo. From (3.17) and (3.18) this is clear for the
two-point functions, and higher correlations within the
Gaussian theory always factorize in products of these.

We now define the renormalized fields according to

B. Renormalization constants
for the isotropic models A and B m=Z'mp (4.6c)

For finite mp, simple dimensional analysis and power
counting for the vertex function I 0N&(Iq;, co; J) with
canonical dimension

Q =Z QQAdP (4.6d)

The program according to our general regularization pro-
cedure and in view of the coexistence limit is then to en-
sure that the renormalized cumulants

(4.4a)d- = — (N+N 2) N+N +2—+a- —d—
NN G' (q, co)=(Z Z„)' Go (q, co), (4.7a)
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G' (q, co)=(Z Z )' Go (q, co),

G' (q, co)=z Go „(q,a2),

6' (q, co)=z Go (q, co)

(4.7b)

(4.7c)

(4.7d)

are convergent for e~O both for finite m and in the limit
m ~ oo, i.e., along the entire coexistence curve.

The renormalization constants introduced in Eqs. (4.5)
and (4.6) are not completely independent. From the re-
normalized analog to (3.2) for the spontaneous order pa-
rameter, it follows that

For mo=O this is exactly the familiar renormalization
constant in the critical region, while in the coexistence
limit mo~ 00 the weight of the effective critical fluctua-
tions is reduced from n +8 to n —1, the number of Gold-
stone modes. We emphasize again that asymptotically
the results (4.11) become exact, while in the crossover re-
gion they are correct up to terms of the order
u /(1+m /Il )'

C. Renormalization-group equation and discussion
of the flow equations

Zu Zm Zo (4 g)

Z =Z1/2Z 1/2
7T (4.9a)

Two other important relations stem from the renorrnal-
ized version of the fluctuation-dissipation theorem
(2.21b), namely,

The renormalization-group equations connect the un-
critical theory which can be treated perturbationally with
the critical theory displaying infrared divergences. For
their derivation we remark that the unrenormalized N-

point functions do not depend on the scale p defined by
the renormalization point NP:

Z =Z1/2Z 1/2
g 0 (4.9b) d

ONNp p

(4.12)

a=2: (Z Z )' =1,
(z z.)'"=1.

(4.10a)

(4.10b)

Using only the one-loop diagrams (see Appendix B), we
expect the field renormalizations to vanish, and indeed
one finds, both for model A and B,

Thus we have to determine five independent Z factors,
e.g. , by rendering the quantities 8 1 (q, co),

finite at the normalization point NP: q =tu, , ~=0 (the
redundant two conditions may serve as a check). Because
of the close connection with the response functions ac-
cording to (2.19b), it is clear that the resulting Z factors
belonging to the static quantities will be identical to those
already derived within the static theory. '

We finally remark that in the case of model B with con-
served order parameter the number of independent Z fac-
tors is further reduced, because the momentum depen-
dence of the relaxational vertex ~q leads to the disap-
pearance of the loop contributions for I 0 (O, co) and

I 0 (O, co), from which we conclude

1 1+P ——
g

——
g G' =0,

fr 2 & arm
(4.13a)

P +(2 Ai +(2 All~ +g m
QP i c}kj II BA

I(l

+P ——
g

——g G' =0, (4.13b)
a

BQ 2 2

P, +g„A,i +(2 XII +g m
Bp i BA,, II ~~ll cpm

+P„—g G' =0,a
BQ

(4.13c)

a a 8 2 8
IM +(2 A2 +(2 All +g m

~p ' ~~ ~i ~~i) 3m

This leads to the following partial differential equations
for the two-point cumulants:

a a a 2 a
P +(& A, +(& All +g m

P 2 II
Bm

Z =Z =Z =Z =1,
implying

(4.11a)

(4.11b)

+P„—g 6' =0, (4.13d)
a

where Wilson's g and p functions

so that the only nontrivial Z factor is the one for the
mass parameter and coupling constant:

Z (uo, mo)=Z„(uo mo)

n —1= 1+ uo Adp
6e

g =p lnZ
a

Bp

g =p lnZ
Bp

(4.14a)

(4.14b)

3 uo Adp+
( 1 +m 2 /p

2
)

e /2
(4.1 1c) g =p lnZ

a
Bp o

(4.14c)
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g =p lnZ
a

(}p 0
(4.14(l)

characteristics as

p(1)=pl, (4.16)

~l
gi =p ln

Bp p Ao
(4.15a)

the flow-dependent couplings are given by the set of first-
order ordinary differential equations

(} m=p ln
(}p 0 ma

~u p~ u
p p

(4.15b)

(4.15c)

