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Discreteness efFects on the double-quadratic kink

1 AUGUST 1992-II

P. Tchofo Dinda, R. Boesch, and E. Coquet
Laboratoire des Ondes et Structures Coherentes, 6 Boulevard Gabriel, 21000 Dijon, France

C. R. Willis
Department ofPhysics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

(Received 16 December 1991;revised manuscript received 9 March 1992)

We study the static and dynamic properties of a kink in a chain of harmonically coupled atoms on a
double-quadratic substrate. We treat intrinsically the lattice discreteness without approximation and
demonstrate that the stable kink does not cause a phase shift of the phonons, and relate this result to
Levinson s theorem. Using a recently developed projection-operator approach, we derive exact equa-
tions of motion for the kink center of mass, X, and coupled field variables. With neglect of radiation, a
zeroth-order expression is obtained for the frequency with which the trapped kink oscillates in the
Peierls-Nabarro well, and we show that the frequency lies in the phonon band. Consequently, we show
that the effects of discreteness on the double-quadratic kink manifest themselves in surprisingly different
ways than in a typical discrete kink-bearing system, i.e., the center-of-mass motion of a trapped double-
quadratic kink is a quasimode in the same sense as is the shape mode of the sine-Gordon kink [R. Boesch
and C. R. Willis, Phys. Rev. B 42, 2290 (1990)]. We solve numerically the collective-variable equations
of motion for the trapped and untrapped regimes of the discrete kink motion, and compare the results to
those found for various other models.

I. INTRODUCTION

The many one-dimensional (1D) nonlinear lattices that
give rise to energy-localization effects —and hence sup-
port stable kink structures such as the sine-Gordon
(SG), ' the double Sine-Gordon, ' the P, ' the
double-quadratic, ' and the multiquadratic
systems —have given rise to a large amount of theoretical
development owing to the interest in condensed matter
and particle physics in their behavior as model systems.
For example, areas of application of the SG model in
condensed matter include dislocation lines in imperfect
crystals, ion motion in some superionic conductors,
and charge-density waves in metals.

Various models assume for an order parameter the po-
sition of a particle in a double-well substrate potential
(e.g., the macroscopic polarization in ferroelectric and
antiferroelectric crystals or the position of a proton in a
hydrogen bonded system). Two common double-well po-
tentials are the P and the double-quadratic (DQ) poten-
tial.

The P potential has received a great deal of atten-
tion ' as a model for domain walls in displacive phase
transitions and has also proved useful in the study of pro-
tonic conductivity in hydrogen bonded systems. ' In the
continuum limit this model gives rise to a nonlinear wave
equation, which admits large-amplitude solitary wave or
soliton solutions that retain their shape during propaga-
tion.

The DQ potential, on the other hand, consists of two
displaced parabolas whose form allows one to proceed
quite far in "analytical" investigations. The analytic
tractability makes the DQ model attractive, for instance,

in the study of interactions between ferroelectric domain
walls with external fields. The DQ model is especially
attractive in the discrete case (since closed-form static
solutions exist), such as in the study of the dynamics of a
thermal ensemble of metastable structures, ' or the study
of the static structure phase diagram of nonlinear
lattices. ' Furthermore, the commensurate-
commensurate or commensurate-incommensurate phase
transitions, which appear in DQ systems with first- and
second-neighbor interactions, ' involve the propaga-
tion of the so-called localized phase fronts along the lat-
tice. The phase fronts have already been observed in
various materials, e.g., Li103 (Ref. 29) and KD2PN4.
In a particular (static) phase, the fronts are nonpropagat-
ing, or fixed, and the phase can be regarded as a succes-
sion of a finite number of domain walls which make up
the periodic unit cell. In this spirit, a simple formalism
was developed recently for describing commensurate
phases in 1D discrete DQ systems, and the discrete static
solutions for particle positions as a function of the dis-
tances between domain walls were found. The formula-
tion explicitly exhibits variables that are natural for set-
ting up a particlelike description of the system. Those
variables are the distances between the domain walls, or,
equivalently, their positions, which can hence be treated
as Hamiltonian dynamical variables. Such a particlelike,
or collective variab1e, treatment would be of great in-
terest for the study of the dynamics of collective entities
such as phase fronts, and in general, the dynamics of
phase transitions, which involve a modification of the dis-
tances between the domain walls. It is, therefore, in-
teresting to examine, as a step in this direction, a discrete
DQ chain with a single kink (domain wall) in a
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collective-variable context where the collective variable
represents the center of mass of the kink.

In the present paper we focus on the discrete DQ mod-
el with only nearest-neighbor interactions and show that
the discreteness effects in this system are atypical and do
not fit into the general picture that describes behavior
found in other discretized field theories. For instance,
the center-of-mass mode usually lies in the gap of the
systems's excitation spectrum if the kink is trapped. In
the discrete DQ model, however, we find the interesting
result that the mode associated with the center-of-mass
motion of a trapped kink never lies in the gap, and in this
respect differs from all other known nonintegrable
discrete field theories. Moreover, since the DQ kink ex-

ists, we would expect there to be a phase shift of a pho-
non as it traverses the kink. On the other hand, since
there is no mode in the gap (i.e., no bound state, see Sec.
IIB below), Levinson's theorem' —which relates the
phase shift through a scattering potential to the number
of bound states supported by the scattering potential—
predicts that there should be no phase shift. We resolve
the apparent contradiction in Sec. II B. We show in the
present paper that the DQ field is a candidate for study-

ing the dynamic properties of systems in which the
domain walls do not induce phase shift for phonons upon
passage through the crystal.

We introduce into the discrete DQ system the collec-
tive variable X, which represents the position of the
center of mass of the kink, and we obtain exact closed-
form expressions for the static kink profile when the kink
is located at symmetry points along the chain, and the
kink's energy. We determine the spatial dependence of
the Peierls-Nabarro (PN) potential and derive analytical-

ly a zeroth-order (neglecting radiation) expression for the
frequency with which the trapped kink oscillates in the
PN well, and we show that this frequency lies in the pho-
non band. To facilitate the calculation, we employ a
projection-operator approach' in order to derive the
equations of motion governing the evolution of the collec-
tive variable X. Such an approach was shown' to be an

expedient equivalent to the Dirac-bracket theory of
constrained Hamiltonian systems making the derivation
of the collective-variable equations of motion extremely
simple.

