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The manifestation of the time-reversal symmetry in the optical response is considered. Using the for-
mulation of the reciprocity law for unpolarized light, the symmetry in the coherent reflection and/or
transmission matrix R and the Stokes matrix Q is deduced by analyzing a gedanken measurement for the
R or Q matrix. Implications of the combined time-reversal and spatial symmetry are studied for oblique
specular reflection, forward transmission and, more extensively, for the normal-incidence reflection. The
case of chiral gyrotropic media is discussed, and it is shown that a circular dichroism is symmetry al-

lowed if the normal-incidence reflection leads to a partial depolarization of the beam. Nonreciprocity in

the optical response is discussed. Phenomenological symmetry analysis of the experiments searching for
the time-reversal-symmetry violation in high-T, superconductors is presented.

I. INTRODUCTION

It is well known that time-reversal symmetry (T sym-
metry) of microscopic processes manifests itself also on
the macroscopic level. Microscopic T symmetry under-
lies the Onsager relations for kinetic coefficients, which
linearly relate the response to the forces in a macroscopic
system. ' In an optical experiment, one measures the elec-
tric field E,„, in the reflected or transmitted beam gen-
erated by the incoming beam with a given electric field

E;„. The fields in the (weak) beams are linearly related by
the reflectivity or transmission matrix R, so that the
"response" E,„,to the "force" E;„is given by E,„,=PE;„.
Partially polarized light is conveniently characterized by
Stokes parameters or the Stokes four-vector S. The
Stokes vectors S;„and S,„, of incoming and outgoing
beams are related by a matrix Q, S,„,=QS;„.

In the present paper, we address the problem of the
constraints imposed by time-reversal symmetry on the
optical kinetic coefficients, the reflection and/or
transmission matrix R, or the Stokes matrix Q. These
constraints can be considered as a consequence of the On-
sager principle or the reciprocity law of optics. ' Being
well known as a general statement, its particular implica-
tions for reflection or transmission do not seem to have
been analyzed in a complete manner.

The main motivation for the present study is given by
recent optical experiments searching for a spontaneous
T-symmetry violation in high-temperature superconduc-
tors (for a review, see, e.g., Ref. 4). Knowledge of the
time-reversal transformation properties of the optical ki-
netic coefficients is needed for the analysis of experimen-
tal data in order to discriminate between a manifestation
of T-symmetry violation and the effects of a different ori-
gin.

It should be noted, that there is no rigorous way of
deriving the discussed properties from Onsager symmetry
in the dielectric e and the magnetic permeability p ten-
sors even when the macroscopic description is meaning-

ful. For example, reflectivity, calculated with spatial
dispersion taken into account, is known to be dependent
on the boundary conditions for the electric and magnetic
fields at the interface. ' Generally speaking, the bound-
ary conditions cannot be found without going into details
of the microscopic origin of the dispersion. In case of
gyrotropic or, in other terminology, chiral crystals, the
real problem of boundary conditions sometimes is dis-
guised by a certain freedom in choice of e and p, : Gyro-
tropy can be included only in e or in both e and p. Then
observable quantities, such as partial reflectivities, turn
out to be dependent on the choice of e and p. ' In this
situation it is useful to know general symmetry proper-
ties, independent of any microscopic theory, as a guide
and test for selecting the structure of a phenomenological
theory.

The properties of the Stokes matrix, brought about by
the reciprocity law, have been investigated by Perrin in
the context of elastic scattering of light by nonmagnetic
liquids or gases. Figueiredo and Raab' and Graham"
applied the results of Ref. 9 to the study of electro-optical
and magneto-optical effects in Rayleigh scattering. Re-
ciprocity of the optical response was demonstrated by
Chandrasekhar' in the framework of the kinetic theory
of radiative transfer. Onsager symmetry in impedance
closely related to the R matrix was derived in Ref. 3. Re-
cently, normal-incidence reflection has been analyzed by
Halperin. '

A straightforward way to derive time-reversal symme-

try in the optical response of a macroscopic body could
consist in the application of microscopic T symmetry,
which is well known in quantum electrodynamics. '

However, we choose an alternative method that is an ap-
plication of the reciprocity law of classical optics. The
classical approach appears to be the most natural one for
the description of a standard reflectivity or transmission
measurement.

Perrin postulated the reciprocity law of optics by
comparing the results of two measurements: (i) The in-
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coming wave has linear polarization e& and wave vector

q&, and the detector measures the intensity of emerging

light with linear polarization e2 and wave vector q2, (ii}
the beams are reversed, and their polarizations are inter-
changed, so that the incoming wave is characterized by e2
and —

qz, and the wave (e„—q, ) is measured. The re-

ciprocity means the identity of the two intensities.
In the present paper, we will use a slightly different for-

mulation of the reciprocity law. We consider unpolarized
light, i.e., an incoherent mixture of all possible polariza-
tion states on equal footing. In this formulation (Sec. II),
the source produces unpolarized light and the detector is
insensitive to polarization. (Absence of a definite polar-
ization in the source may be thought to be a property of
the statistical ensemble comprising monochromatic, po-
larized sources of light or, simply, as a property of a
quasimonochromatic source. ) The reciprocity law is then
formulated as an invariance of the readings of the detec-
tor when the source and detector are interchanged simul-
taneously with time reversal of the state of the system il-

luminated by light. If the system is invariant relative to
time reversal, this formulation is equivalent to the one
put forward by Perrin.

A plane monochromatic wave, having been specularly
reflected by a crystal, remains essentially space and time
coherent and the description in terms of the reflectivity
and/or transmission matrix (Sec. III A) is an adequate ap-
proximation. The Stokes description (Sec. III B}is more
appropriate when the outgoing wave loses its complete
coherence as a result of, e.g. , the multidomain structure
of the crystal or quasielastic processes. In Sec. III C we
present a derivation of time-reversal symmetry in the
Stokes and reflectivity and/or transtnission matrices. In
essence, our derivation is a modified version of Perrin s
arguments.

