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We carry out Monte Carlo simulations of the two-dimensional classical neutral Coulomb gas of in-

teger charges on a square and a triangular lattice, and find rich phase diagrams as a function of tempera-

ture and chemical potential. At high densities, the ground state becomes a periodic charge lattice, and

we find evidence suggesting that the melting transitions of these charge lattices are not always in the

universality class expected from symmetry analysis. We compute the inverse dielectric constant e
which vanishes at the "metal-insulator" transition of the Coulomb gas. When the ground state is a

charge vacuum, we find that e ' is well described by the Kosterlitz-Thouless (KT) theory. When the

ground state is a charge lattice, a larger than the KT universal jump in e ( T, ) may be present. We also

carry out simulations of the f= —' and
3

fractional Coulomb gas on a triangular lattice, and find similar

results.

I. INTRODUCTION

Two-dimensional models of logarithmically interacting
charges, ' referred to as the "Coulomb gas" (CG), have
found wide application in understanding the behavior of
many difFerent physical systems. Via a mapping to the
XY model, ' the neutral "integer" Coulomb gas, consist-
ing of equal numbers of positive and negative integer
charges, serves as a model for vortex interactions in thin
superconducting and superfluid ' He films. In this sys-
tem, in the low-charge-density limit, one finds the well-
known Kosterlitz-Thouless (KT) transition. At low tem-
peratures, all charges are bound together in neutral pairs.
As the temperature is increased, a critical temperature T,
occurs at which the neutral pairs unbind to give a con-
ducting charge fluid. At T„ the inverse dielectric func-
tion of the charges e ' jumps discontinuously from the
finite universal value 4T, to zero. e ' of the Coulomb
gas may be mapped ' onto the "helicity modulus" of the
corresponding XY model, where its vanishing signals the
loss of phase coherence. The "fractional" Coulomb gas,
consisting of a finite fraction f of positive integer charges
on a uniform neutralizing background charge, maps onto
the class of "uniformly frustrated" XY models, which
model behavior in superconducting films, "' and
Josephson-junction arrays, ' in a transverse applied mag-
netic field. Here the positive integer charges form a
periodic lattice in the ground state, modeling the vortices
induced by the magnetic field, as in the mixed phase of a
type-II superconductor. Other physical systems, such as
two-dimensional melting, surface roughening, and liquid
crystals, can also be described in terms of logarithmically
interacting topological defects. ' Thus, it is desirable to
have a complete understanding of behavior in the
Coulomb gas.

Despite the general acceptance of the Kosterlitz-
Thouless mechanism at low charge (vortex) densities,
there remain many incompletely understood aspects of
the Coulomb gas. Extending the KT recursion equations

to higher order in the charge fugacity, Minnhagen" has
proposed a phase diagram in which, at suSciently high
charge density, the transition from insulator to conductor
becomes first order, ' with a larger jump in e ' than the
KT universal value. For the case of the fractional
Coulomb gas, it is still poorly understood how the addi-
tional excitations of the ground-state charge lattice,
which may involve large domains, interact with the pair-
wise excitations of the KT theory. Even in the simplest
case, corresponding to the f= ,' or fully f—rustrated XF
model, there are conflicting estimates as to whether or
not the vanishing of e ' occurs at the same temperature
at which the charge lattice melts, ' ' as well as whether
the jump in e ' at T, is the universal KT value. ' ' The
nature of the melting transition of the charge lattice in
this model is also unclear. Most investigations ' '
found evidence that this melting transition was in the Is-
ing universality class, as would be expected from a
Landau-like symmetry analysis. Recently, however, Kos-
terlitz and co-workers, ' using a different finite-size-
scaling method, have suggested that the critical behavior
is not Ising-like and may exhibit nonuniversal features,
depending, for example, on the geometry of the lattice.

In order to investigate these issues, we present here the
results of extensive Monte Carlo studies of the two-
dimensional Coulomb gas on both square and triangular
lattices. This paper contains the details of two earlier
works' as well as several additional results. For the in-
teger CG, we add a chemical potential to explicitly vary
the charge density, and study behavior in the dense limit.
We find very rich phase diagrams, including ordering
into periodic charge lattices, which melt by transitions
which do not always appear to be in the universality class
expected from a symmetry analysis. We also study
several cases of the fractional CG on the triangular lat-
tice and find similar behavior. The rest of this paper is
organized as follows. In Sec. II, we define the two-
dimensional lattice Coulomb gas model, discuss our
Monte Carlo algorithm, and review the finite-size-scaling
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methods we will use to determine the critical behavior of
the system. In Secs. III and IV, we present our results
for the integer CG on the square and triangular lattices,
respectively. In Sec. V, we present results for the frac-
tional CG on a triangular lattice, for the cases f=

—,
' and

—,'. In Sec. VI, we present our conclusions.

From Eqs. (4—6), we see that V(r) diverges due to the
divergence of Vk as k~0. To treat this infrared diver-
gence, we decompose V(r) into two pieces,
V(r) = V'(r)+ V(r =0), where

V'(r) = V(r) —V(r=0) =—g VI, (e'"'—1)
1

II. THE COULOMB GAS MODEL
AND METHODS OF ANALYSIS

A. The lattice Coulomb gas

The classical Coulomb gas is given by the Hamiltonian

&co= —,
' gq; V(r; —r )q

is nonsingular. Substituting this decomposition into (1),
the CG Hamiltonian can be written as

&co=
—,
' g q, V'(r, —r, )q, + V(0) g q,

Since V(0) is positive and infinite, the above implies that
only the neutral configurations will contribute to the par-
tition sum. So we wind up with the Hamiltonian

b2f(r) =c g [f(r+P) 2f(r)+ f—(r P)], — (3)

where {+pI are the unit vectors from the site r to its
nearest neighbors, and c is a geometrical factor which is
required to get the correct form of the Laplacian in the
continuum limit. We take periodic boundary conditions
at the edges of the lattice. Here we will consider two
cases; the square and triangular lattices. For the square
lattice, c =1, and {p{= {ai,a&I, where {a&,a2{= {x,y)
are the unit basis vectors. For a triangular lattice, c =—'„
and {p )