In order to determine the effects of the phonon field on
the dynamics of the kink's center of mass, we numerically
solve the collective-variable equations of motion for vari-
ous initial conditions leading to trapped and untrapped
motion. We find that the DQ kink behaves quite
diff'erently from the discrete P of SG kink in that, as
soon as the DQ kink begins a trapped oscillatory motion,
the frequency of oscillation of its center of mass —that is,
the PN frequency —appears inside the phonon band and
thus makes direct resonance with the phonon modes, in
contrast to the P (Ref. 11) or SG (Ref. 2) kink for which
the PN frequency is initially located in the gap below the
phonon band. Consequently, the DQ kink significantly
radiates away energy and the PN frequency continually
decreases in time, whereas for the P and SG models the
frequency is an increasing function of time. Also, unlike
the P and SG models, the trapped DQ kink ultimately

reaches a steady state in which the ensuing oscillatory
motion is almost perfectly harmonic with frequency very
close to the lower phonon band edge, and the kink radi-
ates phonons only weakly. Such behavior is characteris-
tic of a localized quasimode. It was recently shown that
the internal or shape oscillation of a continuum SG kink
is also a quasimode having a frequency that lies in the
phonon continuum, is a monotonically decreasing func-
tion of time, and ultimately oscillates very close to the
edge of the phonon continuum.

In the following section we define the DQ model under
consideration and in Sec. II B we calculate the exact stat-
ic solutions for the stable and unstable kink profiles, and
the corresponding energies, and we examine the frequen-
cy spectrum of the system. Section II C is devoted to the
determination of the X dependence of the PN potential,
and in Sec. IID we perform the molecular-dynamics
simulations of the motion of a trapped kink. We derive
the collective-variable equations of motion in Sec. III A,
obtain an expression for the zeroth-order PN frequency
in Sec. III B, and in Sec. III C we numerically solve the
collective-variable equations of motion. We conclude in
Sec. IV.

Throughout the paper, our calculations treat intrinsi-
cally the lattice discreteness so that no continuum limit
approximation is required.

II. STATIC AND DYNAMIC PROPERTIES

A. The model

The system under consideration is a one-dimensional
chain of harmonically coupled particles governed by the
following Hamiltonian:

mu„+ —Eo g [(u—„—u„ i ) +(u„—u„+, ) ]
1 . p 1

n n

+ meso g (
~ u„~ ——a )2,

n

(2.1)

where u„denotes the position of the nth particle mea-
sured from the center peak of the local substrate poten-
tial; +a locate the two minima of the potential. The con-
stant mo represents the limiting frequency of infinite-

wavelength phonons. The first term in Eq. (2.1)
represents the kinetic energy carried by the displacement
field (a dot denotes a time derivative), and the second
term is the strain energy arising from the harmonic cou-
pling with coupling constant Eo between adjacent parti-
cles. Note that we have used here a symmetrized form of
the energy per site in which half the coupling energy of a
particle with its two neighbors is introduced, hence the
factor —,'. The third term represents the substrate poten-

tial. Introducing the dimensionless position coordinate
Q„=u„/a, the Hamiltonian becomes
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2

H—: =1 g—Q„+— g [(Q„—Q„))
n n

+«.—Q. +i)']

+—coo g( ~ Q„~
—1) (2.2)

in units of A =ma /1; Co =Kol /m is the limiting veloc-
ity of the kink, and 1 & 2a denotes the length of the unit
cell in the chain.

The potential energy is defined by

Ey =1 K i g—[(Q„—Q„ I ) + ( Q„—Q„+I ) ]
1

4„:—Q„=a(n —X)

(R ) ~( n X )
IInt(x) —n

I

v+1

(2.8)

where Int(X) represents the integral part of X,
R» =X—Int(X), —1 &R» & 1.

Substitution of Eq. (2.8) in Eq. (2.3) yields the kink en-

ergy at equilibrium

E~oE»=, [1—o' (R»)+4y ], E» =Cori)o .
2y( 1+4y2)1/2 0

(2.9)

+—too g( I Q„ I

—1)' (2.3)

where K, =Co/1 . We introduce the discreteness param
eter y,

Co d
7 (2.4)

B. Single-kink yrofile-exact static solutions

The static structure of the system is obtained by solv-
ing dEv/dQ„=O, where E~ is defined in Eq. (2.3), which
gives us the following equilibrium equation:

which serves as a measure of the kink length relative to a
lattice spacing 1, and hence a measure of the importance
of discreteness effects.

We henceforth consider X&0, so that O~Rz(1.
Thus, the static solutions 4„and E» in Eqs. (2.8) and
(2.9), respectively, show that for a single kink there are
exactly two solutions for the equilibrium equation (2.5),
since o(R») is either equal to 1 or 0, depending on
whether Rx/0 or RX=0. The solution with Rx0 cor-
responds to a kink centered midway between two parti-
cles, implying that R» is not arbitrary if Rx0, but takes
the value R» =

—,'. Equation (2.9) shows that this solution
corresponds to an energy minimum, that is, the stable
kink O'„. The kink solution with R+=0, 4„", corre-
sponds to the higher-energy configuration [see Eq. (2.9)]
and is unstable. This solution corresponds to a kink that
is centered exactly on a particle of the chain. An elemen-
tary algebraic manipulation gives us

4'„=o(n —X)[1—Z„vI "I]

Q„,+28Q„+Q„+,=g(n),

g(n)= —o „/y2, 8=—1 —1/(2y'), (2.5)

I /2

1+v
(2.10)

j=+ oo

Q„=(v—1/v) ' g g(n +j )vlJI

v= 1+(1/2y )[1—(1+4y }'i ] . (2.6)

In order to obtain a kink solution that explicitly exhib-
its all the equilibrium configurations, we introduce the
variable X—which represents the position of the kink
relative to a lattice spacing l —by defining the sequence
o.„as follows:

cr„=o(n —X)=—sgn(n —X), o (0)=0 . (2.7)

where o „=sgn(Q„) represents a given sequence of Ising
variables (+I) describing the occupied side of the
double-well substrate potential at each site of the chain.
Equation (2.5) is an inhomogeneous difference equation
which can be solved exactly for an arbitrary sequence

The general solution is written

a(n X)[1 vl
—

I] X—m q m —
Oq 1)2q

Note that the solution (2.10) fulfills the self-consistency
condition o „=sgn(Q„) at each site of the lattice for all
finite values of y. This solution generalizes the results
obtained in previous work, ' ' ' in that this solution
provides, in addition to the stable kink profile 4„, an
analytical expression for the unstable kink 4"„.

Figure 1, which gives plots of different stable kink
profiles 4'„ for different values of the discreteness param-
eter y, shows in general that when y »1 the coupling be-
tween sites is so strong that the variation of 4'„ from site
to site is very small. This corresponds to the so-called
displacive (or continuum) limit. The spatial extension of
the kink decreases continuously as y decreases. As y de-
creases below unity, +'„approaches a step function.