In Sec. IV a combination of T and spatial symmetries is
considered. For illustration, we show a symmetry-
allowed structure of the reflectivity and Stokes matrices
for an oblique incidence reflection from crystals, with
different spatial symmetries, placed in a magnetic field.
Transmission through a centrosymmetric crystal is also
briefly discussed. Application of the T and spatial sym-
metries to the reflection under normal incidence is con-
sidered in Sec. V with reference to (i) a crystal in a mag-
netic field (or the "anyon state, " which possesses the
same symmetry) and (ii) chiral media.

In the last section, we summarize the result and discuss
the condition of their applicability. Possibilities of opti-
cal detection of a broken time-reversal symmetry are dis-
cussed together with the experiments searching for T-
symmetry violation in high-temperature superconduc-
tors.

II. RECIPROCITY LAW

We consider a setup comprising a physical system in
an equilibrium state, a source, and detector of light, situ-
ated far enough from the system and each other. The
system includes the sample under study and auxiliary ele-
ments to control the light beams. It may also include
sources of magnetic fields, e.g., permanent magnets, to

create a certain configuration of the field in the sample
and auxiliary elements.

The total Hamiltonian of the system illuminated by
light is supposed to be T invariant, and therefore the
time-reversal transformation applied to a macroscopic
state [t j generates the state [ t—J, which is also a possi-
ble equilibrium state of the system. If the conjugated
states [t j and [

—t j are macroscopically distinctive, the
T symmetry is (spontaneously) broken. The symmetry
may be broken by the sample being spin polarized or
current carrying. Another example is given by a hy-
pothetical anyon state, where the quasiparticles possess
fractional statics and a broken T symmetry is an intrinsic
property (see, e.g., references in Ref. 4). Besides, the
magnetizations and magnetic fields of the magnets in-
cluded in the system have opposite directions in the con-
jugated states, so that their presence makes the states {t j
and [

—t J distinctive.
The source of light is assumed to be pointlike and to

produce monochromatic unpolarized isotropic radiation.
The detector, tuned on the frequency of the source, mea-

FIG. 1. Formulation of the reciprocity law. Unpolarized
light from the source S illuminates a physical system shown sur-
rounded by an imaginary sphere. The system is comprised of
"bodies" A and 8 and, optionally, a (permanent) magnet with
the poles N and S. The detector D registers the total intensity of
the radiation falling on it. (a) In the first measurement, the
source is at the point rI, the system is in an equilibrium state
[t j, and the detector is at the point rz. The reading of D is
Iz, ( [ t j ). (b) In the second measurement, S and D are inter-
changed and the system is in the state [ t j generated from [tj-
by time reversal. The reversal of the spins in the permanent
magnet leads to the reversal of its magnetic fields, as shown in
(b). The intensity measured in the second experiment I,z( [

—t j )

is equal to Iz, ( [t j ) by virtue of the reciprocity law.
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III. RECIPROCITY IN REFLECTIVITY
AND STOKES MATRICES

In this section we consider the implications of the re-
ciprocity law for the symmetry properties of the optical
kinetic coefficients. We first give a forrnal definition of
the coefficients.

A. Re8ectivity matrix

In the case of specular reflection of polarized mono-
chromatic light by a sample with uniform surface, in-
coherent effects can often be neglected, and the electric
field outside of the sample,

E(r, t ) =Re[(E;„e '" +E,„,e '"' )e ' '], (2)

is a superposition of incoming and outgoing plane waves

q;n and q,„, with frequency co&0. The complex ampli-
tudes of the waves, E;„and E,„„have two components
perpendicular to the corresponding wave vectors. The
reflectivity (2 X 2) matrix R couples the independent
Cartesian components of E;„and E,„„

E
q2, out

=R(q2ql) Ey1 ql
(3)

E i

E~~ -q, .„,
=&(—q» —q2) E

2, 1n

(4)

for the reflections q&~q2 and —q2~ —
q&, respectively.

sures the intensity of radiation integrated over the direc-
tion of propagation and polarization. A set of three in-
dependent identical pointlike dipoles, closely spaced and
oriented along x, y, and z axes, gives a realization for the
source as well as the detector.

To express reciprocity quantitatively, we compare the
results of two measurements (Fig. 1): (i) the system is in a
state [t], and the source of light is at a point r„ the
detector registers an intensity I12( [t j ) at a point r2; (ii) if
we substitute the positions of the source and detector as
well as reverse the state of the system from [t ] to t t ), —
the detector will then display an intensity I21([ t[).—
The reciprocity law can be expressed as

(ft])=r„([
When the states [t J and [ t ]

—are identical, Eq. (1) fol-
lows from the reciprocity theorem of Helmholtz. This
theorem, which was formulated for scalar waves, is valid
here as soon as the source generates unpolarized light
and the detector is insensitive to polarization. Equation
(1) can also be derived by applying the Onsager principle
to the kinetic coefficients, relating the response of the di-
poles in the detector to the forces acting on the dipoles in
the source of light. The quantum derivation of the On-
sager relations explicitly exploits the time-reversal trans-
formation of the wave functions of the system, and from
the latter point of view, the reciprocity law [Eq. (1)] is a
direct consequence of microscopic time-reversal symme-
try.

E„
E

out

=P(q, q)
in

in a coordinate system with x, y, and z axes llq. We use
the same axes for the description of the waves q and —q.

B. Stokes matrix

Reflection of a monochromatic plane wave from, or
transmission of it through, a crystalline sample may pro-
duce a wave which is only partially coherent. For exam-
ple, the light emerging after reflection of a fully polarized
light from a multidomain anisotropic crystal is perceived
by an analyzing system as being partially polarized. The
Stokes description of a light beam is then the most con-
venient one. The description is adequate for an analysis
of any phase-insensitive optical experiment with
(quasi)monochromatic beams.