(4.15d}

d A,i(l)
l =A,i(l)gi (1),

d A.„(l)
l =A,„(l)g, (l)

II

l =—m (l)g (l),dm (l) 1

ldu(l)
p (l)

(4.17a)

(4.17b)

(4.17c)

(4.17d)

have been introduced (see, e.g. , Ref. 24).
The partial difFerential equations (4.13) are readily

solved with the method of characteristics. Defining the

with the starting conditions Ai(1) = }Ii, A ~~(1) =A
~~,

m(1)=m, and u(1}=u. The solutions of (4.13) then
read

dl'
G~ (p, &i, &},m, u, [qj, I co] )=exp ,' f—[—g (l')+g (l')], G~ (pl, ki(l), A~~(l), m (l), u (l), Iq/pl j, [ /co(pl} j2},

(4.18a)

dl'G' (p, ki, l~~, m, u, [qj, [coj)=exp ,' f—[g—(l')+g(l')], 6' {pl,li(l), A~~(l), m(l), u (l), fq/pl j, [co/(pl) j),

dl'G' (p, li, k~~, m, u, Iqj, [coj)=exp —f g (1'), G' (pl, Ai(l), AI(l), m(l), u(l), Iq/pl j, Ico/(pl) I },
1

(4.18b)

(4.18c)

d1'6' ( pA iA~~, m, ,uI qj, Icoj)= xep
—f g (l'), 6' {pl,ltd(l), A~~(l), m(l), u(l), tq/plj, Ice/(pl) j) .

1
(4.18d)

P„{u',m) =0, (4.19)

for then u =u'=const. They are called (infrared) stable
if

We shall evaluate the scaling functions from (4.18) in the
following section with a suitable choice of a matching
condition relating the flow parameter l with a physical
scaling variable, ensuring that (i) one of the variables on
the RHS of (4.18) is fixed to a sufficiently large value in
order that perturbation theory is applicable, and (ii) l ~0
describes the asymptotic limit.

But let us first study the flow equations (4.17}. The
asymptotic behavior sets in when a fixed point of the re-
normalization group is approached. The fixed points are
given by the zeros of the P function (4.15d),

(u, m) = —2+ u+-n —1 3 u

2 (1+m )'+'

(4.21a)

(4.21b)

(4.21c)

when /~0. The corresponding values of
=gz (u', m), gz =gz (u, m}, and g' =g~(u', m) define

the anomalous dimensions of the time scales and the mass
parameter.

From the Z factors (4.11), we calculate the Wilson
functions to one-loop order for the relaxational models to
be

(}P„(u,m)

u
&0 (4.20)

P„(u,m)=u —e+ u +-n —1 3 u

(1+ 2)1+@/2

is satisfied, because in this case from any starting value
u(1) in the vicinity of u ' the flow runs into the fixed point

(4.21d)

In the coexistence limit m ~ 00, these results become ex-



3350 U. C. TAUBER AND F. SCHWABL

act, while at the critical point and in the crossover region
they are correct up to terms of the order

2y( 1 ~ 2)1+E/2

At T, (m =0) we find the unstable Gaussian fixed
point uG =0 with the canonical mass dimension
g*G= —2 and the stable nontrivial Heisenberg fixed
point

6e
LlH—

g'H = 2+—e

(4.22a)

(4.22b)

(in one-loop approximation), governing the critical re-
gime. On the contrary, for m —+~, we still have the
Gaussian fixed point and, additionally, the stable coex-
istence fixed point

m (I) I2, m (1)
u (1) u (1)

(4.24a)

[e]
u(1) = 1.8
u(1) = 1.0
U(1) = 0.8
u(1) = 0.8
u(1) = 0.4
u(1) = O. Z

hence, wherever u (l) is approximately constant, we have

6e
n —1

g*c= —2+a,

(4.23a)

(4.23b)

ta)

10 10-' 10 10 '

which was found by Lawrie. ' Note that both the
Heisenberg and coexistence fixed points are characterized
by the same anomalous dimension g"; this is a conse-
quence of the general one-loop result Z =Z„and is val-
id for any nontrivial fixed point. For 0~ e(2 the renor-
malized mass parameter does indeed flow to infinity,
m (l) ~1 +'. Hence the asymptotic limit is really de-
scribed by a diverging longitudinal mass, and the discus-
sion of Sec. III C applies.