Furthermore, it is interesting to note that in the displa-
cive limit (y »1), v-1 —1/y [see Eq. (2.6)], then Z„-1
[see Eqs. (2.10)], so that

Then, performing the sums of the infinite series in Eq.
(2.6), we obtain the following solution: As v-1 —1/y -e ' ~, then the static solutions becomes
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FIG. 1. Kink profile 4„ for various values of the discreteness
parameter y. Note the increase in the spatial extension of the
kink as y increases.

cr(n-—X)[l—ei "i ] (y))1) . (2.11)

Substituting y =8/l and x = nl into (2.11), we recover
precisely the "continuum" solution obtained by Trul-
linger and DeLeonardis, translated by

X=lX, (2.12)

Also note that for y))1,
Ex(Rx = ,') =Ex(Rx =o-}~~oco=Esc,

where Ez is in fact the kink rest energy of the "continu-
0

urn" kink, obtained by Trullinger and DeLeonardis.
The PN barrier vanishes in the displacive limit.

We now turn our attention to an examination of small
oscillations in the presence of a kink. The equations of
motion for the inj7nite chain are written

Q„—K, b,2Q„+coo V,
' =0,

b2h„=(h„,+h„+,—2h„),

V, =-,'(la. I

—»'
(2.13)

Throughout the paper, we consider a chain with a finite
number of particles, so that only first difference is needed
for an end particle. In order to examine small oscilla-
tions in the presence of an equilibrium kink N'„, we con-
sider

Q„(t)=@'„'+8„(t),
where 8„(t)=eh, „exp( idiot ) (e is a small p—arameter) and
N'„=+'„, or N'„q=4„". The linearization about N'„" yields

that is the position of kink in the lattice. Furthermore,
note that the PN barrier height EFN, defined as the ener-

gy required to move the kink by one lattice spacing, is

simply given by

EFN:Ett(Rx =0) Ex(Rx =
2 ) =(Z~ Z~ )Ex

V,"(4'„q)= 1 —25(4'„)—:1 —25(X—n ) (2.15)

is the "scattering" potential. [Note that the 5 function
appears in (2.15) only if 4'„q=4„", that is, if X is an in-
teger. ] We present separately the cases 4'„=4'„and
qeq Cu

n n'
(i) For 4'„q=4'„[X=—,', V,"(4'„q)=1], the spectrum

consists entirely of plane-wave phonons and the disper-
sion law ' ' is expressed in terms of our discreteness
parameter as

co„=too[1+4y sin (k/2)], (2.16)

—co'A, „—K, b, ,k„=—too[1 —25(X—n )]k„. (2.17)

Equation (2.17) takes the form of the Schrodinger equa-
tion for a particle in the presence of a 5-function poten-
tial well if and only if the kink is always centered exactly
on a particle of the chain, that is, if X is an integer no. In
this case the presence of the kink provides a localized po-
tential acting on the phonons, in the sense that the "pho-
non solutions" must be necessarily X dependent. We
then assume solutions of the form

A.„=a,(k)exp[i(n —X)k ]

+b( )kepx[ —i(n —X)k] as n —X~+ 0D,

(2.18a)

A,„=a,(k)exp[i(n —X)k ]

+b2(k)exp[ —i(n —X}k] as n —X~—00,

(2.18b)

where k is the wave vector associated with the frequency
cok. Therefore, there is no mode in the gap and, conse-
quently, there is no bound state associated with the
motion of the kink's center of mass in the PN potential.
By Levinson's theorem, ' there is no phase shift of a pho-
non as it traverses the kink. The kink is linear because
the coupling potential as well as the substrate potential
are harmonic [the substrate potential is piecewise har-
monic], unlike the discrete SG or P models which are
characterized by nonlinear substrate potentials. When
linearizing about the SG and P kink solution, one ob-
tains a nonlinear scattering potential acting on the pho-
nons, and a phonon suffers a phase shift upon passing
through the kink. For the DQ model, the kink is a linear
object consisting only of phonons; consequently the
effective frequency with which the kink oscillates in the
PN well is necessarily in the phonon band, as shown by
Eq. (2.16), whereas for the SG (Ref. 2) or P (Ref. 11)
models, the PN frequency is in the gap. We now consider
the case 4'„q=4„" in an attempt to find whether or not
there exists in the discrete system a mode, even an unsta-
ble one, that becomes the Goldstone mode in the continu-
um limit.

(ii) For 4'„q=4"„, V,"(4'„)=I—25(X—n}, and Eq.
(2.14}becomes
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A,„=O . (2.20)

Using Eqs. (2.20) and (2.17), a little more algebra shows
that the solution of Eq. (2.17) is

A,„=A„sin[(n —X}k], (2.21)

where Ak is a normalization constant. However, this
solution is not localized about the kink and corresponds
to a state in which the kink is always centered exactly on
a particle of the chain. Consequently, a mode associated
with the motion of the kink's center of mass is not
defined in this case, since the center of mass of the kink X
does not move off the top of the PN potential. If it
moves, the Schrodinger-like form of Eq. (2.17) is lost and
one finds oneself in the previous case 4'„q=4'„. These
statements, in addition to the symmetry of the solution
(2.21},show that the state described by (2.21) does not be-
comes the Goldstone mode in the continuum limit.

The above analysis clearly shows that there is no con-
tinuous transition from the trapped regime of the discrete
behavior (in which the kink oscillates in the PN potential)
to the continuum behavior (in which the kink freely
translates), in contrast to the SG or the P systems, where
there exist discrete localized PN modes whose frequen-
cies continuously go to zero as the continuum limit is ap-
proached.

C. PN potential

where the a;(k } and b, (k. ) (i = 1,2) are arbitrary functions
of k. Substituting Eqs. (2.18) into (2.17), we obtain

[ —co +co0+4XI sin (k /2)]A, „=20i05(n —X)A,„, (2.19)

For nAX:—n0 the dispersion relation is satisfied; con-
sequently Eq. (2.19) is satisfied if and only if A relatively simple expression that satisfies these condi-

tions is

P(R» ) = [4R» (1—R» ) ] (2.23)

Of course, other choices for P(R») are possible. The
function p in Eq. (2.23} is obtained by requiring that

g„(X)=o (n —X)[1—v~ "~Z, ]

minimize the functional II, where

(2.24)

(2.25)

i.e., P„ is a best fit to O'„. An empirical polynomial fit
yields

p(I }=12.294 —48.495I'+91.334I 2 —68.0878I 3,

(2.26}

In order to see how good it is, we evaluate two mea-
sures of the correctness of g„with p given by Eq. (2.26),
namely II in Eq. (2.25) and

(2.27)

Scanning the range 0 Rz( —,', we obtain, for different
values of y, the results which appear in Figs. 2. We see
in Figs. 2 (a} and (b) that for y=l, A and II do not
exceed 8 X 10 and 6.5 X 10, respectively. The subse-
quent frames show that the agreement becomes better as

The periodicity of the lattice requires that P(X)=P(R»),
whereas the symmetry of the lattice requires P(R» } to be
symmetric with respect to R~ =

—,', so that we must have

P(R )=P(1—R») .