= {a„a2,a3 I, where {a i, a2 I
=

{x, —,
' x + ( &3/2 )y )

are the unit basis vectors, and a3=—a2 —a&. Substituting
the Fourier transforms

V(r) —=—g Vl, e'"', 5, o= —g e'"'
k k

into Eq. (2), one finds for the square lattice

(4)

7T

2 —cos(k a, )
—cos(k az)

and for the triangular lattice

3'
6 —2 cos(k.a, )

—2 cos(k a~) —2 cos(k.a3)

Here %=I. is the number of sites. The wave vectors
used in the summations in Eq. (4) are determined by
periodic boundary conditions, and given by
{k)= {(m, /L )bi+(m2/L )b2I, where m i, m2
=0, 1,2, . . . , L —1, and {b, I are the basis vectors of the
reciprocal lattice. For the square lattice
{b, ,b2I =

{2~x, 2m y I, and for the triangular lattice

2m 4m
{bi bz I

' 2~" —y —y

where the sum is over all pairs of sites of a two-
dimensional periodic I.XI. lattice. q, is the charge at site
i and V(r) is the lattice Coulomb potential in two dimen-
sions (2D), which solves the equation

b V(r)= —2n5, o .

Here 6 is the discrete form of the Laplacian, which is
defined as

&co=—,
' gq; V'(r; —r )qj,

where the neutrality condition g, q, =0 is imposed and
the nonsingular interaction V' is used. In our calcula-
tions, V' is explicitly evaluated using Eqs. (5 —7).

In our work, we have considered two cases: the integer
CG, and the fractional CG. For the integer CG, the
charges take the integer values q; =0,+1,+2, . . . . We
are interested in studying the dense limit of this model, so
we introduce a chemical potential —u, which controls
the average charge density of the system. In this case the
Hamiltonian becomes

&co=
—,
' g q; V'(r; —r )q

—u g q; + g (q; —
q; ) . (10)

Increasing u, at fixed temperature T, increases the aver-
age charge density. The third term has been added to
stabilize the system in the very dense limit, as will be dis-
cussed later. We vill find that, at small u (low densities),
the ground state of (10) is the vacuum q;=0. At higher
u & uo, the ground state will be an ordered charge lattice.

For the fractional CG, the charges take the fractional
values

q, =n, f, —

where n; =0,+1,+2, . . . is an integer, and f is a fixed
constant 0&f & —,'. The lowest magnitude charges are
thus 1 f and f, and—q;=0 is no lo—nger allowed. We
may view n; as integer charges placed on a uniform back-
ground charge of f. Neutrality le—ads to the constraint
g;n; =Nf or (n; ) =f. In this case, we use the Hamil-
tonian (9) and the ground state consists of an ordered
charge lat tice.

The transitions of the Coulomb gas in which we are in-

terested consist of two types. The first is the "metal-
insulator" transition, where the dielectric constant e of
the charges diverges. The inverse dielectric constant, as
given by standard hnear response theory, ' is

(12)

where
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—~k-r.
qk = gq;e (13)

B. Monte Carlo algorithm

In order to investigate the phase diagram of the
Coulomb gas models described above, we use Monte Car-
lo (MC) simulations. At each step of the simulation we
pick a pair of nearest-neighbor sites (ic, i, ) at random
and add a unit charge to site i 0, Aq; = + 1, and subtract a

unit charge from site i&, Aq; = —1. This excitation is
1

then either accepted or rejected using the standard
Metropolis algorithm

accept if e '~) r, (14)

where r is a random number uniformly distributed on the
interval [0,1), and

hE =E„, —E,)d
is the change in energy due to the addition of the excita-
tion.

As the interactions between charges are long range, the
evaluation of EE can be time consuming. Considering
only the Coulomb interaction piece of the Hamiltonian,
given in Eq. (9) (i.e., ignoring the chemical potential term
we add for the integer CG), we may write b E as

b,E= g [hq, V'(r; —r )q ]+Aq; V'(r, —r, )&q,

(16)

is the Fourier transform of the charge density. In our
simulations, e ' is approximated by averaging over the
two smallest allowed wave vectors for each system size.
For the square lattice these are (2m/L )x, (2n. /L )y, and
for the triangular lattice these are (2m/L )x

(2n—/&3L )y, (4n. /&3L )y.
Secondly, we are interested in studying the melting

transitions of the ordered charge lattices, which form in
the ground state of the fractional, and very dense integer,
Coulomb gases. Such transitions may be signaled by the
divergence of the specific heat or order-parameter suscep-
tibility. We wish to investigate whether standard syrnme-
try analysis can predict the universality of these transi-
tions, despite the fact that the Coulomb interactions of
our model are long range.

method, it is necessary to update the F;, i=1, . . . , N,
each time the charge configuration changes, i.e., each
time an excitation is accepted:

F, „,„=F;„d+V'(r,.—r; )bq,. + V'(r; —r,. )hq; (19)

For updating N such variables, the computation is of or-
der N. Ho~ever, as this computation need only be done
when an excitation is accepted, when the acceptance rate
is low, this method is substantially faster than the direct
approach of Eq. (16).

N =L steps of this process of updating the
configurations will be referred to as one MC pass. At
each temperature, an initial 10000 passes are typically
discarded to equilibrate the system. The final
configuration after equilibration is then saved. To com-
pute averages, we perform five independent runs, each
starting from this saved configuration, but using different
random number sequences. Error bars are estimated
from the standard deviation of the averages from these
five runs. In most cases, 200000 passes were used to cal-
culate the averages of each of these five runs.