Further information about the crossover from uH to
u& can be obtained by solving the coupled flow equations
(4.17c) and (4.17d) with (4.21c) and (4.21d) numerically.
In Fig. 3 we depict the flow of u (1) in the case n =2 and
e= 1 for several starting values in the range
0.2 ~ u (1)~ 1.2 and m (1)=0.01,0. 1, 1.0, respectively.
For small masses m (1)(0.1, the flow does not directly
run into the asymptotic behavior uc =6, but approaches
a quasiuniversal plateau first, which corresponds to the
usual critical theory in the vicinity of T, characterized by
u8=0. 6. Of course, eventually, the coexistence limit is
reached. Only for large m (1))0. 1 has the plateau more
or less disappeared. The onset of the crossover is shifted
to smaller values of I if m(1) is decreased.

In Fig. 4 we display two flow diagrams (for n =2 and
3, respectively, with e= 1) showing u (I) vs m (I) or, rath-
er, m (1) /[1+ m (I) ], which assumes values in the inter-
val [0;1]. The Heisenberg fixed point is clearly attractive
for the parameter flow if m(1) is small, even for large u(1).
For very small u(1) even the influence of the Gaussian
fixed point is noticeable. The curve connecting uH and

uc defines a separatrix in the flow diagram; it describes
the universal crossover from critical to the coexistence
behavior dominated by the Goldstone modes.

It is possible to recover this universal crossover in the
flow of the coupling parameter u (l) for small starting
values of m. Because of (4.8) and with the one-loop result
Z = 1, a renormalization-group invariant can be
identified, namely,

b)

u(1) = 1.2
u(i) = 1.0
u(1) = 0.8
Q(1) = 0.8

—U(1) = 0.4
U(1) = 0.2

10 10-' 10 10 '

6

(e)

u(1) = 1.8
—U(1) = 1.0

u(1) = 0.8
u(1) = 0.8
u(1) 0.4

—u(1) = 0.2

10 10-' 10 10-'

FIG. 3. Flow of the coupling u (I) for several starting values
0.2 ~ u (1)~ 1.2 and m (1)= (a) 0.01, (b) 0.1, and (c) 1.0; n =2,
a=1.
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5 i

0
1.0

3.0

0.8 O. B 0.2
0.

10 10 ' 10
e

m(1)»&2-'~

SO5

2.5

FIG. 5. Universal crossover: u(l) vs the scaling variable
I/m(1) ' "for m(1}&0.1; n =2 and @=1as in Fig. 3.

2.0 .

1.5
m (1)(1 the Rows even coincide in the crossover region,
if u (l) is plotted against

1.0 .

0.5.

I
m ( 1 )2/(2 —e)

(4.25)

0.0
1.0 0.8 O. B

m2
1+m2

0.4

FIG. 4. Flow diagrams u {I)vs m {19/[1+m{1)~]for n = (a)

2and(b) 3; a=1.

I
m (1)2/(2 —e)

—2+a

(4.24b)

Remarkably, the numerical analysis shows that for

[with fixed u(1)], which we therefore identify as the
relevant scaling variable (Fig. 5).

%e end this section with an approximate solution of
the flow equations (4.21c) and (4.21d) and some com-
ments on what happens at the upper and lower critical di-
mensions. The previous discussion was valid in the range
2 (d (4. To get a qualitatively correct picture, we could
have inserted (4.24b) for the Sow of the mass parameter
into the differential equation (4.17d), which then is of the
Bernoulli type and is readily solved with the substitution
w ( l) = 1/u ( l ). Up to a quadrature the result is

ulu(l)= 7

1 —u [(n —1)/6+ 3(1+m 21' 2+~) i ~/2]1'
1

2

(4.26a)

with u =u (1) and m =m (1). Substituting (4.25), we find

u (x)= (4.26b)
~~x ~—ux ~ [(& 1 )/6+ 3( 1+xi—2+a) —1 —e/2]&i —i —eg g

2/(2 —e) 2

from which the scaling behavior with respect to the variable x is obvious for small values of m when the arst term in the
denominator is negligible.

In the case e= 1, (4.26a) becomes

ul
1 —(n —1)/6u(1 —1/l) —(3u/m )[ [l/(m +l)]' —1/(m +1)'/ ]

(4.27a)
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which yields a similar behavior as displayed in Figs. 3—5; i.e., in the limit l~O, the coexistence fixed point
u, =6/(n —1) is approached, while the crossover point is mainly determined by the initial value m.

At the upper critical dimension d, =4 (e=O), on the other hand, we find that u (1)~0 according to

u(I)=
1 —(n —1)/6u 1nl ——'u ln[(m +I )/(m +1)] (4.27b)

This is exactly the expected Gaussian theory with loga-
rithmic corrections.