We now study the shape of the PN potential. In order
to obtain the X dependence of the PN potential, we make
use of a quasistatic solution for the kink profile 4'„(X),
which is valid for all X. 4„(X) is quasistatic in the sense
that the kink is held fixed at arbitrary X by applying an
external force on a particle near the kink's center. The
solution 4'„(X) is found numerically by then letting the
system relax subject to the external force. The chain is
considered to be relaxed when the maximum force on any
particle in the chain is not greater than 10 ' K, l.

We see that the expression of the solutions 4'„(X) and
@„"(X)[in Eqs. (2.10}]differs solely by the term Z„which
is present in 4'„(X), so that we can postulate that the
quasistatic profile for arbitrary X has the following form:

II I I I II I II II I II II III I

0.008 —
(e)

0.006—

0.004—

0.002—

p l I I JM~II I I

0.0003 I I I I
I

I I I I

I
I I I I

I
I I I I

I
I I I I

- (c) ~=10

0.0002—

8x10

6x10

t 4x1Q

2xlo

I I I I
I

I I I I
I

I I I I
I

I I I I

I
I I I I:(b)

II I I I III IIll III

th 73%10 '''I''''I''''I''''I''
—(&) y=1o

2x1Q

f„(X)=o(n—X)[1—v~ "Zt' '], (2.22)
0.0001— 10

where the function P(X) must satisfy the following condi-
tions. We require that g„(X) become the exact solutions
@'„(X) for X=m+ —,

' and @„"(X)for X =m, so that we
must have

0 IIIII
0 0.1 0.2 0.3 0.4

Rx

0 IIIIII II I II II

0 0.1 0.2 0.3 0.4
Rx

0

P(X)=0, R» =0,

P(X)= 1, R» =-
—,
'

FIG. 2. Evaluation of the agreement between the approxi-
mate solution g„(X) aud the exact quasistatic solution 4&'„(X).
Maximum value of the static dressing A vs R&, and value of the
fit II as a function of Rz. (a) and (b): for y = 1; (c) and (d): for
y =10. Simulation parameters are coo=1, C0=3y, and 1=3.
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1e2 I I I I
)

I I I I
)

I I I I
)

t I I I

7=1

g[Q„(t)—g„(X)]'=0 .
d

n

(2.28)

It is helpful to note that before solving Eq. (2.28), for X,
we first estimate the approximate value of X, XL, , via a
linear interpolation,

XL, = +n, Q„(0 and Q„+I)0,
n n+ I

(2.29)

0.9

I I I l I I I I I I I I I I I I I I i0 A
~ LJ

500 500.5 501 501.5 502I
FIG. 3. The normalized PN potential as a function of X for

different values of the discreteness parameter. The dashed line
represents the continuum kink rest energy. Simulation parame-
ters are coo = 1 and Co = 1.

y increases, i.e., as one approaches the continuum limit.
We also find that the difference ~Ett (g„) Ex (4'„)—

~
is the

same order of magnitude as H. We then conclude that in
the context of the collective-variable approach, P„(X)
provides an approximate but highly accurate representa-
tion of the shape of the kink for all X and becomes the ex-
act solution 4"„(X)or 4'„(X) when X=m or X=m+ —,'.

Finally, we obtain the X dependence of the PN poten-
tial for any value of the discreteness parameter y by sub-
stituting the solution g„(X}into the expression for the
potential energy, Eq. (2.3). Figure 3 shows the shape of
the normalized PN potential as a function of X. We see
that the PN potential of the DQ kink possesses the same

type of discontinuity as the DQ substrate potential. This
differs from the (() (Ref. 11}and SG (Ref. 5) models for
which the top of the PN potential is rather smooth.

and then we obtain the solution X from Eq. (2.28) by sim-

ply scanning a small region neighboring X„,. We define
the velocity by V(t}=IX(t+bt) —X(t)] /bt.

We obtain from MDS the frequency of oscillations
averaged over individual cycles of the kink's motion and
show the result for y= 1 in Fig. 4. [The simulation pa-
rameters are CO=3, coo= 1, b, t =n/111. 5, tf =1065,
N=2000. ] We see in this figure that, as soon as the kink
begins its motion, the PN frequency copN lies in the pho-
non band, ct)pN 1 ~ 07Np. Then copN decreases to copN=~O
after about ten oscillations, and Anally remains essentially
constant at coo during the ensuing motion. This small
variation of the PN frequency at the beginning of a
large-amplitude oscillatory motion of a trapped DQ kink
does not imply the presence of anharmonicity in the
kink's motion, in contrast to SG and P, since no anhar-
monicity exists. The small variation in the PN frequency
is due to the following reason: Since the PN frequency
lies in the phonon band, it is then clear that the motion of
the kink's center of mass is generated by a "packet of
phonons. " When the kink begins its motion, the PN fre-
quency is initially slightly different from coo, owing to the
fact that a part of the phonons which contribute to the
motion of the kink's center of mass is created at frequen-
cy co@coo. Then the PN frequency decreases in time,
which indicates that those phonons created at frequencies
coAcoo propagate away owing to their nonzero group ve-
locities. The phonons created at frequency coo, or nearly
so, with a zero or small group velocity, cannot propagate

D. Molecular-dynamics simulations, trapped case

We simulate the trapped motion of a kink by starting
with a kink that is relaxed to unstable equilibrium at the
top of the PN well; where X(t =0)=lnt(N/2)+c. and
X(0)=0, where E is a very small deviation of the kink's
center from the equilibrium position (e-10 '

), and X is
the total number of particles of the chain; which yields
the following initial conditions for the molecular- dynam-
ics simulation (MDS): Q„(0)=g„(X(0)) and Q„(0)=0.
The kink then moves off the top of the PN well due to the
small deviation c, and begins to oscillate. Hereafter the
dynamical simulation time step At is chosen to conserve
the energy of the system to an accuracy better than 0.1%%uo,

the total number of particles X and the total simulation
time tf are chosen such that we do not encounter pho-
nons rejected from the ends of our system We obtain the
center of the kink from MDS (throughout the paper) by
requiring the quasistatic kink profile g„(X) given by Eqs.
(2.24) and (2.26) to be a best fit to the field variable Q„(t}
(obtained from MDS ) as follows:
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FIG. 4. Normalized PN frequency of trapped kink motion
averaged over individual cycles. Simulation parameters are
V0=0, 4t =m. /111.5, coo=1, CO=3, l=3, and

Xo =W /2 +F = 1000+ 10
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Q„(r+b, r )—Q„(r)
S(n, t)= IQ„,(t)—Q„(t)) .
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and therefore make up the oscillations of the kink at fre-
quency copN =coo during the ensuing oscillatory motion.

The behavior observed for the SG (Refs. 2 and 3) or the
(Ref. 11) model is quite different; indeed these two

models are characterized by the presence of anharmonici-
ty in the kink s motion, which arises from the nonlineari-
ty of the substrate potential. At the beginning of a large-
amplitude oscillatory motion, the PN frequency for the
SG or the P kink is small and located below the lower
phonon band edge; '" this frequency increases in time as
the kink radiates, in contrast to the DQ case, for which
the PN frequency is initially inside the phonon band and
decreases in time.