C. Finite-size-scaling analysis

f,(t, h, L ) =b df, (tb ', hb ",L /b), (20)

where b is the rescaling factor, d the dimensionality of
the system, and y, and yI, are the eigenvalues of the re-
normalization transformation for the scaling fields t and
h. The finite-size-scaling behavior of the specific-heat
density, at h =0, is then given by setting b =L, and
differentiating

To determine transition temperatures T„and calculate
critical exponents, we apply finite-size-scaling
analysis' to the results of our Monte Carlo simula-
tions. We summarize these finite-size-scaling methods
below.

We first consider the charge lattice melting transitions,
for which there is a well-defined intensive order parame-
ter M )0, at low temperatures. M will typically be a par-
ticular Fourier component of the charge density. If the
reduced temperature is t =(T T, ) /T, the —system length
is L, and h is the ordering field conjugate to M, then the
singular part of the free-energy density, f=L "lnZ, —
near the critical point (T„h =0, 1/L =0), obeys the scal-
ing relation'

where we have used the fact that V'(r)= V'( —r) and
V'(0) =0. In this form, each evaluation of hE is a com-
putation of order X, as j sweeps the entire lattice. To
speed this process up, we use an algorithm given by
Grest. ' In analogy to electrostatics, we define the total
potential at site i by

82
C(T,L)= — '

r 2

L' f„—(tL ', 0, 1)+Pc(t,L ),

(21)
F, = g V'(r, —r,. )q

J

Now each evaluation of

b.E=b,q, F, +b,q, F, +b,q; V. '(r, —r; )b, .q;.

(17)

(18)

where %=1/T, f« is the second derivative of f, with
respect to t, and Pc is the contribution from the non-
singular part of the free energy f. Within our simulation,
C is computed by the usual fluctuation formula

requires computation of only O(1). To implement this
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Similarly, the order-parameter susceptibility, at h =0, is

given by

BM df
+M

Bh g =p ()P g =p

=L "
fqI, ( L ', 0, 1),

where fl, z is the second derivative of f, with respect to h.
Since the field h couples to M only in the very long-
wavelength limit (k~0), we can choose to include all

the h dependences of the free energy in the singular part
f„and hence there is no nonsingular contribution to y~,
as there is to C. yM is computed within our simulation

by the fluctuation formula

y~ (provided L is large enough to be in scaling region),
but might be problematic when applied to C, if C is only
weakly divergent (as in a 2D Ising transition, for exam-
ple).

The above method can determine the correlation
length exponent v= 1/y„only through the hyperscaling
relation a/v=2/v —d, with a/v determined from Rc.
Since this ratio method may not work well for C, it is use-
ful to have a more direct method for extracting v from
the Monte Carlo data. Such a scheme was given by
Nightingale and Blote. Taking the scaling form for the
order parameter squared, Eq. (25), we can expand the
scaling function f&I, about T„where tL ' is small:

L d
((M') —(M )') . (24) (29)

Since for any finite-size system L the order parameter
vanishes, (M ) =0, Eqs. (23) and (24) result in the scaling
law for the order parameter squared,

(25)

From Eqs. (21), (23), and (25) we identify

1/v=y, ,

a/v=2y, —d,
y/v=2yz —d,

and

(26)

where v, a, y, and P, are the usual critical exponents of
the correlation length, specific heat, susceptibility, and
magnetization, respectively. Implicit in Eq. (26) are the
familiar hyperscaling, a =2—d v, and Rushbrook,
a+2P+ y =2, results.

To apply these finite-size-scaling results to extract criti-
cal behavior from Monte Carlo data, we first consider a
method used by Barber and Selke. ' If A (T,L ) is some
thermodynamic quantity, which obeys the finite-size-
scaling relation

A(T, L)-L"4(tL '),
we form the ratio

R„(T;L,L') A( T,L)
A(T, L')

L
L' (28)

using data from two different system sizes L and L'.
From Eq. (28) we see that difFerent curves of
R„(T;L,bL) and R„(T;L',bL') vs Tshould all intersect
only at T, (t =0), where Rz has the common value b .
From this common intersection point, we can thus esti-
mate both T, and the scaling exponent x. This method
can work well only when the nonsingular contribution to

vanishes, or when the singular part diverges fast
enough with L, so as to make the nonsingular contribu-
tion negligible. It thus should be good when applied to

T, &6 '(T„L)/4 . (30)

Thus, there is a discontinuous jump to zero in e ' at the
transition. For a more precise location of T, we use

finite-size scaling. Using the mapping ' between the in-

verse dielectric constant, and the helicity modulus of the
corresponding XY model, we expect the finite-size-scaling
behavior of e ' at T, to be given by the Josephson rela-

tion

'( T,L )-L "H(L /(( T)),
where g is the correlation length, and (~ OD at T, . For
d=2, we thus might expect that e '(T, L) is indepen-

dent of L, i.e., curves of e ' vs T, for different L, ~ould

Truncating this expansion at any finite order, we can do a
least y fit of the data M (T,L) to determine the un-

known parameters 2P/v, 1/v, T„@o,etc. As the scaling
form (29) applies only at sufficiently large L, we may
check that we have reached this scaling limit by dropping
data from the smallest size L and repeating the fit. We
continue this process, dropping data from the successive-

ly lowest sizes L, until the parameter values we obtain do
not vary within the estimated error when either the next
lowest L data is dropped or the expansion is continued to
the next order. To estimate the errors in the fitted pa-
rameters, we generate many synthetic data sets by adding
random noise to each of the original MC data points.
The noise for each data point is taken from a Gaussian
distribution whose width is set equal to the estimated sta-
tistical error of the original MC data point. Using these
fictitious data sets, we repeat the fitting procedure to ob-

tain new values of the parameters. The estimated error of
a parameter is then taken as the standard deviation of the
results from all the fictitious data sets. For our fitting, we

use the Levenberg-Marquart method.
The above discussion will be applied to the charge lat-

tice melting transitions of the CG. We now return to the
"metal-insulator" transition. The Kosterlitz- Thouless ar-
gument, viewed as an instability criteria, shows that neu-

tral bound pairs of charges will unbind, driving e ~0,
when E '(T) &4T. In the KT analysis, this holds as an

equality at the transition T, . More generally, however,
we can view it as giving an upper bound on T„
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all intersect at the same point T, . For the KT transition,
however, a more detailed finite-size analysis by Weber
and Minnhagen, based on the Kosterlitz recursion
equations, finds a logarithmic correction to the scaling
behavior at T, . They find,

e '(TL)=e„' 1+ 1

2 lnL+c (32)