In two dimensions (@=2), however, the situation be-
comes quite different. The solution (4.26a) now reads

u(l)=
1+[(n —1)/12+ —,'1/(1+m ) ]u(1 —l )

(4.27c)

i.e., u (I) approaches a finite nonuniversal constant value.
The reason is that according to (4.24b) the longitudinal
mass m(l) no longer diverges and u(l)~m(l) [Eq.
(4.24a)]. In fact, for low values of m, the isotropic
Heisenberg fixed point (4.22) is approached [see Eq.
(4.26b)]. This merely indicates that the assumption of
spontaneous symmetry breaking in connection with a
uniform order parameter leads to inconsistencies for
d =2. These conclusions are in accord with the
Mermin-Wagner theorem that forbids long-range order
in two dimensions if there is a global continuous symme-
try and only short-range interaction.

l~= q i~
p Ap (q/p)'

(5.1)

which measures the distance from the coexistence critical
surface. Thus the infrared singularities are effectively ex-
ponentiated, while the remaining scaling function is finite
for vanishing momenta and frequencies.

In the static limit co=0, the general matching condi-
tion (5.1) eliminating the infrared singularity ~ q
caused by the transverse loop reduces to

(5.2)

Using (5.2) and the fact that for low values of m(1), i.e.,
close to the transition temperature, the scaling variable
introduced in the preceding section should be proportion-
al to the product of wave number q and correlation
length g,

identify the flow parameter l with the absolute value of
the inverse transverse susceptibility to zero-loop order,

V. DYNAMICAL SUSCEPTIBILITIES
AND CORRELATION FUNCTIONS

II ( 1 )&/(2 —e) y2/(2 —e)
(5.3a)

We are now able to calculate the dynamical response
functions for the entire crossover region within the renor-
malized theory. We start with the static susceptibilities
and then proceed to the dynamical correlation functions
for both model A, corresponding to purely dissipative re-
laxation, and model B, with conserved order parameter
and hence characterized by diffusive behavior.

A. Static susceptibilities

In order to determine the static and dynamical scaling
functions, we evaluate the one-loop diagrams for the
two-point cumulants, which can be easily derived from
the one-loop vertex functions listed in Appendix B. The
results of the unrenormalized perturbation expansion
now have to be mapped onto the critical theory by intro-
ducing renormalized quantities and using the
renormalization-group equations (4.18). We then find
that because of the transverse loops, characteristic in-
frared singularities may persist. However, by choosing a
suitable matching condition, one of the arguments (or a
combination of several variables) on the RHS of Eqs.
(4.18) can be fixed at a sufficiently large value such that
the usual perturbation theory is applicable. In order to
ensure that 1~0 describes the asymptotic behavior,
which in our case represents the coexistence limit, we

together with the usual definition of the critical ex-
ponents v and P according to g ~

~
r

~

" and P 0-
~
r

~

~, re-
spectively, we find the scaling relation

(5.3b)

Z (1)=1+ u(1)+-n —1 3 u(I)
2 [1+m (I ) ]' (5.4)

we arrive at the following expressions for the transverse
and longitudinal static susceptibilities, respectively, in
three dimensions (@=1):

This agrees with the general result v=2P/(2 e+ri), —
because g=0 in one-loop approximation. The scaling be-
havior with respect to the variable (4.25) is therefore inti-
mately connected with the validity of (5.3b) in the vicini-
ty of T, . For example, using the e expansion, one finds
/3= —,

' —3e/2(n +8)+O(e ), and from (5.3b) we

correctly obtain

1 (n +2)e
2 4(n +8)

Similarly, for n ~~, we have exactly P= —,', and hence
v= 1/(2 —e), which is precisely the result for the spheri-
cal model.

Using
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p21 2

1 —
—,
' u (l)m (1) 2 —m (I) —+arcsin

1 —m (I)
1+m (I)

1 =q/p

(s.sa)

XL, '(q 0}=
1

[I+4m (1) ]'

p I [1+m (1) Z (l)]

u (l)m (I) n —1 31+ 7T+ arcsin
I+m (l) 1=q/p

(5.5b)

gTy L(T, q, O) =q "yriz (qg), (5.6)

with ri =0, and the universal functions pre (qg} describe
the crossover from critical to coexistence behavior. Fig-
ure 6 shows a double-logarithmic plot of the inverse stat-
ic response functions for n =2, comparing the results as
derived from the cumulants (C) [Eq. (5.5)] with those
from the vertex functions ( V) [to be obtained from (5.5)

valid both for a =0 and a =2, of course. These results
have the general scaling form

by expansion to first order in u] and the zero-loop expres-
sions (u =0). In either case, however, the numerical
solutions of the one-loop flow equations (4.17c) and
(4.17d} with (4.21c) and (4.21d} have been inserted, and a
small initial value m (1)(0.1 has been assumed in order
to study the universal crossover. While always