In Figs. 5(a) and 5(c},obtained for the same simulation
data as for Fig. 4, we plot the molecular-dynamics results
for the kink's position and the Poynting flux of the pho-
non radiation evaluated 25 particles away from the center
of the kink, both as a function of time. The discrete
definition of the Poynting flux S is

We see in Fig. 5(c) that when the kink begins its
motion it significantly radiates away energy by emitting a
large phonon packet. Its amplitude of oscillations then
drops strongly in order to conserve energy [Fig. 5(a)].
Next the kink reaches a quasisteady state in which it ra-
diates phonons weakly, and its amplitude decreases slow-
ly. Furthermore, we point out that the large phonon
packet emitted by the DQ kink at the beginning of its
motion is not truly a bursting phenomenon such as that
observed in the SG model. In Ref. 2, the authors pro-
posed a parametric coupling of the PN frequency in the
gap to the radiation field. They showed that the bursting
phenomenon occurs when harmonics of the PN frequen-
cy, which are previously below the lower phonon band
edge and therefore not producing radiation, cross over up
into the high-density-of-states region of the phonon band.
These harmonics then act as a source of radiation by
resonating with phonon modes, thereby producing a
burst. It is important to mention that this mechanism re-
sults from the presence of anharmonicity in the kink's
motion. For the DQ kink, a large phonon packet is emit-
ted at the beginning of the kink s motion, but, in this
case, the process results only from the radiation of the
phonons created at frequencies mWcoo and coAco, which
propagate away owing to their nonzero group velocities.
(Furthermore, it is important to note that we do not have
exactly mpN=coo during the quasisteady state simply be-
cause, although the radiation emitted by the kink is
weak, it is not zero. }

We now consider the frequency spectrum obtained by
performing a Fourier transform of the kink's motion.
The transform begins at t =1065 (that is, about 500 kink
oscillations after t =0}.Figures 6(a) and 6(b) show the re-
sults obtained for the case y=1 discussed above. The
Fourier spectrum in Fig. 5(a} show that a group of about
30 center particles, from n = 15 up to n =35, oscillate at
frequencies co=coo and co=2.23coo=co (which corre-
sponds to the upper phonon band edge k=m. ). Figure
6(b), which shows the relative amplitude of the Fourier
transform for particles No. 25, consists of the two peaks
coo and co . Note that the peak co corresponds to a state
in which two adjacent particles of the chain vibrate out of
phase by m. and therefore do not correspond to the oscil-
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AmphtudeFIG. 5. Simulation and collective-variable theory for y=1.
(a) and (b): X(t); (c) and (d): instantaneous Poynting's flux cal-
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the end of the total time of the calculations, that is, at
t = tf =1065. Simulation parameters are the same as for Fig. 4,
a =0.

FIG. 6. Temporal Fourier transform of a trapped kink for
y =1. (a) Normalized frequency vs particle number for a cutoff
value of 0.01 ~ (b) shows the relative amplitude vs normalized fre-
quency of the states in (a) for particle No. 25. Simulation pa-
rameters are the same as for Fig. 4.
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lations of the kink center X(t). The phonons created at
this frequency cannot propagate, owing to their zero
group velocity, and they are therefore present throughout
the duration of the transform. The other pronounced
phonon state co=no corresponds to the effective frequen-
cy at which the kink's center of mass oscillates.

Thus, although the trapped DQ kink does not possess a
rigorous nonlinear mode, its center-of-mass mode appears
to be a quasimode, i.e., a mode in the same sense as is the
shape mode of a SG kink.

where the bracket notation means sum over the particle
index, and p„ is the momentum conjugate to q„. The
prime denotes the derivative with respect to the argu-
ment. The constraint C& determines the value of the col-
lective variable X, which makes the function f„a best fit
to the actual field Q„and in this way it gives the variable
X its physical meaning. The constraint C2 determines
the momentum transformation, which yields a particle-
like description of the dynamics. Substituting Eq. (3.1)
into Eq. (3.2) yields

III. COLLECTIVE-VARIABLE THEORY

A. Collective-variable equations of motion

We introduce the kink center-of-mass collective vari-
able X(t) in our system by introducing the ansatz

Xf„'+X'f„"+q„+hq„+ b f„~otr—(f„+q„)=0 .

projecting Eq. (3.4) in the ( f„'
~

direction yields

[(f, lq. +bq„&+X'&f„'If,'&

(3.4)

(3.5)
Q„=f„(X)+q„, (3.1)

where f„(X) is a suitably chosen function and q„ is then
the remaining field such that the sum of f„(X) and q„
satisfies Eq. (3.1). The equation of motion in terms of the
actual field Q„s written [cf. Eq. (2.13)]

where M = ( f„'
~

f„' ) /1 is the kink mass. Equation (3.5) is
the equation of motion for the variable X, the center of
mass of the kink. We consider the trapped case and we
proceed to calculate the zeroth-order frequency, which
neglects the radiations emitted by the kink.

Q„+EQ„—choo ( Q„)=0, (3.2)

where the difference 6 without a subscript is de6ned as

bh„=B,h„—K, (h„,+h„+,),
B

&

=2E
~
+No. According to the projection-operator ap-

proach, ' one needs to specify two constraints, and they
are

C&=&f, (X) q, )=0 Cp=(f, (X)lp, &=0, (3.3)

B. Zeroth-order PN frequency

Since simulation shows that the radiation emitted by
the kink undergoing small-amplitude oscillations is negli-
gible, we can take q„=0. Effects of the order X are also
negligible for small-amplitude oscillations and so we set
X =0. We consider small-amplitude oscillations about
4'„and choose f„ to be 4'„[Eq. (2.10)]. Equation (3.5)
becomes

(3.6)

By decomposing X as X=Int(X)+R», as done in Sec. II B, we explicitly calculate all the terms in the right-hand side of
Eq. (3.6). Thus,

(4'„~cr(n —X))= —2v'~ Z, sinh[(R» —
—,')lnv], (3.7a)

Z~v
(4'„'~4'„)=2Z„lnv z sinh[(2R» —1)lnv]—

1/2
sinh [ ( R» —

—,
' )lnv] (3.7b)

Z v 3/2
(N'„~C&'„, ) + (4&'„~N'„+, ) =4Z„lnv sinhI(2R» —1)lnv] — sinh[(R» —

—,)lnv]
2 V

(3.7c)

vZ lnv
M:—M(X) = cosh [ (2R» —1)lnvI .

d(1 —v)
(3.7d)

Note that the right-hand side of Eq. (3.6) is a periodic
function of X since it depends only on R~, because of the
R» dependence of Eqs. (3.7a) —(3.7d). It is also interest-
ing to note that for y~~, i.e., v-1 —1/y, Z —1, the
kink mass becomes

M ~1/d, (3.8)

where 1/d =coo/Co is the mass in the continuum limit,
obtained in Ref. 24.