The beam is described by the Stokes "vector" S with
four components S; (i =0, 1,2, 3), expressed via the time
or ensemble average of the complex amplitude E in the
beam as

s, = &(IE, I'+IE, I') &,

s, = &(IE, I' —IE, I') &,

s2=2Re(E„*E &, S3=2Im(E„'E &

or, in a more compact form, as

S;=(E o;E&, (8)

where E is a column built of E and E, z, stands for the
~ A

P Hermitian conjugate, and o 0
= 1, o „o2, and o 3 are the

Pauli matrices 0'„0'„,and 8, respectively.
When the incoming beam with the wave vector q and

Stokes parameters S;„ is reflected by the sample intoIn, qi

the wave q2, the Stokes vector S,„,q
of the outgoing

beam is linearly coupled to S;„via the Stokes matrix Q,

So~t, q, Q(q2~qi)Sin, q,

where Q is a (4X4) real matrix.
If reflection, as such, leads only to a negligible loss of

coherence, the matrix Q(q2, q1) can be expressed via the
corresponding reflectivity matrix k (qz, q, ),

(Q ), =—,'Tr(o;Po, R ), (10)

as follows from Eqs. (3), (8), and (9). In this case the
reflectivity and Stokes matrix give equivalent descriptions
of a phase-insensitive experiment.

Here and below the same coordinate system is used for
the description of the polarization of the waves q, (qz)
and —q, ( —q2). In the case of forward transmission
through a plate, the incoming and transmitted waves are
given by

(5)

The transmission (2X2) matrix R(q, q) relates the trans-
verse components of E,„,to those of E;„,
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C. Reciprocity relation

Apart from the requirement of energy conservation,
which leads to certain inequalities for the matrix ele-
ments, the most general constraint imposed on the struc-
ture, the R and Q matrices, is brought about by time-
reversal symmetry or, in other words, the reciprocity law

[Eq. (1)].
To deduce the constraints, we consider a system built

of the sample under study and some idealized auxiliary
elements which imitate the measurement of the R or Q
matrix. (The system may include sources of magnetic
fields to create a certain field environment in the sample
and auxiliary elements. ) Analysis of the gedanken mea-
surement allows one to derive the symmetry properties in
the R or Q matrix from the reciprocity law [Eq. (1)]. The
arguments in the case of R and Q tnatrices are similar,
and we show the derivation with reference to the Stokes
description.

Consider the measurement of Q, =Q(q2, q, ;It]), the
Stokes matrix corresponding the sample in a state It j.
The system includes two absorbing screens with apertures
(Fig. 2), so that the sample is illuminated by the light
with the wave vector q&, and the detector registers the
light with the wave vector q2. The incoming and outgo-

S(0

ing beams pass through the ideal polarizers P, and P2,
respectively. The polarizer P& (Pz) is described by the
Stokes matrix ftt, (fthm, ), which, as in Eq. (9), gives the
Stokes vector of the wave q, (q2) emerging from it. The
Stokes matrix for the combined sample and polarizer sys-
tem is given by an ordered product of the corresponding
matrices, with the order determined by the path of the
beam. The incoming light is produced by an unpolarized
source, and its Stokes vector reduces to the zeroth com-
ponent proportional to the intensity of the source, Io. A
polarization-insensitive detector measures the total inten-
sity given by the zeroth component of the Stokes vector
of the outgoing beam. Therefore the signal from the
detector is

Iu( I t j ) =Io A ( ftz t Qt ft
&, t )oo

where A is a purely geometrical factor accounting for the
propagation of the light in free space from the source to
the sample and then to the detector.

In the "time-reversed" experiment, where the whole
system is in the state t t j an—d the source and detector
are interchanged, the matrix Q, —=Q( —

q&,
—q2', I t j}-

is measured. The directions of the beams are reversed,
and the same polarizers P& and P2 are now described by
new matrices ft, , and A2, . The detector displays an
intensity Iz, (I t j ) giv—en by Eq. (11), with t substituted
for —t and also with interchanged indexes 1 and 2. By
equating the two intensities by virtue of the reciprocity
law Eq. (1); we obtain

(12)

{t) ({-&))

FIG. 2. Gedanken measurement of the reflectivity or Stokes
matrices. As in Fig. 1, the physical system (shown encircled) is
illuminated by light from the source (S). The system includes
two screens with apertures (A), the polarizer and/or analyzer
Pl and P2, and the sample under study. The system may in-
clude sources (not shown) of magnetic or other fields acting on
the sample and/or P, and P2. In the first measurement, the sys-
tem is in a state I t j. The wave q„polarized by P„falls on the
sample. The outgoing wave q2 traverses P2, which, in this
configuration, plays role of an analyzer selecting a certain polar-
ization from the reflected beam. D measures I,z( It) ), the inten-
sity of light emerging from the system. The symbols in brackets
denote the time-conjugated arrangement where the source and
detector are interchanged, and the state of the whole system
(the sources of field included) is changed from j t j to j t j. —
Now the incoming wave —

qz is polarized by P2 and the polar-
ization state of the reflected wave —q, is analyzed by P, . The
detector displays Iz, ( I

—t j ), which is equal to I,2( t t j ) by virtue
of the reciprocity law.

for arbitrary polarizers and any pair I t j and j t j states-
of the system coupled by time reversal.

The Stokes matrix ft of an ideal polarizer can be
presented as a direct product

(ft); = ,'(L);(M). — (13)

of two four-component vectors which represent the
Stokes vectors of a fully polarized light, i.e., of the form
(l, n„n2, n3) with gn; =1. The vector L gives the
Stokes vector of the fully polarized light emerging from
the polarizer, and M determines the polarization state of
the incoming light where no loss of the intensity in the
polarizer take place. A general ideal polarizer can be
built of (i} a linear polarizer and (ii) a set of birefrigent
transparent plates sandwiching the linear polarizer. By
varying the optical properties of the birefrigent plates,
the three components of L and M can be arbitrarily al-
tered.

For two time-conjugated configurations (where the
directions of the propagation of the beam are opposite' ),
the Stokes matrices of an ideal polarizer, ft, and ft „re-
late to each other as

(14)

where the overhead tilde on the matrix, here and thereaf-
ter, denotes transposition of the matrix, and the diagonal
matrix f'is
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T=diag(1, 1, 1, —1) .