(5.7a)

there is a drastic change in the leading behavior of the
longitudinal susceptibility from being proportional to q
to

'(q, O) (5.7b)

10'-

10

10

10

10

p m(1)~i(~-')

10-' 1P-' 10' 10
q

u m(1) ~i(2—'i

1P-' 1P-' 1P'

across a region with even lower slope at around
q/pm(1) ~' '=1. This is a first example of a coex-
istence anomaly, for in the absence of the original O(n)
symmetry the longitudinal susceptibility would simply at-
tain a finite value, while it diverges because of the effect
of the Goldstone modes. We remark that formally this
singularity is to be traced back to the anomalous dimen-
sion of the longitudinal mass [Eq. (4.23b)] for
m (l)2lz~ l'. Note that the leading asymptotic behavior
is factored out of the scaling function and is no more con-
tained in any of the loop diagrams. Therefore the renor-
malized zero-loop results already describe the situation
qualitatively very well, if the Qow-dependent parameters
resulting from the full one-loop flow equations (4.17c),
(4.17d), (4.21c), and (4.21d) are used.

The q
' behavior was discussed within a

renormalization-group approach by Mazenko, ' using ar-
guments of the 1/n expansion. Another exponentiation
of the Goldstone singularities was achieved by Schafer
and Horner through a more sophisticated partial summa-
tion of the perturbation series. ' The Goldstone
anomalies then were fully embedded into the concept of
renormalization-group theory for crossover phenomena
by Lawrie. ' However, he primarily examined the coex-
istence limit, using only an approximate solution of the
Aow equations in the e expansion. Our scheme thus goes
beyond Lawrie's approach in investigating the crossover
region more accurately.

This is most conveniently done by introducing the
quantities

FIG. 6. Inverse (a) transverse and (b) longitudinal static sus-
ceptibilities for e= 1 and n =2.

8 in+Tel (q 0)
Bl q

(5.8)
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'
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2

1 —e/2
m (I)'

(l)~
i +m (I)

i +m (I)—
2 2 1//21=(cu/A, p )

(5.11a)

yl (0,~)=

iu (1)m (I) n —11+
1 —e/2

m (I)
E

l

2

I [ i +m ( I) Z (I)—jpl

+m (I)
2

1 —e/2

2 1/21=(co/kp )

(5.11b)
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Gz.(O, a)) ~ co

and yL
' ~ (2—i)l', therefore

(5.12a)

where 0+@&2. Taking advantage of the Quctuation-
(2.21b), we can then calculate thedissipation theorem

dynamical correlation functions. The one- oop resu s
the two-point vertex unct f nctions ( V) are easily found by ex-
panding with respect to u. —1 .I2For l ~0 the scaling functions behave as yT
and hence

I

3
C)

OC ~

1.4 .

1.2

1.0

0.8

0.6

1-loop C

1-loop V

0—loop

—e/2ReyL (O, co) ~ co

GI (O, a)) ~co

(5.12b)

(5.12c}

0.4

0.2

a)

A ain the "naive" singularity as read off from the trans-
h t behavior. The characteristicverse loop gives the correc e a

'

has been already found by Mazen-divergency ~co
ko and Sc a er.h-f ' Figure 8 shows the logarit mic

he fre uency of the inversederivatives with respect to the q
1 art of the longitudinal dynamical susceptibility ig.

nd the inverse longitudinal correla
'

lation function
[Fi . 8(b)], respectively, for n =2 and e= .
tation of the profound minimum in 'g .a ion

' '
in Fi s. 8(a) and 8(b),

whose depth decreases with largr er n is of course the
same as for the static response function (see the preceding
section).

~ ~ ~

oint isObvious y, e1 th behavior at the critical fixed p
'

'
ns V) aspreferably to be described by the vertex functions (

can be seen in Fig. 8(a}, where the tiny second dip in the
mulant (C) is presumably an artifact of

istence imi, e1' 't the one-loop cumulants will provide t e
correct resu ts.1 . The zero-loop contribution alone is
sufficient to yie e

'
ld th qualitative features of the imaginary

par corn
' . w.t ( ompare Fig. 9 for model B below).

r theIn the case o a nh f nonconserved order paramete,
momentum- and frequency-dependent dynamical suscep-
tibilities read, in three dimensions (e= 1,

I ' ' I

iO i0 iO iO

A p~ m(1)~&&2 —'&

2.0 1-loop C
———— 1-loop V

1.8

1.6

3.
CO

3

1.2

1.0

0.8. (b)

10 iO i0 iO

p q& m, (y)4/(& —e)

FIG. 8. Frequency dependence of (a) ReyL(,e (0 co) ' and (b)
GL (0 co) ' for the relaxational model A; a=1 and n = .1