We expand Eq. (3.6) about the equilibrium, which
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yields

X= —coo(1+v)(R» —
—,')l . (3.9)

Eq. (3.9) becomes

X=O,

By setting X=m + —,'+g ( that is, R» =
—,'+ g), and linear-

izing in rl, Eq. (3.9) becomes simply

~PN9 ~

where

(3.10)

cop~ —( 1 +v ) cop (3.11)

represents the zeroth-order PN frequency of the DQ
kink. This frequency always lies in the phonon band
(since 0(v ( 1), in contrast to the SG (Ref. 2) or P (Ref.
11) cases, for which the frequency is in the gap. The be-
havior of cop& is therefore in agreement with the peculiar
result obtained from MDS, in Sec. II D, that the PN fre-

quency for the DQ kink always lies in the phonon band.
We emphasize that such a peculiar result is understood

by invoking the fact that there is no bound state in the
discrete system, so that the center-of-mass motion of the
trapped kink is generated by a packet of phonons.

It is interesting to examine the behavior of cop~ as a
function of y. For sufficiently small values of y, that is,
in the case of extreme discreteness, v-0 [see Eq. (2.6)] so
that Bpz-cop. This is due to the fact that in this limit the
spectrum of allowed frequencies cok —which depends on

y according to the dispersion law [Eq. (2.16)]—collapses
essentially to cop, so that the kink's center-of-mass motion
is generated by a packet of phonons with frequencies

~p which leads to cop~ Np.

As y increases, the phonon spectrum increases so that
it becomes possible for some phonons with frequencies
ek)ep to contribute to generate the kink's center-of-
mass motion —hence the slight increase of cop~ with y.
cop~ approaches coov 2 for large kink sizes.

Furthermore, as 0 (R&( 1, the right-hand side of Eq.
(3.9) vanishes when l ~0, so that in the continuum limit

which corresponds effectively to the continuum behav-
ior.

Thus, since there is no bound state in the discrete sys-

tem, it is therefore clear that the DQ system spontaneous-

ly gives rise to a bound state, which corresponds to the
Goldstone mode as soon as the PN potential vanishes,
whereas for the SG or P systems there always exist
bound states (associated with the center-of-mass mode} as
well in the discrete system as in the continuum limit.
Note that for the DQ model, the Goldstone mode is not
the limiting behavior of Bp~ in the continuum limit: Np~
describes the behavior of a phonon packet, and is not as-

sociated to a bound state.

C. Numerical solutions of the collective-variable

equations of motion

To determine exactly the PN frequency for all y, we

need to take into account the q„'s. The coupled set of
equations (3.4) and (3.5) are sufficient to determine the
time evolution of X and q„starting from some specified
initial conditions. However, in each of these equations
there appear two accelerations: X and q„. Since we must
solve Eqs. (3.4) and (3.5) numerically, it is desirable to
have the acceleration of either variable be determined by
a source that is a function of the coordinates and veloci-
ties and not on the other accelerations. The term
(f„I qn ) in Eq. (3.5) is replaced by taking the second time
derivative of C„and solving for (f„Iq„) to obtain

(f„'Iq„&= -X&f."Iq. &
—X'&f;"Iq. &

—2X&f."lq. & .

(3.12)

Substituting Eq. (3.12) into (3.5), and thus eliminating the
explicit acceleration dependence in the term (f„'Iq„),
yields

X=, , „[—&f„'I~f„+~q„&+2X&f„"Iq.&+X'(&f."'Iq. &
—&f.'If."&)+~0&f.'I~(f. +q. ) &] .

fn fn fn' qn

Solving Eq. (3.4) for q„one obtains

q„=—[Xf„'+Xf„"+Aq„+bf„co0(f„+q„)],—(3.14')

where the value of X obtained from Eq. (3.13) is to be
substituted into the right-hand side of Eq. (3.14). Note
that these equations govern the motion of the kink
whether the kink is trapped or untrapped. We will solve
the collective-variable (CV) equations of motion by using
the numerical technique reported in Ref. 2.

We Srst address the problem related to the choice of
ansatz function f„(X). As the quasistatic solution g„(X)
[Eqs. (2.24) and (2.26)] provides a highly accurate repre-
sentation of the shape of the kink for all X, a natural

choice would be f„(X}=P„(X). [Note that we can no
longer choose f„(X) to be 4'„as we did previously for
calculating the zeroth-order PN frequency, or even 4„",
because these functions accurately represent the shape of
the kink solely near the equilibrium states at the bottom
and the top of the PN well, respectively. ] However, solv-
ing the CV equations of motion (3.13) and (3.14) necessi-
tates working out the derivative of the ansatz function up
to the third order. The derivatives of 1(„(X) possess
terms which contain the Dirac 5 function and its deriva-
tives 5' and 5", which must be taken into account into ac-
count to obtain the exact solutions for the collective vari-
ables X and q„. As long as the kink oscillates within the
PN well and does not reach its summit (trapped case} the
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5, 5', and 5" terms vanish, so that one can choose the an-
satz f„(X)=f„(X)for the CV theory .However, for the
untrapped case, the 5, 5', and 5" terms yield nonzero
contributions to the CV equations of motion when the
kink passes over the top of the PN well, precisely when
X=n, where n is a site index. So, solving numerically
Eqs. (3.13) and (3.14) in the presence of the 5, 5', and 5"
terms, directly, is very cumbersome. Although one can
transform these equations by using Fourier transform
techniques and obtain equations which do not contain the
5, 5', and 5" terms, we do not choose this method of at-
tack. In fact, in the context of CV theory, it is not truly
necessary to choose g„ to be the ansatz function. Any
choice of f„ that suitably represents the configuration of
the system will do as long as the q„are fully taken into
account. So, for numerically solving the Eqs. (3.13) and
(3.14), for all regimes of the discrete kink's motion, we
choose the following ansatz function:

f„(X)=tanh[A(n —X)], (3.15)

k= —
g lnv, (3.16)

where lnv makes the relationship between f„(X)and our
discreteness parameter y by requiring f„(X) to have the
same argument [A,(n —X)] as that of our quasistatic solu-
tion P„; the minus sign is required to have A, )0. g is a
factor which makes f„(X) a best fit to the initial

configuration of the kink P„(X(t=0)). The meaning of g
will be made more mathematically precise in the follow-

ing discussion.
The initial conditions start with a kink that is relaxed

to one of the equilibrium configurations along the PN po-
tential, Xo =X(t =0)=N/2, with —a given initial velocity
VO=X(0), so that Xo, Vo,

where the factor A, is as yet an unknown quantity, which
represents the width of the stationary kink described by

f„(X). The ansatz Eq. (3.15) is the well-known

configuration of a P kink in the continuum limit, '
where we have replaced the continuous position variable
x by the site index n. This ansatz has been used already
by Combs and Yip" for the study of the dynamics of the

kink within the CV formalism. There is no need to ex-
plicitly include a relativistic factor P(t) multiplying A, in