The relation in Eq. (14) can be checked for any given
realization of an ideal polarizer.

Using Eq. (14), one can rewrite Eq. (12) as

g(L2);(Q, —~Q, ~ '),J(L, ), =0, (16)
17J

where the representation in Eq. (13) has been used, and
L, (L2) is the four-vector corresponding to A, , (ft2, ).
The unit three-vectors in L, and L2 are arbitrary and in-
dependent of each other, and Eq. (16) is satisfied only if
the matrix, sandwiched by L2 and L„is zero. Therefore
the reciprocity law [Eq. (1)] results in the relation

(17)

for the Stokes matrices which describe refiection (or
transmission) from the sample in two time-conjugated
equilibrium states {tj and { t j. —

Symmetry in the refiectivity (or transmission) matrix,

IV. COMBINATION OF TIME-REVERSAL
AND SPATIAL SYMMETRIES

R (q2 ql {t j ) =PE~(q2 ql { t j P)PE
' (21)

T symmetry couples the reversed processes q&~q2 and
—q2~ —

q& ~ There are also certain spatial transforma-
tions P which interchange the incoming and outgoing
beams. Consideration of the combined T and spatial
symmetries P allows one to derive the properties of the R
or Q matrix with fixed q, and qz.

For reAection, there are two spatial transformations of
interest: (i) P=C2, i.e., a 180' rotation around the axis
perpendicular to the reflection plane; (ii) P=o„, i.e., a
mirror transformation in the plane perpendicular to the
plane of incidence. In the case of transmission, the beam
can be reversed by the space inversion P=I.

Invariance relative to two simultaneous transforma-
tions, (i) the time reverse [Eqs. (17) and (18)] and (ii) the
above spatial transformation of the coordinate system, is
expressed as

R (q2', q&', {t j )=R ( —q„—q2', { t j
—), (18)

can be proved by similar arguments. '

Equations (17) and (18) express time-reversal symmetry
in the optical response and give an optical analog to On-
sager symmetry of the kinetic coefficients. These rela-
tions are quite general, and such factors as absorption,
gyrotropy, etc. , do not affect their validity.

In the case when the states {t j and {
—t j are micro-

scopically identical, Eq. (17) gives a convenient matrix
representation for the relations between the elements of
the Stokes matrix first obtained by Perrin. Equation (17)
is also in agreement with the symmetry derived by Chan-
drasekhar' from analysis of the transport equation for
radiation propagating through a nonmagnetic random
media.

General relations [Eqs. (17) and (18)] can be written in

a more detailed form in a situation when the distinction
between states {t j and { t j is speci—fied. In the simplest
case, T symmetry is preserved or optionally broken only

by the presence of a magnet. Then Eq. (18) reads as

(2)g = (I )E = —1, (~ )s =(I )s =I, (23)

—j. 0
(&„)z= 0 1, (&„)&=diag(1,—1, 1, —1) . (24)

If symmetry elements of the sample include the above
transformations so that the states {tj and { t j& ar—e
identical, Eq. (21) or (22) couples the (symmetric} off-

diagonal elements of the R or Q matrices. When the spa-
tial symmetry is broken, e.g., by an applied field, Eqs. (21)

«q2 ql {rj } Ps~Q(q2 qi'{ t jv»7' 'Ps (22}

for the R and Q matrices, respectively. Here { tj~-
stands for the state produced from {tj by time reversal
combined with P. The spatial transformation generally
changes the electric field in the beam, PE=PzE, or the
Stokes vector, PS=PCS. The corresponding matrices PE
and Ps enter Eqs. (21) and (22). In the coordinate system
shown in Fig. 3, they are (P= Cz, 0 „and I}

R(q2, q„H)=R( —q, ,
—

q2;
—H), (19)

where H is the magnetic field of the magnet experienced
by the sample. If the sample is characterized by a T-odd
order parameter, the states {tj and { t j differ also in-

the sign of the order parameter: For example, for a
(anti)ferromagnet with spontaneous (sublattice) magneti-
zation M, Eq. (17) gives

q„(

X2

Q(q~, q„M) = f'Q( —q„—q2,
—M)T (20}

Similar relations can be written, e.g., for superQuids with
nondissipative currents or unconventional superconduc-
tors.

As we see in the following sections, more information
can be extracted from Eqs. (17) and (18) (i) when the T
and spatial symmetries are combined and (ii) for a special
case of the normal-incidence reAection.

FIG. 3. Oblique-incidence reflection. The wave ql ( —q2) is

reflected into the wave q2 ( —q& ). The polarization of the waves

is defined in the coordinate systems with the x l and y, axes for
the waves +q, and the x, and y2 axes for the waves +q2. The
x l and x2 axes are in the incidence plane, and yl, is directed to
the eye. The applied magnetic field is expanded in the coordi-
nate system with the x, y, and z axes.
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TABLE I. Symmetry-allowed structure of the reflectivity matrix for oblique-incidence reflection
with different orientations of the applied magnetic field H along the axes x, y, and z (Fig. 3). The first
row shows the structure of the R matrix for reflection from a crystal with a twofold rotation axis C2~~z.

The same for a crystal with a mirror plane (o „),perpendicular to the plane of incidence, is shown in the
second row. The third row refers to the case when both C2 and cr, are symmetry elements. The ele-
ments labeled by g or u are even or odd functions, respectively, of the corresponding component of the
field. The unlabeled elements do not have definite parity with respect to the field.

Hiiz

C2
a c
c b

a c
c b

ag

c —dg tt

cg +du

bg

C2 Xa.,

ag

ctt g

ag

c„+dg
bg

cu

c„ bg

8
—d b

a 0
0 b

Q d
—d b

~g du

—d„bg

and (22) couple the reflections for different orientations of
the field.