1 ~ (l)m (l)/6 m (l)
/A, qi i co/A— qlp, l

1—

2i2

leo + (l)2
A,p, 'I——arcsin

2 q
—leo/g +

2l2

+arcsin

l~ + (l)2
A,p I

2
2

- 1/2
q ice/A—

l)2 +, (l)i q
2l2

v ™
212

+arcsin

l co/A,

2I2
—m(l)
2

2
1/2

q leo/A (l}2 (i}2
I p I'

(5.13a)
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1
yL(q, a))=

q
—iso/1(+, p 1 m (1) Z (1)

1 u (l)m (I)

q i co—/A, 2 2q /)Ml

pl
+m (1

n —1 m . ice/A,—+arcsin

leo�

/A,

+3 arcsin
gp2( 2

'2
2

- 1/2

+4m (1)
p212 p212

+arcsin

l 6) /A,

p2I 2

'2
2

- 1/2
q

—ia)/A. 2 q
2j'2 2(2

(5.13b)

By investigation of the poles of Eqs. (5.13), we can deter-
mine the dispersion relations of the asymptotically pre-
vailing excitations. For the Goldstone modes we derive,
from (5.13a),

iCO(q)=kq (5.14)

i.e., diffusive relaxation, as expected.
Turning to the longitudinal response function, we note

that the pole (5.14) is refiected in (5.13b) as a logarithmic
singularity, for

tCO . (Z +CO ) CO . Z
arcsin = —i ln ~—i ln

z z 2N

as z «0. Therefore it can be eliminated if, as in (5.1), the
absolute value of the inverse transverse propagator is

identified with the square of the flow parameter:

I2 q i co

p A,p
(5.15)

By insertion of (5.15) into (5.13b), one finds that (5.14)
leads to the algebraic singularity

—e/2

q Lcd
xi(q ~)"

p A,p
(5.16)

We remark that on approaching the branch cut one has
to use the familiar replacement co~co+i 21, 2) $0, for the
retarded Green function. Although the longitudinal fluc-
tuations have died out, there is a divergency of the longi-
tudinal susceptibility caused by the resonant manifesta-
tion of the massless transverse modes (compare the corre-
sponding results of the 1/n expansion24). This is

reflected in the fact that asymptotically only the trans-
verse timescale A, ~, which enters the general matching
condition (5.1), appears in the physical quantities, while
the parameter A,

~~

drops out of the theory. The exact re-
sult (5.16) for the longitudinal susceptibility in the coex-
istence limit implies a very anomalous line shape in com-
parison to the Lorentzian form of the transverse correla-
tion function. This should lead to a pronounced effect
with regard to the long-time behavior of the dynamical
response functions gL (x, t) or gL(q, t), respectively.

C. Dynamical correlation functions for model B

from which, by noting
j' 2

m ( 1)4/(2 —e) g( g)2g
—2y4/(2 —e)

(qg)2I.I" '

we And, for the dynamical critical exponent,

z=4.

(5.18a)

(5.18b)

Using the relation (4.10), the general result is easily seen
to bez =4—g.

In the case of a conserved order parameter, model B
with a =2, we cannot simply set q=0 because of the
diffusion pole. Rather, the ratio co/A, q is to be kept fixed
and then the limit q~0 may be considered. According
to (5.1), the matching condition hence becomes

1/2

(5.17)
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Without introducing flow-depen e pn ent arameters as
m(l via the renormalization-group equauation, from the

(5.15b) no coexistence anomalies can be
d u ced. ' For the special situation q=, insde uce. o

'~ sin ularity of the longi-(5.20b), Schafer claimed an co singu
'

y
res onse function. This does not incorporate

the relevant scaling variable itse, an wi
t' the well-established feature (2.1) cannot eponentiation e w

transversed The canonical behavior of thereproduce . e
of thefields a one oes1 d not permit an omission
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1 us dimension of the mass parameter
be taken into account. The discrepancy p

ous
as corn ared to a

be sou ht in the fact that a
model with diffusive dynamics is ill defined in the sp eri-

n ~ ao. This is because the hydrodynamic limitcal limit n ~~. is is ec
t ical collisionis con nefi d to frequencies lower than a yp'

~ 34, 35rate, which is of the order 1/n.
~ 4

1The dispersion o ot ef b h the transverse and longitudina
modes in the coexistence limit is described by

(5.19a)

(5.19b)

Xr ~/q = 'p

gL '(O, co/q )=pl [ i—+m(I) ]l&

leading to the asymptotic behavior

Gz.(O, co/q )~(co/q ) 2, (5.20a)

(5.20b)

(5.20c)

ReyL(0, co/q ) ~(co/q )

GL, (O, co/q )~(co/q )

' . 9 the logarithmic derivatives ofof (5.19b) withIn Fig. e
n &corn are witht to the scaling variable are shown, prespec o

odel A (Fig. 7)]. Note that thethe analogous plot for mo e ig.
inar art of the susceptibility and there ore e

obdiffdynamical correlation function o ey i
ththan in the case of a nonconserved ord pder arameter in t e

coexistence limit. (5.21)i co(q) =Aq.
. 5.1)employing the matching condition [see Eq.