Eq. (3.15), because any relativistic effects will necessarily
be taken into account by the q„. ' We choose A, to be of
the form

that the fact that C&(0)=0 does not imply that any
choice of g, for f„,will do. Indeed the idea in introduc-

ing the first constraint condition C, (0)=0 is to make the
CVT lead to the determination of the value of X for
which the ansatz function f„(X) is the best fit to the field

Q„, for all time t and in particular for t =0. That is, the
extremurn of

(3.19)

with respect to X yields C, (t)=0. Similarly, we obtain
the parameter g in Eq. (3.16) by requiring the ansatz
function f„(X}in Eq. (3.15) to be the best fit to the field

Q„—:f„(X,) at t =0:

g[g„(XO)—f„(XO)) =0,
n

which leads directly to the following equation for g:

g[g„(XO)—tanh[(XO n}glnv—]][n —Xo]

(3.20)

X [ 1 —tanh [(Xo n)g l—nv]] =0 . (3.21)

Equations (3.21) admits exactly one solution g, for a
given y, and this solution minimizes the quantity in Eq.
(3.19}. Note that Eq. (3.21) differs from the first con-
straint condition C&(0)=0 by the presence of the factor
[n —Xo]. [Equation (3.20) is in fact the first constraint
condition for the variable g if we were to treat g as a col-
lective variable. However, in the present paper we do not
treat g as a collective variable, but rather as a constant,
whose value we obtain from Eq. (3.21) at t =0. ]

In order to illustrate that the center-of-mass mode for
the DQ kink is a well-defined collective entity [in the
sense that its collective coordinate X possesses exact
equations of motion, given by Eqs. (3.13) and (3.14)], we
will systematically choose the same initial conditions for
the CVT and MDS and compare our results in the two
cases. This necessitates constructing a map from the
MDS initial conditions [Q„(0),Q„(0)]onto the CVT ini-

tial conditions [q„(0), q„(0), Xo, and Vo]. We consider
in the present work the map derived in Ref. 2, which is
constructed in a way such that the condition C2(0) =0 is

always satisfied whatever the initial velocity; consequent-
ly, this map can be systematically used whether the kink
is trapped or untrapped. This map is then given by the
following equations: '

and

Q„(0)=P„(XO), (3.17)

Q„(0)= f„'(Xo),
At

(3.22}

q„(0)=Q„(0)—f„(Xo) (3.18)

are known for a given g. Furthermore, it is important to
note that the initial conditions for the collective-variable
theory (CVT) must satisfy the constraint conditions in
Eqs. (3.3) at t =0. The CVT then guarantees that the
constraints will be zero for all time. ' As the initial kink
profile is centered on an equilibrium point of the PN po-
tential, q„(0) is odd and consequently C&(0)=0 whatever

g, since f„'(X )isoeven. However, it is crucial to note

Vo=, b0=a/gt '(f (Xo)/q. (0) ~

1 —b(0) M(XO)
(3.23)

q„(0)=—b(0) V,f„'(X,), (3.24)

where the q„(0) are obtained from Eq. (3.18},and a is a
small parameter.

Figure 5(b) shows the numerical solution of Eqs. (3.13}
and (3.14) for the case VO=O discussed in Sec. II D—a
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kink of y =1 trapped and oscillating in the PN well. For
y= 1, /=0. 70898. During the numerical solution of the
Eqs. (3.13) and (3.14) the magnitude of the constraints C,
and Cz does not exceed 1.5X10 and 2.5X10, re-
spectively; the energy of the system is conserved to an ac-
curacy better than 1.3X10 %. During this trapped
motion we note that the kink radiates in forward and
backward directions [Figs. 5 (e) and 5 (f)] essentially in a
similar fashion, and does not undergo appreciable distor-
tion during this trapped motion. Throughout the simula-
tion the MDS and the CVT yield essentially the same re-
sult for the field variable Q„, but for simplicity we only
give in Figs. 5(e) and 5(f) the kink profile at t = tf = 1065;
[typically we find that Q„" (tf)=Q„s(tf)210 '; re-
call that Q„(t)=f„(X)+q„(t)].Figure 5 shows that
the CVT results agree extremely well with MDS results
(see the Appendix for more details on the evaluation of
the agreement between the collective-variable result XcvT
and the MDS result XMns). Since the trapped process
has been discussed in detail in Sec. II D, we now turn to
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FIG. 7. Simulation and collective-variable theory for y =10.

{a)and (b): X(t); (c) and (d): velocity; (e) and (f): kink profile at
the end of the total time of the calculations, that is, at
t =—tf =160.8. Simulation parameters are a =0.0075
( Vp 0 079Cp) ct)p= 1 Cp =30 1=3, ht =~/1000, and
X,=Nn =2000.

the untrapped case.
Our MDS and CVT for the untrapped case with y =10

and a=0.0075 (which corresponds to Vp =0.079Cp) ap-
pear in Figs. 7. For y =10, /=0. 71695. Both simula-
tion and theory start with a kink —in a chain of 4000
particles —at the top of the PN well No. 2000 moving in
the positive x direction. During the numerical solution
of the Eqs. (3.13} and (3.14), C, (t) and Cz(t} do not
exceed 9.5 X 10 and 1.5 X 10,respectively. The ener-

gy of the system is conserved in an accuracy better than
8X10 %%uo. We see in Figs. 7(c} and 7(d) that when the
kink begins its motion, its velocity continually decreases,
indicating that the kinetic energy of the kink is radiated
away in the form of phonons. The kink then slows down
as it radiates, until it becomes trapped. After trapping,
the ensuing motion is the same as that discussed in Sec.
II D.

The behavior of the untrapped P (Ref. 11} and SG
(Refs. 2 and 39) kinks has been studied in great detail.
One of the main results of these studies is that when the
initial velocity is large enough, the untrapped motion
leads to bends in the curves of the kink's velocity versus
time, which appear at critical velocities, at which the ra-
diative damping changes abruptly. For our simulations,
one of these velocities is found to be -2.2 for (y=10,
Vp =0.079Cp };but this is not visible in Fig. 7 because the
initial velocity Vo is not large enough. We have not inves-
tigated this problem in more detail in the present paper,
and we have always chosen relatively small initial veloci-
ties in order that the kink becomes quickly trapped.