For an illustration, we apply Eqs. (21) and (22) to a sit-
uation when a crystalline sample is placed in a magnetic
field H (or it possesses an order parameter with the same
symmetry properties, e.g. , magnetization) and has (i) C2,
(ii) o „and (iii) C2 X cr „as symmetry elements. The vec-
tor H(H„,H, H, ) is expanded in the coordinate system
shown in Fig. 3. A symmetry-allowed structure of the
reflectivity matrix is presented in Table I for diFerent

symmetries of the crystal and orientations of the magnet-
ic field. In Table I the matrix elements labeled by g (or u)
are even (or odd) functions of the corresponding com-
ponent of the field.

As for the Stokes matrix, if the sample is symmetric
relative to C2, it follows from Eqs. (22) and (23) that

H(OOH ): Q=

g1 g2 Q1 Q2

g2 g3 3 Q4

Q1 Q3 g4 gg

Q2 Q4 g5 g6

(29)

P(q, q;H)=P(q, q; —H) (30)

or

In Eqs. (27) and (29), as in Table I, the matrix elements
denoted by g (u) are even (odd) functions of the field,
whereas the a's in Eq. (28) are allowed to be arbitrary
functions.

If light passes through a plate with inversion syrnme-
try, Eq. (21) or (22) with P=I reads as

Q; (H„,H, H, )=a;a, Q, , (H„,H, H, ), —(25) Q(q, q;H) = f'Q(q, q; —H)T (31)

where a, and a are equal to (
—1) for i =j =3 and to

unity otherwise. For the cr„symmetry,

QJ(H Hy H ) P PJQJ( H» Hy H ) (26)

H(H„, O, O): Q =
Q3

Q2 Q4

a1 a2 0

Q1 Q2

Q3 Q4

Ã4 g5

0

(27)

a2 a3 0
H(O, H, O): Q =

0 0 a4 a5
(28)

0 0 —a a

where p; and p are equal to (
—1), for i,j =2 or 3 and to

unity otherwise.
In the case of the o „XC2 symmetry, Eqs. (25) and (26)

are valid simultaneously and the Q matrix has the follow-
ing form for a field oriented along x, y, or z axis:

Note that the inversion symmetry of the plate, and there-
fore Eqs. (30) and (31), may be violated even in case of a
centrosymmetric crystal if the crystal is placed on a sub-
strate or if the interfaces of the plate are not identical.

V. NORMAL-INCIDENCE REFLECTION

The reflection under normal incidence is a special case
as the reflections qi~qz (=—q, ) and —qz~ —q, are
the same processes. Therefore, for any spatial symmetry
of the sample, the reciprocity law [Eqs. (17) and (18)] ap-
plied to the normal-incidence reflection reads as

P(It j }=R(t t I), —

Q(ItI }=I'Q(I t})T—(32)

(33)

for the reflectivity and Stokes matrices, respectively.
In the case of normal incidence, the R matrix can al-

ways be expressed via the impedance matrix g, which
enters the effective boundary condition on the surface of
the crystal and couples the electric E and magnetic H
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+ iR2 [o,cos(2/pz) —&,sin(2/pz) ] +R 3o ~, (34)

where R1 and R2 are real, whereas Ro and R3 are gen-
erally complex.

The coordinate system, where the electric field E is ex-

fields: E=g[nXH], n being a unit vector orthogonal to
the surface. From this point of view, Eq. (32) follows
from the symmetry of the impedance matrix derived in
Ref. 3 from the Onsager principle. An equivalent [to Eq.
(32)] relation for the reflectivity matrix in the representa-
tion of the circularly polarized waves has been recently
obtained by Halperin. '

Normal incidence is also a special case for the spatial
symmetry elements: The mirror transformation o.„ in

any plane orthogonal to the reflection plane, as well as
any rotation in the reflection plane, does not change the
direction of the incoming and outgoing beams. Therefore
the R and Q matrices transform through themselves un-
der these operations. Below we consider the restrictions
imposed by the combined T and spatial symmetries on
the R and Q matrices.

The R matrix is conveniently presented as the Pauli
matrix expansion of the form

R =Rol+R, [o,cos(2/p&) —o„sin(2Ip, )]

panded in the components E„and E, is determined by
the axes of the optical setup measuring the R matrix.
Given the representation in Eq. (34), a rotation of the
axes through an angle y or, equivalently, a rotation of the
sample through the angle —y does not change the R's in
Eq. (34) and shifts the Ip's: Ip, 2~Ip, 2+Ip. The mirror
transformation o., in the plane xOz (or yOz) reduces to
y1 z~ —F12 and R3~ —R3. The syrnrnetry properties
relative to time reversal (T), i.e., [t]~[ t—], can be
found from Eq. (32). Summarizing, the parameters in the
representation Eq. (34) have the following transformation
properties:

rotation(Ip}: R 3 ~R 3, 0'1,2 0'1,Z+ 0'~ (35)

~U: R3~ —R3, 01 q~—
T: R3~ —R3, y 2~F12,

(36)

(37)

while Rz, R1, and R2 are invariant relative to time rever-
sal and all the spatial transformations. The simplicity of
the above symmetry properties is the reason for the
choice of the representation in Eq. (34).

Analogously, the Q matrix is conveniently written as a
sum of T-even (Q ) and T odd (Q„-) parts:

Q =Qs+Q.
G,

g 1cos2qp1

g1sin2q1

g 1 cos2f 1

Gz+g3cos4y3

g 3sin4y3

g psm2{pp

g1sin2y,

g3sin4q3 g p sln2y2

G2 g 3 cos4f'3 g2cos2y2
—gpcos2q2

(38}

(39)

—u, sin2i/, u, cos2i/I, U1

u, sin2i/I,

u i cos21//i —U 2

Uq

0

u 2cos2i/z

u2sin2$2
(40)

U1 u 2cos2$2 u i »n2

where Qs/„/ is defined as 2'/„/=Q+( —)1'Qk . All the G's and g's in Eq. (39) are invariant relative to time reversal

and all the spatial transformations. The rest of the parameters in Eqs. (39) and (40) have the following transformation

properties:

rotation(Ip): J~J, ( U;, u/, )~ ( U;, u/, ), ( Ip;, i///, )~ ( Ip, + Ip, i//, + Ip ); (41)

(42)

T: J~J, (43}

where i and k numerate the corresponding parameters in

Eqs. (39) and (40).
Note also, that the Q matrix [Eqs. (38)—(40)] as well as

the R matrix [Eq. (34)] are not changed by the 180 rota-
tion of the coordinate system, and therefore all the Q-
and R-matrix elements are functions only of C2 invari-

ants regardless of the crystal symmetry.
With the properties in Eqs. (35)—(37) and (41}—(43)

and the requirement of C2 invariance, a symmetry-
allowed structure of the R and Q matrices and its depen-
dence on external fields can be found in any given situa-
tion when the symmetries of the crystal and field environ-
ment are specified.