(5.22)
I CO

p kq
1.4

The singularity o ef th longitudinal response function ap-
pears as —e/2

1.2
I

3
CD

e 4)
04

leo
xL, (cl ~)"

p q
(5.23)

1.0

+ '
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ters, the dynamical susceptibilities display the general
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VI. SUMMARY AND OUTLOOK
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conserve an cd d conserved order parameters, respectively,
mmetr .in the p ase wi rh ith broken continuous global symme ry.
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Compare Fig. 8.
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d namic susceptibilitiesthe loop contributions to the ynamic

vanis csee pp
'

h ( A endix B) or are canceled by the renorma-
ization constant (4.11c). Thus we have
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the e expansion was avoided, arguing that the asymptotic
theory is exactly treatable, and hence the perturbation
series for the cumulants reduces to the one-loop contribu-
tions. This corresponds to the fact that in the coexistence
limit the leading order of the 1/n expansion correctly
yields the two-point vertex functions. Second, the full
How equations were solved numerically, which allows a
more detailed study of the crossover between the isotro-
pic Heisenberg fixed point (4.22) and the coexistence fixed

point (4.23). Especially, the scaling behavior with (4.25)
should be emphasized, through which the scaling vari-
ables of the static and dynamic theory can be defined.

Generally, the singularities caused by the Goldstone
modes are characterized by the anomalous dimension of
the mass parameter g~c= —2+e. At the upper critical
dimension d, =4, they are reduced to mere logarithmic
corrections, while in two dimensions the assumption of a
spontaneously broken symmetry with homogeneous order
parameter proves to be inconsistent, in accordance with
the Mermin-Wagner theorem. ' Therefore the three-
dimensional case is the really interesting one with respect
to coexistence anomalies.

As an application of the general theory, the static and
dynamical response functions have been calculated. The
expressions (5.5) for the static susceptibilities, and (5.11)
and (5.13) for the purely dissipative dynamics of model
A, incorporate the previous results. ' ' Furthermore,
they predict pronounced minima of the logarithmic
derivatives of the longitudinal scaling functions, to be in-

terpreted as the temporary dominance of the massive ex-
citation, while eventually the Goldstone modes prevail.
We also emphasize again the anomalous longitudinal line
shape [see Eq. (5.16)]. These striking features might pos-
sibly be experimentally observed (see our remarks below).
The case of model 8 with conserved order parameter
seems to be clarified. Our results for the scaling functions
(5.19) display the correct scaling behavior, which is based
on the nontrivial property (4.24b), and the asymptotic
transverse and longitudinal susceptibilities are related
through (5.25). The power laws describing the coex-
istence anomalies are summarized in Table I.

The investigations of the relaxational models, on the
one hand, serves to elaborate the theory and test the for-
malism, as they describe most of the real systems only
very crudely, such as superfiuid helium 4 (model A with
n =2 ), isotropic ferromagnets (model B with n =3 ), or
isotropic antiferromagnets (model A with n =3), because
mode-coupling terms are omitted. In the case of
superAuid helium 4, for example, this means that the

TABLE I. Coexistence anomalies.

Model A Model B

xL(q o)
Req, (O, ~/q')

GL(O, co/q')

OC q—e/2

—I —e/2

CC q
tx (~/q 2) 6'/2

~(co/q )
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propagating character of second sound is neglected. On
the other hand, however, there is also an important appli-
cation of our theory to real systems, such as the crystals
with general structure A 28X4 displaying a
commensurate-to-incommensurate phase transition,
which fall into the universality class of the isotropic re-
laxational model A. Unfortunately, precise measure-
ments of the response functions are very difficult to
achieve and have not yet been reported. However, the
characteristic minima in Figs. 7—9 might be detectable,
and also the effect of the anomalous line shape could be
observed, especially when probing the long-time limit.
Model B, on the other hand, should be regarded as more
artificial, for in O(n)-symmetrical systems with conserved
order parameter (e.g. , Heisenberg ferromagnets), mode-

coupling terms are relevant.
One should also be aware of the fact that in the ideally

O(2)-symmetric helium 4 there is no physical field conju-
gate to the order parameter, and hence the longitudinal
susceptibility cannot be measured. However, there are
other physical quantities showing coexistence anomalies,
e.g. , the frequency-dependent specific heat which consti-
tutes the sound-absorption coefficient. The application of
an extended version of our theory indeed describes the
experimental situation satisfactorily, which may eluci-
date the power of the presented technique.