III. THE INTEGER COULOMB GAS
ON A SQUARE LATTICE

A. Phase diagram

Our results for the integer Coulomb gas on a square
lattice, using the Hamiltonian (10), are summarized by
the u-T phase diagram shown in Fig. 1. Phase A, at
small u and T, is qualitatively the same as the low-
temperature phase in the Kosterlitz-Thouless model. The
ground state is the vacuum, and at finite T, charge excita-
tions exist as bound neutral clusters. The dielectric con-
stant e &0, and the system is insulating. As T in-
creases within A, there is a "metal-insulating" transition
(dashed line) to a conducting phase %, where e ' van-
ishes. As u increases at small T within A, there is a
first-order transition (thick solid line) to an insulating
phase 2). In 2) the ground state is an ordered checker-
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1st order C
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FIG. 1. Phase diagram for the classical neutral integer
charge 2D Coulomb gas on a square lattice as a function of tern-

perature T and parameter u. Increasing u increases the average
charge density. The dashed lines are Kosterlitz-Thouless transi-
tions where the dielectric function e diverges. The thick solid
line is a first-order transition to a charge lattice ground state.
The thin solid line is an Ising-like second-order transition at
which the charge lattice melts. C is a tricritical point where the
Ising and first-order lines meet. The KT lines meet the first-

order line at a temperature below C.

where, for the KT transition, we have the universal result
e„'=e '( T„00 ) =4T, . To determine the transition tem-
perature of the "metal-insulator" transition, and the
jump in e ' at this transition, we follow Weber and
Minnhagen's approach. &e do a least g fit of the Monte
Carlo data at all temperatures, to the form (32) with e„'
and c as free parameters. The temperature at which the

is smallest, we identify as the transition T„and the
fitted parameter e„gives the jump in the inverse dielec-
tric constant.

B. First-order transition

The first-order line in Fig. 1 is easily explained by con-
sidering the ground state of the system as u is increased.
Taking the Fourier transform of the first two terms in the
Hamiltonian (10) gives

&co=(1/N) g ( —,
'

Vk
—u )~qk~

k

(33)

where Vk is given in Eq. (5) and qk in Eq. (13). The
minimum value of the Coulomb potential Vk occurs at
the wave vector kz=~x+~y, where Vk =~/4. When

0

u & —,
' V„=n./8=0. 392699—:uo, then —,

' V„—u &0 for all

k and hence the ground state of the system will be the
vacuum, with all q„=O (phase A ). However, for u & uo,
the system will lower its energy by ordering in a state
with nonzero qk . This state will be a checkerboard pat-

0

tern of alternating positive and negative charges of equal
magnitude (see inset to phase 2) in Fig. 1). If the Hamil-
tonian had only the terms as in Eq. (33), then, since the
charges q, can take any integer value, the system would
be unstable for u & uo, with the magnitude of each ~q; ~

growing without bound. This therefore motivates the in-
clusion of the third term in the Hamiltonian (10),
g;(q; —

q; ). This term suppresses charges ~q,. ~
&1 and

thus stabilizes the system for some finite interval of
u & uo into a checkerboard pattern of +1 charges (for
sufficiently large u, a +2 charge pattern would become
the ground state). This discontinuous change in the
ground state, from the vacuum to an ordered charge lat-
tice at uo=m/8, extends into a first-order transition line
at finite T.

C. Charge lattice melting transition

Having demonstrated the existence of the charge lat-
tice ground state, for u & uo, we now find the boundaries

board lattice of +1,—1 charges, which is doubly degen-
erated and characterized by an Ising-like order parameter
M (analogous to the staggered magnetization of an Ising
antiferromagnet). As T increases within 2), there is first a
"metal-insulator" transition (dashed line) to a conducting
phase 8, with vanishing E, however, a nonvanishing or-
der parameter MAO. This is followed at higher tempera-
tures by a charge lattice melting transition (thin solid
line) to phase S, where M=O. This combination of
"metal-insulator" transition and lattice melting transition
is reminiscent of behavior in the fully frustrated XY mod-
el '3 [or, equivalently, the f= ,' frac—tional CG (Ref. 14)].
However, as opposed to that model, here we find a clear
separation between the two transitions. The first order
(thick solid) line between A and 2) meets the second or-
der (thin solid) line between 8 and % at point C. The
"metal-insulator" (dashed) lines meets the first-order
(thick solid) line at a temperature below point 8. The
"metal-insulator" transitions obey the universal
Kosterlitz-Thouless behavior. The lattice melting transi-
tion is Ising-like. Point C appears to be a multicritical
point.
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of this phase. The order parameter describing this phase
1s

3.0

2.5-
(b) T=O. 138

1 r. .(x+y)M:——(q )=—gq( —1)'
k0 (34)

where ko=mx+my is the ordering wave vector. M is
analogous to the "staggered magnetization" of an Ising
antiferromagnet. From symmetry, we expect that this
charge lattice will melt with a second-order Ising-like
transition, as temperature is increased. This line of melt-
ing transitions (thin solid line in Fig. 1) is located by ob-
serving the finite-size-scaling behaviors of the specific
heat C and order parameter M. For the Ising transition
in two dimensions, it is known that a =0, and hence the
specific heat scales logarithmically with size, '

C(T, )- lnL.
An example of our results is shown in Fig. 2(a), in

which we plot the peak value of C(T) for each L vs lnL
at u =0.5 and find linear scaling consistent with Ising be-
havior. The same behavior was also found for the values
u =0.45 and 0.6. As an independent test that this melt-
ing transition is Ising-like, we also consider the scaling
behavior of the order parameter squared, M . For
u =0.5, our data is shown in Fig. 2(b). To determine the
critical exponents, we fit M to the expansion Eq. (29),
using the procedure outlined in Sec. II C. Using a
second-order expansion of Eq. (29), the results obtained
from the data for sizes L = 10, 12, and 16, give the values
T =0.2205+0.0019, 1/v=1. 01+0.13, P/v=0. 130
+0.033. The exact exponents for the 2D Ising model are,
1/v= 1, P/v= —,'. In Fig. 2(b), the solid lines are plotted
from Eq. (29) using the fitted values of the parameters.
Similarly, the exponents used in the scaling of the axes
come from our fit.