The general form of the matrices is simplified when T
and o, are symmetry elements: For a T-symmetric state,
R3 in Eq. (34) and Q„must be zero as T odd q-uantities.
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In the coordinate system with the x or y axis passing
through the mirror plane, all the y's in Eq. (34) and (39)
are equal to zero (or m /2, depending on convention). A
rotation of the coordinates (or the sample) makes them
finite, but keeps them equal. The parameter J in Eq. (39),
being 0.„odd, must be zero identically. Rotational sym-

metry brings further simplification.
As examples of analysis of the rotational invariance,

we consider two situations where 0.„ is not a symmetry
element: (i) Both 0 „and T are broken, but the combina-
tion o „Tis preserved. This is the symmetry of a crystal
with a relevant mirror plane, placed in a magnetic field

H, orthogonal to the surface. The role of H, can also be
played by the magnetization of a ferromagnet or the or-
der parameter of the anyon state. (ii) Light is reflected
by a nonmagnetic crystal, the point group of which does
not contain o.„. This is the symmetry of a chiral crystal,
exhibiting natural optical activity (gyrotropy).

In case (i), by virtue of the time-reversal transforma-
tion properties in Eqs. (37) and (43), R~ and Q„are pro-
portional to H„where as R0 & 2 and Q are functions of
H, only. The combined 0.,T symmetry allows one to
conclude from Eqs. (36) and (42) that (a) J=0 and (b) p, 2

in Eq. (34) or y, z &
and g& 2 in Eqs. (39) and (40) can be

simultaneously put to zero if the axes of the measuring
setup are adjusted to the mirror plane of the sample.
These conclusions are valid for arbitrary rotational sym-
metry of the sample. If the sample has an n-fold rotation
axis C„, n ~ 3, perpendicular to the surface, the rotation-
al invariance necessitates R

&

=R 2
=0 and

g ] g p g 3 Q J Q 2 0, with the exception that the C4
symmetry is compatible with a finite g3.

In case (ii) the reflectivity matrix [Eq. (34)] must be
proportional to the unit matrix when the sample has a ro-
tation axis C„, n + 3: Time-reversal symmetry requires
Rs =0, as follows from Eq. (37), and R, =R2 =0 because
of rotational invariance. ' Therefore, in the R-matrix ap-
proximation, normal-incidence reflection by optically iso-
tropic gyrotropic and/or chiral media has the properties
of reflection by a simple isotropic medium.

This interesting manifestation of the combined rotation
and time-reversal symmetry has recently been stressed by
Halperin. ' A negative result of the measurement of the
circular dichroism in normal-incidence reflection from a
gyrotropic cubic crystal a-LiO& (Ref. 8) is consistent with
Halperin's observation.

The Stokes matrix, corresponding to case (ii), must be
T even, so that Q„=O and its structure is given by Q in
Eq. (39). Again, the rotation symmetry C„, n ~3, leads
to simplifications in the general form and necessitates
g ] g2 g3 =0, with the only exception that C4 symme-
try allows g& to be finite.

Note that neither time-reversal nor rotational sym-
metries are in contradiction with a finite J in Eq. (39). It
is generally finite if o.„ is not a symmetry element, and
therefore the properties of normal-incidence reflection
from a chiral media differ from that of a nonchiral one.
For instance, (S0),„„the intensity of light emerging after
reflection of a circularly polarized wave of unit intensity
(S0= 1, S~ =+1) from a chiral crystal with symmetry C„,

n ~ 3, is given by

(So)0„,=G, +JS (44)

b, =(G, +G~)(G, —G~ —2JSs) . (46)

A finite J is incompatible with b =0, as 6, +6& can be
shown to be always finite (and positive). The R-matrix
approximation in Eq. (10), applied to the present situa-
tion, automatically gives 6& —6& =J=O, and both the
depolarization and dichroism are zero. Generally, the
representation in Eq. (10) is not valid and J as well as
G, —G~ 2~J

~
is finite. Then the dichroism is possible,

but with depolarization as an inevitable attribute.
Therefore the circular dichroism and all other effects

related to chirality or gyrotropy are seen in normal-
incidence reflection only in the incoherent part of light
and they are present to the extent that incoherent effects
are pronounced. Similarly, the aforementioned anisotro-
py in case of relfection from a crystal with C4 rotation
symmetry can also be shown to arise solely due to the in-
coherent processes. Incoherent reflection is not described
by the R matrix, and this resolves the above contradic-
tion.

We note that the Stokes matrix has more independent
parameters, generally 16, than the R matrix, which has
only 7 (apart from the global phase). The 16—7 =9 pa-

in accordance with Eqs. (9) and (39) and the above re-
marks. The intensity depends on the handedness of the
incoming wave Sz, that is, a circular dichroism. There-
fore a chiral isotropic media, e.g., sugar, may reveal its
gyrotropy in normal-incidence reflection.

The contradiction with the conclusion from the
analysis of the R matrix can be resolved as follows. In
the description of reflection in terms of the R matrix, the
outgoing beam is believed to be a coherent plane wave
with a definite amplitude E,„,. An incoherent com-
ponent, i.e., fluctuating part of E,„„arising, e.g., as a re-
sult of static or dynamic optical roughness of the inter-
face, is completely neglected. On the other hand, the
Stokes vector is an average of a bilinear form built of E,„,
and E,*„„and it includes both the coherent and in-
coherent parts of light on equal footing. Thus the
reflectivity and Stokes matrix represent different descrip-
tions of reflection. Only when the incoherent part of
light is neglected can the Stokes matrix be expressed via
the R matrix with the help of Eq. (10). The two descrip-
tions do not have to give identical predictions when the
reflected wave is only partially coherent.