For many real systems, such as superAuid helium 4 or
magnets, of course one has to take anisotropies and/or
mode-coupling vertices into account. One of the major
advantages of Lawrie's scheme is that it produces results
of fairly transparent structure. Therefore we expect that
even more complicated models can be investigated, which
has not yet been possible with any of the former methods.
We plan to report on some results in a forthcoming com-
munication.

APPENDIX A: WARD-TAKAHASHI IDENTITIES

By performing suitable functional derivatives on the general Ward-Takahashi identity (3.4b), a number of important

exact relations between vertex functions of different order can be derived. They are valid both in the ordered and

nonordered phases. Including the four-point vertex functions, the relevant results read

QI ( k;0;k)=Jr (
——k;0 k)5 i'=[r (k) —I „(k)]5 ~,

yr . ( —k;O;k)=yr. (
—k;O;k)fi &=[r (k) —r„(k)]fi i',

yr . ~( k;k;O)=yr...( k—;k;OS i'=[r (k—) —r.„(k)]fi I',
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QI, ,(
—k;0;k/2;k/2)=P I' ( k—;0;k/2;k/2)F ~r =[I,( k—;k/2;k/2)+2I (

—k;k/2;k/2)]F ~r

)I (
—k;0;k/2;k/2)=)I, ( —k;0;k/2;k/2)5 ~=[I ( —k;k/2;k/2) —2I,( k—;k/2;k/2)]5 ~,

yr .Z ( —k;0;k/2;k/2)=yr, ( —k;0;k/2;k/2)5

=[I (
—k;k/2;k/2) —I,( —k;kl2;k/2) —I,( k;—kl2 kl2)]5

QI ~, ( —k;0;k/3;k/3;k/3) =PI ( —k;0;k /3;k /3;k /3)F ~~

=[I ( k;k—/3;k/3;k/3)+2I ( k;k—/3;k/3;k/3)

—I' ( k;k—l3;k l3;kl3)]F ~r

QI ( —k;0;k/3;k/3;k/3)=/I' ( —k;0;k/3;k/3;k/3)5 ~

=[I ( —k;k/3;k/3;k/3) —3I (
—k;k/3;k/3;k/3)]5 ~,

( —k;0;k/3;k/3;k/3) =Pl ( —k;0;k/3;k/3;k/3)F ~r

=[3I „(—k;k/3;k/3;k/3) —1 „(—k;k/3;k/3;k/3)]F ~

QI' ( k;0;k—/3;k/3;k/3)=)I ( —k;0;k/3;k/3;k/3)5 ~

=[I ( —k;k/3;k/3;k/3) —21, (
—k;k/3;k/3;k/3)

—I ( —k;k/3;k/3;k/3)]5 ~,

where the abbreviation k =(q, co) has been introduced.

APPENDIX B: TWO-POINT VERTEX FUNCTIONS

In this appendix we list the zero- and one-loop diagrams (Fig. 10) and the corresponding analytical results for the
two-point vertex functions of the time-dependent Ginzburg-Landau models A (a =0) and B (a =2). The integration
over internal frequencies has already been performed by means of the residue theorem.

&I I ~ I
~ ~ ~ ~ ~

llLJ fl I ~ I ~
1 ~ ~ ~ ~ ~ ~ ~ ~ ~

(h)

(c)

IIII II I ~ I ~
~ ~ ~ ~ ~ Q ~ ~ ~ ~

II I I I
~ I I I I + — ill +

/I

-0.-
(e) (T~O'

o'(T~O'
FIG. 10. Zero- and one-loop diagrams for the two-point vertex functions of models A {a=0}and B {a=2}. The corresponding

explicit analytical expressions are listed in Appendix B.
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I o (q, co):

(a) =i co+ Aoq' q + —uom 0 fz & z 1

kk(m +k)

(b) = —A q, 1
u m2 f (q/2+k)' 1

3 k mo+(q/2 —k) i~/Ao+(q/2+k) +'+(q/2 —k)'[ma+(q/2 —k) ]

(c) = —Aoq' —uomo, 1 2 q 2+@' 1

q 2 —k i~ k + q 2+k ~ m + q 2+@ + q 2 —k +'

I o (q, co):

(d) =ico+Aoq'(mo+q )

, n —I 2 (q/2+k)' 1
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