In contrast to the Ising behavior described above, a
more divergent behavior is observed at u =0.4, as T
varies through point C. In Fig. 3(a), a plot of the
specific-heat maximum, lnC, „vs lnL indicates a power-

= ~, I
1.5-

1.0-

0.5-

o 12:6
o 16:8

ln L

0.0
0.397 0.399 0.401 0.403

U

law divergence of a/v=1. 16, which from Eq. (26) gives
1/v=1. 58. This suggests that 8 is a tricritical point at
which the line of second-order Ising transitions meets the
first-order transition line between phases A and 2). To
describe the scaling behavior near a tricritical point, one
needs two relevant scaling fields, in contrast to an ordi-
nary second-order critical point where there is only one.
Let g, ( T, u ) and g2 ( T, u ) be the two scaling fields which
give the most and next most relevant directions in the
u Tplane. A-t the tricritical point, g, z( T„u, ) =0. The
line in the u-T plane where g2=0 defines the "g, direc-
tion. " The line where g, =0 defines the "g2 direction. "
The g2 direction is generally believed to lie parallel to the
second-order phase boundary. The scaling of the free
energy near a tricritical point is then given by

f, (g, &g2, h, L)=L f, (g, L ',g2L ', hL ",1), (35)

FIG 3 (a) lnC vs lnL at u =0 4 passing through point 8
(see Fig. 1). (b) Ratio of specific heats R~ along a trajectory per-
pendicular to the phase boundary (see Fig. 1) passing through

point C. Three different sets of lattice lengths L:L' with the
same ratio 2 are shown. The common intersection of the three
curves is at (u„2 "). 10 total MC passes were used.
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where y1 and y2 are the eigenvalues of the scaling field g,
and g2, and y, &y2 &0. Assuming that the T axis at C

has a nonzero projection onto the g1 direction, we have,
for the leading finite-size-scaling behavior of the specific
heat,

(36)

where f» is the second derivative of f, with respect to
g, . Similarly, if the u axis at C has a nonzero projection
onto the g, direction, then the charge density susceptibil-
ity

FIG. 2. (a) C,„vs lnL at u =0.5. C,„-lnL indicates an Is-
ing transition. (b) The finite-size-scaling behavior of the order
parameter M' at u =0.5. Symbols with error bars represent the
MC data. The solid lines represent the result of fitting Eq. (29)
to a second-order expansion in T—T„using data from
L =10—16. The fitted values of 1/v=1. 0120 and P/v=0. 1299
were used in making the axes of the plot. 750000 total MC
passes were used.

(37)

should have the same leading scaling behavior as the
2/ l

d
specified heat C in Eq. (36), y (T, ) L' . We de-fine

this leading exponent 2y1 —d:—e/v.
To test this scaling behavior, we apply the method of
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Sec. II C to our data, and compute the ratios
R =C(L )/C(L') and R:y—(L )/g (L') [see Eq.

(28)], as we vary the parameter u along a trajectory pass-
ing through point C perpendicular to the phase bound-
ary. In Fig. 3(b), we plot Rc for ratios L /L'= —",, —", , and

]0 The three curves do indeed intersect at a single point

(,=0.4, T, =0.138), ith R, (u, ) =2 =2.15+0.25,
thus giving cx/v=2y& —d=1.10+0.16. Since d=2, we
have y, —= 1/v= l.55+0.08. A similar analysis' "' of R

gives consistent values of a/v=1. 14~0.2 and, hence,
I

1/v= l.57+0.10.
The quantities

C—/T =(1/T )d f/dE =d flaT
(to leading order as L ~ ac, at point C ) and—gs/T=d f/Bu represent second derivatives of the
free energy f in the particular directions T and u. Simi-
larly we can compute the second derivative f„=(e V) f
along any direction e in the u-T plane. At the tricritical
point ( T„u, ), to leading order as L ~ ac,

C+s2Ty +(2s/NT)[(&cG g q; ) —(&cG) ( g q; ) ]

T (1+s )
(38)

where s =du /dT is the slope of the unit vector e. At the
tricritical point, f„will grow fastest with increasing L
when e lies along the most relevant direction g&. Com-
puting this general f„as in Eq. (38), at the tricritical
point (T„u, ) located by the ratio analysis above, and
varying e, we determine that the g& direction lies perpen-
dicular to the phase boundary, while g2, the direction of
slowest growth, lies along the phase boundary. In Fig. 4,
we show f„(T„u,) for these two directions vs L The.
approximate linear divergence in the g, direction agrees
with our previous results from C and g, but the data in
the g2 direction are not accurate enough to estimate the
next most relevant exponent y2.

We now find the order-parameter exponent P/v by
computing the square of the order parameter M ( T, u, L )

along the direction g& as determined above. Since g2 =0
along this trajectory, M has the scaling form

below the first-order line, we observe that the specific-
heat peak saturates to a finite value as L is increased.
Such behavior is characteristic of the KT transition, in
which the free energy has only a weak essential singulari-
ty at T„and the peak in C occurs slightly above T, .' '

As a better indicator of the transition, we consider the in-
verse dielectric constant e defined in Eq. (12). In Fig.
5, we plot e '(T) for the fixed size L =12, for several
values of u both below and above the first-order line. The
intersection of the curves of e with the dashed line, 4T,
gives an estimate for the upper bound on the transition,
according to the KT instability argument, Eq. (30). Thus
we locate the "metal-insulator" phase boundaries shown
in Fig. 1 (dashed lines). In Fig. 6, we plot e vs u, for
L =12, at the fixed value of T=0.135 which is lower
than the tricritical point C at T, =0.138. The minimum
of e '(u ) lies at u =0.394=uo =m. /8 and locates the po-
sition of the phase boundary between A and 2). The
curve of e '(u) is seen to lie below the dashed line, 4T,
for the interval 0.372& u &0.40. Using the KT bound,
Eq. (30), we conclude that the "metal-insulator" transi-
tions for u in this interval lie at temperatures lower than
T=0.135, i.e., the "metal-insulator" transition lines in
Fig. 1 meet the first-order transition line at a temperature
below the tricritical point 8.