We now turn our attention to limiting cases, that is,
the case of extreme discreteness and the case where
discreteness effects become negligible. We briefly discuss
separately the two cases:

(i} In the case of extreme discreteness, the trapping
dominates: Whatever Vo, the kink is quickly trapped.
We see in Figs. 8, which show the results obtained for
y = 1 and a =0.0275 (which corresponds to
Vp=0. 32Cp), that the kink's dynamics in the trapped
motion now differ significantly from the previous case
(y= 1, Vp=0) where the kink is initially trapped in the
PN well. Indeed, for the trapped case ( Vp =0) the ampli-
tude of oscillation is initially large [see Figs. 5(a) and 5(b)]
and the shape of the kink does not undergo a significant
distortion during the oscillatory motion, whereas for the
untrapped case (VpAO) the kink begins its trapped
motion with a relatively small amplitude of oscillation
[Fig. 8(a)], owing to the emission of a burst of phonon ra-
diation during the transition from the ballistic propaga-
tion to the trapped regime. Figure 8(b) shows that this
phonon radiation is much more strong than in the case
( Vp =0) [Figs. 5(c) and 5(d)]. It is also interesting to note
in Fig. 8(c} that the PN frequency appears in the phonon
band as soon as the kink begins its trapped motion;
copN( r =0) 1.1 8cop; which agrees extremely well with
BpN(7 = 1 } 1. 17cop [see Eq. (3.1 1)]. Moreover, we recov-
er the peculiar result (obtained from MDS in Sec. IID}
that the PN frequency for the DQ kink is a monotonical-
ly decreasing function of time; which differs from all oth-
er known nonintegrable field theories. Furthermore, we
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see in Fig. 8(c) that the PN frequency at t =0,
ropN(r =0)Irop differs from that of the case ( Vo =0) in
Fig. 4; we attribute this difFerence between the PN fre-
quencies to the difFerences in the kink's behavior at the
beginning of the trapped motion, mentioned above. In
this respect we notice that the shape of the untrapped
kink undergoes appreciable distortions during the transi-
tion to the trapped regime and these distortions remain
present in the trapped motion during a certain time, as
shown in Fig. 8(d), and the kink does not radiate phonons
in a similar fashion in backward and forward directions
[Figs. 8(e)]. However, after a certain time depending on
the initial velocity, the distortion of the kink progressive-
ly vanishes and the kink recovers a more steady profile

that is more close to its initial profile and radiates pho-
nons in an almost similar fashion in backward and for-
ward direction; the ensuing oscillatory motion is then
similar to the case Vo =0.

(i) When the discreteness effects become sufficiently
small, the kink travels on several hundred lattice spacings
with a relatively constant velocity, as shown in Fig. 9 ob-
tained for y =100. The radiation emitted by the kink is
found to be negligible.

Furthermore, for all the cases (y, Vo) that we have dis-

cussed throughout the paper, we note excellent agree-
ment between the CVT result for the kink's center of
mass XcvT and the result XMDs obtained by using our
quasistatic solution 1(t„(X) (see the Appendix).
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We have demonstrated in the present paper that al-

though the discrete DQ system does not possess a non-
linear mode, the discrete DQ kink behaves like a well-
defined collective entity whose center of mass can be de-
scribed within a collective-variable formalism. Thus, as
the description of commensurate phases in one-
dimensional DQ systems can be reduced to that of a finite
number of domain walls embedded within a periodic unit
cell, our study suggests that the dynamics of those com-
mensurate phases can be described within a collective-
variable formalism where the collective variables
represent the distances between the domain walls, or,
equivalently, their positions. The dynamics of those
domain walls can induce phase transitions, and, then, in-
volve the propagation of phase fronts along the lattice.
As the phase fronts are spatially localized entities, they
could therefore be described theoretically in a collective-
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IV. SUMMARY AND CONCLUSION

In the present paper we have studied static and dynam-
ic properties of the discrete DQ kink. We have shown
that the zeroth-order PN frequency always lies in the
phonon band whatever the discreteness parameter may
be. The presence of the PN frequency in the band is in
marked contrast with other discretized field theories.
This is because the presence of the kink in the DQ system
does not give rise to a scattering localized potential act-
ing on the phonons. Consequently there is no bound
state and localized state about the kink, and by
Levinson's theorem ' there is no phase shift of a phonon
as it traverses the kink. We have shown that the DQ
kink possesses all regimes of the discrete kink's motion:
the untrapped regime and the trapped regime. For the
trapped case we observe that, when the kink begins a
large-amplitude oscillatory motion, its frequency of oscil-
lations is slightly greater than the limiting frequency of
wavelength phonons coo. This frequency quickly de-
creases in time, while the kink strongly radiates away a
large phonon packet. Next the kink reaches a steady
state in which the phonons are now radiated weakly and
in a smooth fashion and the ensuing oscillatory motion is
almost perfectly harmonic, at frequency coo. However,
we stress that the center-of-mass mode is not a nonlinear
mode, but rather a quasimode in the same sense as is the
shape mode of a sine-Gordon kink.
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variable context. In this respect, our study of a single-
kink bearing system, without making use of the continu-
um limit approximation, appears as an encouraging step
in this direction.

Furthermore, it is well known that the motion of the
domain walls can make measurable contributions to the
dynamic properties of various materials, such as the pres-
ence of a central peak in the dynamic structure factor due
to domain walls, in some ferroelectric materials. ' ' The

and SG fields are usually used for the description of
the properties of such materials in which the crystalline
anharmonicity gives rise to one or more bound states as-
sociated with the presence of the domain walls in the sys-
tem. ' ' ' These bound states induce phase shift for
phonons upon passing through the crystal. ' However,
the present work shows that the DQ field is a candidate
for the study of systems in which the domain walls do not
phase shift phonons.

ACKNOWLEDGMENT

We wish to thank M. Peyrard for helpful discussions.

APPENDIX

In the present work, we have used a simple method for
obtaining the kink's center of mass from MDS, which uti-
lizes the quasistatic kink solution P„[Eq. (2.24) and

(2.26)]. In this Appendix we compare this method with
the linear interpolation (LI) procedure —which has been
used in previous work —and we show that some care
must be taken in comparing the results of the CVT for I
with the results obtained by measuring X from other
methods.

We have systematically found that Q„(t)
=Q„(t)—:Q„(t); moreover, we see in Fig. 10, where we

evaluate the agreement between the CVT and the LI on
the one hand, and on the other hand, the agreement be-
tween the CVT and our MDS procedure, that
~XcvT(t) —XxtDs(t) ~

does not exceed 0.07 for all the cases

y that we have considered, whereas the maximum value
« lxcvT(t) —X„(t)~ attains essentially 0.3 for y=10
[Fig. 10(b)] and 0.8 for y =100 [Fig. 10(d)]. This slight
difference between some CVT and LI results is not
specific to the DQ model. Indeed, we also observe a
slight difference between the CVT and LI results in Fig. 3
in Ref. 2, for the amplitudes of oscillations of a trapped
SG kink. We attribute these slight differences to the ap-
proximate nature of the LI procedure, because this
method takes into account only two of the particles that
make up the kink —for obtaining its center of mass [see
Eq. (2.29)], which, by the way, must not be ignored in do-

ing a comparison between the CVT and LI results.
Furthermore, Fig. 10 shows in general that the results of
the CVT agree much better with our MDS results than
do the LI results.
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