A signature of incoherent effects is the loss of a corn-
plete polarization, as a result of reflection. For a fully po-
larized wave, the combination

6 =SD —S) —S2 —S) 0 (45)

is zero and, generally, b, /Sc shows the weight of the in-
coherent (fully depolarized) component in the beam. 2

When the incoming beam is completely and circularly
polarized, the Stokes vector of the outgoing beam has
(S0),„, given by Eq. (51), (S&),„,= —J+G&, and
(S& 2)«, =0. The depolarization parameter of the outgo-
ing wave can be written as
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rameters are reserved for the contributions of incoherent
processes. As for a physical mechanism of the processes,
we note only that, generally speaking, any violation of
translational invariance in the reflection plane, such as
roughness or contamination of the surface, multidomain
structure, thermal fluctuations, etc., leads to the loss of a
complete coherence. A more detailed discussion of this
and related questions is beyond the scope of this paper.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have considered the constraints im-

posed on the optical kinetic coefficients by time-reversal
symmetry. In the course of the derivation, light has been
regarded as a classical field. In the quantum theory, T
symmetry leads to constraints imposed on the scattering
matrix (S matrix). ' When only the coherent interaction
of light with a thermally equilibrium media is taken into
account, T symmetry in the S matrix can be shown to
lead to identities between the amplitudes of photon
scattering, which are equivalent to Eq. (18). Symmetry in
the Stokes description [Eq. (17)] holds for both coherent
and incoherent elastic processes. For quasielastic pro-
cesses Eq. (17) is in agreement with quantum theory if
Aco, that is, the broadening of the emerging beam, is
small enough, i.e., b,cu « k~ T IA', where T is the tempera-
ture of the sample. We note in passing that the quantum
approach allows one to generalize Eq. (17) to the case of
Raman scattering.

In Secs. IV and V we have considered the combined
time-reversal and spatial symmetries. If constraints im-

posed by the reciprocity law are quite universal, the dis-

cussed spatial symmetry elements must be understood as
invariance of the sample relative to spatial transforma-
tions. The sample is normally less symmetric than the
material it is made of. For example, a structure, made of
crystalline but disoriented layers, does not have any 0.,
mirror plane even if the crystal has one. Also, the screw
axis or a glide mirror plane is not equivalent to the ordi-

nary one, although the inequivalence leads to small

effects when the wavelength of the light is large in com-

parison to the lattice constant. The effective spatial sym-

metry of the sample with a contaminated surface or mul-

tidomain structure depends on the wavelength and size of
the incoming beam.

As was mentioned in the Introduction, there exist con-
tradictory results in the theory of gyrotropic media.
Based on the microscopic theory of exciton resonances,
calculation of the reflectivity matrix of a gyrotropic crys-
tal was done by Ivchenko and Ivchenko and Selkin.
Their results for general oblique incidence are in full

agreement with the reciprocity law as expressed by Table
I (in the limit H~O). In particular, no rotation of polar-
ization or circular dichroism is predicted for normal in-

cidence. Silberman and Luk'anov and Novikov calcu-
lated the R matrix in a phenomenological theory of gyro-
tropic crystals. A variant of their theory, where standard
boundary conditions for the fields and inductions as well

as the Born constitutive relations for e and p were adopt-
ed, predicts circular dichroism for normal incidence. In
accordance with Halperin' and Sec. V, this contradicts T

symmetry, and by this argument the above version ap-
pears theoretically unsatisfactory. We note that agree-
ment with the symmetry properties in Eq. (18} can be
used as a test for a phenomenological theory of gyrotro-
pic crystals.

As discussed in Sec. V, the Stokes vector of the beam
back reflected by a chiral medium does contain informa-
tion about the gyrotropy of the medium. The symmetry
arguments do not forbid a circular dichroism with the
sign controlled by the handedness of the chiral media.
However, chirality reveals itself only in the incoherent
part of the reflected light. Similarly, symmetry does not
forbid an anisotropy in reflection from cubic crystals
(Sec. V), but again, only to the extent depolarization is

present.
The reciprocity relations in Eqs. (17) and (18) make it

possible to introduce classification by time-reversal sym-

metry, i.e., symmetry of the R and Q response matrices
relative to the time reversal of the probed system,

[ t j ~ (
—t ). Experimental detection of a nonreciprocal

response, i.e., a quantity which is T odd in this
classification, unequivocally proves that T symmetry of
the state of the system is broken.

The elements of neither the R nor Q matrix for given

q, and q2 do not have definite T symmetry. Only certain
combinations of them measured in the geometries q, ~q2
(I) and —2~ —q, (II) do. For example, the combina-

tion P& — n, built of the re6ectivity matrices Pt and Pn
measured in the geometries I and II, is T odd: By virtue
of Eq. (14), it changes its sign under jt]~[ tJ. The-
other example is given by the split in Eq. (38},where Q
is T even and Q„ is T odd.

Therefore the detection of a T-odd quantity necessarily
requires two measurements differing in their geometry, as
discussed. Measurements in transmission or oblique-
incidence reflection modes have to be done with the re-

verse of the beam. In the case of normal-incidence
reflection, the 90' rotation of the sample may play the

role of the reversal: If the incident polarization is along
the x axis and the outgoing y polarization is detected, i.e.,
x ~y process, then the rotation interchanges the axes

and the reversed process y ~x is measured.
Spontaneous violation of T symmetry along with the

loss of mirror symmetry is an intrinsic property of a so-

called anyon model of high-T, superconductivity (for a

review, see Ref. 4). Wen and Zee' suggested to search
for the violation by observation of circular effects in opti-
cal properties. We briefly discuss the reported experi-
mental data' in the nomenclature adopted in this pa-

per. We believe that a phenomenological language of the
R or Q matrix is the most appropriate for analysis of the
data. The choice between R and Q is dictated by the type
of experiment.