M'=I. '~'f»(g, (T[u ],u )L "",0,0, 1) (39)

with gi(T[u ],u )-(u —u, ) close to the tricritical point.
Expanding the scaling function f&& in powers of
(u —u, )L ', we get a form analogous to Eq. (29), to
which we fit our data in order to estimate the exponents
P/v and 1/v. We show the results of this fitting in Table
I as a typical example to illustrate the accuracy of the
fit. Using a fourth-order expansion in u —u, for the
sizes L = 10—16, we find the best fit to yield
P/v=0. 08+0.04, 1/v=1. 67+0.08 and u =0.4
+0.0003, giving agreement for 1/v and u, with the
values found in the ratio analysis of C and y .

With respect to the charge lattice ordering, the Hamil-
tonian (10) has the same symmetry as an antiferromag-
netic Blume-Emery-GriSths model. ' One might there-
fore expect that point C is an Ising tricritical point, in
which case the exact exponents would be u/v=1. 6,
P/v=0. 075. This value for a/v is distinctly different
from our finite-size-scaling result. We thus believe that
point 8 may not be the usual Ising tricritical point.

1 200
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+ 600
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0 - 0 O 0 0

I
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20 25

FIG. 4. Second derivative of the free energy f(T,u), in the
direction e, evaluated at point C vs square lattice length L. The
direction g& of the most rapid growth with L locates the most
relevant scaling direction, which was found to be perpendicular
to the phase boundary. Approximately linear scaling f„-L is
found for all but the g2 direction parallel to the phase boundary.

D. Metal-insulator transition

Finally, we consider the "metal-insulator" transitions
(dashed lines in Fig. 1). Crossing from phase A to 2il,

PHASE TRANSITIONS IN CLASSICAL TWO-DIMENSIONAL. . .
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TABLE I. Results for the fitting of M' to the expanded form of the scaling Eq. (39), analogous to Eq.
(29), at point C of the square lattice. Fitting to a third- and a fourth-order expansion in

L '(1/u —1/Q, ) is shown. The first column shows the sequence of L for which the fitting is performed.
The following columns give fitted parameters. 4 s are the coefficients of the ith order polynomial in

L '( I/u —I/u, ). The last column is the g, error of the fit. Any yy, which is of the order of the num-

ber of data points used in the fit indicates a good fit. For each sequence of L, the first row gives the
value of the fitted parameter, while the second row gives the estimated error.

L; —Lf 4O
Third-order expansion

8—16

10-16

12-16

0.0450
0.0120
0.0875
0.0245
0.0684
0.0420

2.499
0.001
2.500
0.008
2.499
0.001

1.569 0.6831
0.085 0.0256
1.695 0.8057
0.119 0.0808
1.523 0.7463
0.163 0.1632

—0.4547
0.0759

—0.4160
0.0890

—0.5858
0.2126

—0.0680
0.0368

—0.0202
0.0157

—0.0655
0.0245

0.1044
0.0638
0.0466
0.0281
0.1566
0.1391

10.6

3.9

2.7

Fourth-order expansion

8-16

10-16

12-16

0.0068
0.0307
0.0790
0.0415
0.0615
0.0147

2.496
0.002
2.500
0.002
2.499
0.001

1.448 0.5727
0.077 0.0545
1.672 0.7807
0.077 0.1390
1.501 0.7268
0.085 0.0488

—0.4747
0.1017

—0.4212
0.0870

—0.5967
0.2160

—0.1207
0.3317

—0.0236
0.0317

—0.0642
0.1153

0.3634
1.4000
0.0538
0.0280
0.1831
0.1464

—0.1901
1.6000

—0.0016
0.0178

—0.0230
0.6903

6.5

3.5

2.6

To test if these "metal-insulator" transitions belong to
the Kosterlitz-Thouless universality class, we now con-
sider the finite-size-scaling behavior of e . In Fig. 7, we
plot e '( T,L) at values u =0.38 just below the first-order
line, and u =0.4 just above the first-order line. Following
the discussion in Sec. II C by Eq. (31), a crude estimate of
T; is given by the temperature at which the curves of E

for different L all intersect. We see that, at both values of
u considered, this common intersection point occurs
close to the KT bound on T, given by (30), which in Fig.
7 is located by the intersection of e ' with the dashed
line, 4T.

For a more detailed finite-size-scaling approach, we do
a least y fit, yz„of e '(L) to the expression Eq. (32),
with c and e„' as free parameters. The temperature at
which yz, is minimum we take as T„and the fitted e„
gives the jump in e at T, . In Fig. 8 we plot yz„and the

fitted e„ /T vs T, using different ranges of lattice sizes L,
for the same values of u as in Fig. 7. We see that, in both
cases, the minimum of Ps, lies slightly above the tempera-
ture where the fitted e„' equals the KT prediction, 4T,
(given by the intersection with the dashed line). This
would imply a smaller than universal jump in e (T, ),
inconsistent with the KT bound. Due to the consider-
able scatter in the curves for Ps„we conclude that this
discrepancy is most likely a result of statistical inaccura-
cies in our data, and that there is no strong reason to
suspect that the transitions are other than the universal
KT type.