Lyons et al. ' have reported a circular dichroism in

normal-incidence reflection from high-T, films. In their

apparature the beam traverses a set of optically active

plates and the reflected light transformed by the plates is

registered by a diode detector. An experiment of this

type can be completely described in the Stokes approach.
One can show that the output signal q, (Refs. 19 and 22)

from the null detector is expressed by the elements of the
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Q matrix as

30

11

(47)

where Q'» is the rotationally invariant part of Q» [equal
to G2 in Eq. (39)]. Q30 is odd relative to a mirror trans-
formation P (here and below we use the notation from the
anyon literature, P=o„). However, Q30 alone does not
have a definite T symmetry: Only a T-odd combination
Q30+Q03 does. Therefore the observation of a finite Q30
proves only that the part of the sample under the light
spot does not have any mirror plane I' as a symmetry ele-
ment. No conclusions follow about the T-invariance
violation. (In different terms this problem was discussed
in Refs. 19 and 22.)

Ellipsometric data for normal-incidence reflection have
been also reported by Weber et al. ' They use an optical
setup, where the output signals are g„(Ref. 24)

Q30+ Q03
4

Q31 Q13

Q32 Q23 Q32 Q23

(48)

and ga, which can also be expressed via elements of the Q
matrix [Eq. (38}]similarly to g„. The parameter g„(as
well as ga ) is P odd, but does not have definite T symme-
try: It is built of T-odd (g„), and T-even (gs) parts (see
Sec. V). As in the experiment of Ref. 19, detection of a
finite g„only shows that P symmetry is broken without
any firm conclusions about T symmetry. The transmis-
sion experiment, ' where only one direction of propaga-
tion is measured, suffers from the same uncertainty in the
interpretation.

It has been attempted in Ref. 21 to discriminate be-
tween g„and g by making use of the difference in their
symmetry properties: A linear coupling to the external
magnetic field is allowed only for g„. A rigid correlation
between the sign of g„a and the direction of the rnagnet-
ic field applied in the process of cooling has been reported
for single-crystal samples ' and later for thin high-T,
films. A Curie-Weiss-type behavior of the Faraday
effect in transmission has also been reported. Taken as
published, the above magnetic-field data hardly can be
understood unless T symmetry is indeed broken below
certain transition temperatures. However, these findings
have not been confirmed so far by other groups, and the
situation remains controversial.

A qualitatively different experiment has been per-
formed by Spielman et al. They use an optical gyro-
scope setup and measure the interference of two waves
having traversed a high-T, film in two opposite direc-
tions. The setup is sensitive only to coherent processes:
The waves reach the sample with a delay 7.=L /c, L =1.5
km being the length of the gyroscope fiber. The long de-
lay guarantees that only the emerging light within a very
narrow frequency window, bf- 1/2n r- 50 kHz, con-
tributes to the interference signal. Besides this frequency
filtering, the light eventually transforms into a wave

propagating in a single-mode fiber, so that a spatial filter-
ing takes place. An experiment of this type can be com-
pletely described in the R-matrix formalism. For the ex-
perimental arrangement of Ref. 20, the output signal P
can be written in our notations as

p = Im —+Arg[(R 0+ +R 3+ )(R 0
—R 3 ) ] (49)

where R0 3 and R0 are the coefficients in the Pauli ma-
trix expansion of (q, q, [tI } and R( —q, —q, [ rI), re-
spectively, and the indices 0 and 3 numerate the
coefficients as in Eq. (34). By virtue of Eq. (37), P is a T
odd quantity, and therefore the signal is controlled ex-
clusively by an nonreciprocal response of the sample.
The part of the nonreciprocal response, which is given by
Eq. (49), has been accurately measured with a negative
result.

As we see, phenomenologically, the three experiments
measure three different quantities. The same object, i.e.,
the Stokes matrix, is measured in the ellipsometric exper-
iments of Refs. 19, 21, and 23. However, the "rotation
angles" ri, and g„are given by different combinations of
the elements of the Q matrix. This and differences in the
sample structures make a quantitative comparison of the
two ellipsometric experiments difficult. A qualitatively
different physical quantity, i.e., the amplitude of a certain
coherent process, is measured in the gyroscope setup.
The reported "angles" ri„g„,and ((1 are, in the phenome-
nological approach, independent parameters and can be
in any relation. The negative result of the interference
experiment may turn out to be compatible with the ellip-
sometric data, when the latter are interpreted in favor of
a broken T symmetry. As an example of a situation
where different measuring techniques may give seemingly
incompatible results, we recall again the back reflection
from a chiral media: The P-symmetry violation (gyrotro-
py) would not be seen in the coherent part of the reflected
light, but might reveal itself in the incoherent part. We
do not see any general argument forbidding a microscop-
ic model which has a similar property with respect to T-
symmetry violation. Another possibility has been sug-
gested by Dzyaloshinskii: If the space inversion com-
bined with time reversal is preserved, P, the rotation in
transmission, must be zero [see Eq. (21)], but a nonre-
ciprocal reflection is not forbidden. At present, when the
experimental situation is still controversia1 and no con-
vincing theory of the anyon state in high-T, cuprates has
been put forward, room for various speculations remains
wide.

In conclusion, we have considered the derivation of
time-reversal symmetry in the optical kinetic coefficients
describing reflection or transmission of polarized light.
The derived T symmetry in the coherent reflection
and/or transmission R matrix and Stokes Q matrix is a
general property that is valid in spite of absorption, gyro-
tropy, etc. The symmetry in the Stokes matrix allows
also for quasielastic processes. We have considered im-
plications of the combined time-reversal and spatial sym-
metries as well. The derived time-reversal transformation
properties allow one to discriminate between the recipro-
cal and nonreciprocal parts of the optical response in ex-
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periments searching for a spontaneously broken T sym-
metry.
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