E. Nonzero ordering field

The resemblance of the phase diagram Fig. 1, to sys-
terns with Ising tricritical behavior, motivates us to con-
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FIG. 5. Inverse dielectric function e '(T) for fixed square
lattice size L =12 for various values of u both below and above
the first-order line at uo=m/8. The intersection of the curves
with the dashed line 4T gives the KT bound on T, . 60000 total
MC passes were used.

FIG. 6. Inverse dielectric function e '( u ) at constant
T=0.135 for fixed square lattice size L =12. Points below the
dashed line 4T are in the metallic phase according to the KT
bound, Eq. (30). 60000 total MC passes were used.
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in Fig. 1 at the tricritical point C which ends the triple
line.

In Fig. 9, we show the resulting phase diagram for (a)
the T=O plane, and (b) the plane for fixed h =0.3. In
Fig. 9(a), the heavy solid lines are first-order transitions,
across which there is a discontinuous jump in M. We can
determine the locations of these lines, as in Sec. III B, by
considering the Fourier transform of the Hamiltonian

0.35 . o
L-14

0.1; 0 L16
030 ' ' '

p p0.125 0.128 0.131 0.134 0.137 0 129 p 132 p 135 p 138 p 141
T T

FIG. 7. Inverse dielectric function e '(T) for constant (a)
u =0.38 gust below the first-order line) and (b) u=0. 4 (just
above the first-order line) for various square lattice sizes L. The
common intersection of the curves for different L approximates
TKT. The intersection with the dashed line 4T gives the KT
upper bound e '(T, ) 4T, . 10 total MC passes were used.

&co=—g ( —,
'

Vk
—u )

~ qk ~ hqk—+ g (q; q;
—), (41)

1

k E

where Vk is minimum at ko. The energy for the system to
be in the charge lattice checkerboard configuration, with
(qk ) =+N (M= +I ), is therefore E/N= ,' Vk-
—u —sgn(h)h, which becomes lower than the vacuum
state with E=0 when

u & uo(h )=uo —sgn(h )h,
where (42)

sider the behavior of the Coulomb gas in a nonzero or-
dering field h which couples to the charge lattice order
parameter M. We thus add to the Hamiltonian (10) the
extra term

5&co= —h g q;( —1) '

= —h(qk ) = hMN .— (40)

10
(a) u=0.38

20
(b) u=0.4

In the enlarged h-u-T phase space, the region of the h =0
symmetry plane containing phases 2) and 8 becomes a
first-order surface across which there is a finite jump in
M, from M & 0 to M & 0 as one varies h from negative to
positive. We expect to find two additional first-order sur-
faces ("tricritical wings"), at h &0 and h &0, which meet
and join this first-order symmetry surface at the first-
order line in Fig. 1. This line is now a "triple line, " as
three distinct phases, M )0, M & 0, M =0, coexist there.
The tricritical wings are terminated by second-order criti-
cal lines which meet the second-order lattice melting line

u o
=—,

'
Vk =n /8 .

Equation (42) locates the diagonal lines in Fig. 9(a), while
the vertical line is just the h =0 symmetry plane. The
open circle where the three-order lines meet is the inter-
section of the triple line with the T=O plane.

In Fig. 9(b), at h =0.3, M &0 everywhere at finite T.
The first-order line (thick solid line} is the intersection of
the tricritical wing with the h =0.3 plane. It is located at
T=O by Eq. (42), at uo(h =0.3}=0.092699, and from
our Monte Carlo results appears perfectly Bat at higher
temperatures. This line, across which there is a jump in
M, from the dense phase 2)+ (large M), to the dilute
phase A (small M ), ends at a second-order Ising-like crit-
ical point I. The insulating phases A and 2)+ have
"metal-insulator" transitions (dashed lines) to the con-
ducting phase 8, which are of the KT type.

To demonstrate the nature of the critical point I, we
consider as the order parameter 5M=M —M, where
M—:((M, ) + (Mb ) )/2 and M, „are the values of M im-
mediately above (below) the first-order line. M, b are cal-
culated by varying T at fixed u, b, just above (below)
uo(h =0.3). We find that M=0. 5 (within 0.1% error)
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FIR. 8. (a) The g, error for a fit to Eq. (32) as a function of
T, and corresponding fitted value of e„'/T for different se-
quences of L, for (a) u =0.5 and (b) u =0.63. In (a),
L =5,6,7, 8, 10, 12, and (b) L =6,8, 10, 12, 14, 16, have been used.

FIG. 9. Phase diagram for the square lattice in an ordering
field h. (a) shows the u-h plane at T=O. (b) shows the u-T
plane at h =0.3. The thick solid line is a first-order transition
which ends at an Ising critical point I. The dashed lines are
Kosterlitz-Thouless transitions which meet the first-order line
below I.



3256 JONG-RIM LEE AND S. TEITEL 46

0.40

0.35

1

030

I

(~] hW. 3
U=0.092699

4 I

[b] h=0.3
T=O. 132

3

I

o 12:6
o 16:8

20:10
0.8

0.6

0.4

+
0 +

+

1st order

2nd order

1st BZ

"o

025 T=
~ T=

0.20
0

T=O. l 34

10 I /p 20
L

0
30 0.090 0.092 0.094 0.096

ll
0.0

0.00

0 0
0 0 0

0 0

I

0.05
I

0.10 T 0.15

. KT

0.20 0.25
FIG. 10. (a) The finite-size-scaling behavior of the order pa-

rameter (AM )' at uo(h =0.3). Symbols with error bars
represent the MC data. The solid lines represent a result of
fitting to Eq. (29) using a fourth-order expansion in T—T, and
data from L=10—20. The fitted values of 1/v=1. 0860 and
P/v=O. 1458 were used in making the axes of the plot. (b) Ra-
tio of charge density susceptibility Rz vs u, passing through

Xq

point I [see Fig. 9(b)]. Three different sets of lattice lengths
L:L' with the same ratio 2 are shown. The common intersec-
tion of the three curves is at [uo(h ),2~~"]. 10 total MC passes
were used.

FIG. 11. Phase diagram for the classical neutral integer
charge 2D Coulomb gs on a triangular lattice as a function of
temperature T and u. As u increases, the average charge densi-
ty increases. The dashed lines are where the dielectric function
e diverges. The thick solid lines are first-order transitions, while
the thin solid line is a second-order transition. The dashed lines
meet the first-order line below point C. The thick dashed line
denotes a crossover region as opposed to a true thermodynamic
transition. The insets to A, 2), and 8 show the ground-state
charge configurations in each region.

for all values of T. In Fig. 10(a), we show our data for
(b,M) vs L for different temperatures T. Using the ex-
pansion of the order-parameter scaling function Eq. (29),
we find from a fit to a fourth-order expansion for our data
from sizes L = 10—20, the critical exponents
P /v =0. 1458+0.0269, 1/v = 1.0860+0.0401, and
T, =0.1318+0.0008. These values are consistent with
the exact exponents for an Ising transition, P/v=0. 125,
1/v= 1.

As an independent check, we have also computed the
charge susceptibility X (u, L ) = —Td f /du, varying u

for fixed T = T, (with T, =0.132 obtained from the fit to
b,M above). g should scale with the same exponent as

the order-parameter susceptibility, y -L~ . Plotting
the ratio Rr =y~(L )/yq(L—') in Fig. 10(b), we find

q

R [u (h)]=2~ '=3.07+0.33
q

giving y/v= 1.62+0. 16. This is consistent with the Ising
value y/v=1. 75.

The "metal-insulator" transitions in Fig. 9(b), we ana-

lyze as in Section III 0, and find that they are consistent
with KT universality. These KT transition lines meet the
first-order line at a temperature lower than the Ising criti-
cal point. This is checked by the similar analysis to that
of Sec. III D concerning Fig. 6.

IV. THE INTEGER COULOMB GAS
ON A TRIANGULAR LATTICE

A. Phase diagram

For the case of a triangular lattice, our results are sum-
marized by the u-T phase diagram shown in Fig. 11. The
small-u (low-density) insulating phase A is similar to that
on the square lattice. The vacuum is the ground state,
and increasing T gives a KT "metal-insulator" transition
(dashed line) to a conducting phase S.

(+,—,0),
(0, —,+),
( —,0, +),
( —,+,0)

(0, +, —),
(+,0, —

)

with respective order parameters

=g e' "~, m=0 5

(43)

(44)

obtained by successive rotations of the phase of the com-
Plex number 1(o by m. /3. Equivalently, if g is the value of

Increasing u at small T, there is a first-order transition
(thick solid line) to an insulating charge lattice phase 2).
At T=O, the ground-state configuration, shown as the in-
set to phase 2) in Fig. 11, has an average (q; ) =

—,', and is
six-fold degenerate corresponding to the permutation of
the (+,—,0) charges on the three independent sublattice
(A, B,C) of the original triangular lattice. At finite T,
phase 2) is described by a nonvanishing Fourier com-
ponent of the average charge density ( qk ), where

0

ko=(4m/3)a, is the ordering wave vector which points to
a vertex of the surface of the first Brillouin zone (BZ) (see
inset to Fig. 11). All other [k'] which point to the other
vertices of the BZ are related to ko by inversion symme-

try, or translation by a reciprocal-lattice vector. Hence,
the other nonvanishing Fourier components, (qk. ), are
all equal either to (qk ), or to (qk )'. Thus, we take

0 0
P—:(qk ) /N as a complex order parameter for phase 2).

0

If the state with (+,—,0) on sublattices (A, B,C), has
order parameter of value 1(o, then the six degenerate
ground states of the system may be denoted
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the order parameter, then Pe*' ~ are the values for the
state in which either + or —has been interchanged with
0, and P' is the value for the state obtained by charge in-
version, +~—.

Increasing T from within 2), there is first a "metal-
insulating" transition (dashed line) to a conducting phase,
followed very closely by a second-order charge lattice
melting transition (thin solid line) to phase %. Further
increasing u at small T, there is another first-order transi-
tion (thick solid line) to a metastable region 8, where the
ground state at T=0 has (q; ) =1, with charges ordered
and alternating in one basis direction, but completely
random in the other directions. We will show that this
state is, in principle, disordered at any finite temperature.
As T increases, there is a continuous crossover (thick
dashed line} to phase S.

Point C, where the second-order (thin solid) line meets
the first-order (thick solid) line between phases A and 2),
has behavior suggestive of a multicritical point. The
"metal-insulator" (thin dashed) lines meet this first-order
line below point 8. The point where the second-order
line meets the first-order line between 2) and 8 shows
very strong fluctuations and the situation remains un-
clear.

B. First-order transitions

As in the square lattice (see Sec. III B), the locations of
the first-order transition lines are given by considering
the Fourier transform of the Hamiltonian, Eq. (33). For
the triangular lattice, with Vi, given by Eq. (6),
min& [ V& ]=@ /3 occurs at ko, the ordering wave vector of
phase 2). Therefore, when u &uc=n/6=0. 52360, the
system will prefer to order in a state with nonvanishing
(qi, ). This is the charge structure, shown in phase 2) of

0

Fig. 11, with (q; ) =~qi, ~
/N =—', , and energy

E=(n/6 —u)(2/3)N . (45)

As u increases further, the system will eventually
prefer a ground state with higher charge density,
(q; ) =1. The most symmetric state with this density
would have alternating +1 charges along one of the
directions a;, and be uniform along the other basis direc-
tion. Such a state would have periodicity given by a wave
vector pointing to the center of one of the faces of the
first BZ, for example, ki=(2n/~3)y ( see inset in Fig.
11), with Vi, =3m/8. However, from Eq. (6), it is seen

1

that for any k such that k.a; =km. , VI, = VI, . Thus, all of
1

the 2 states with alternating charges along a given a;,
but arbitrary ordering in the second basis direction, are
degenerate with energy

E =(3n /16 — )(1u)N . (46)

Comparing Eqs. (45) and (46), we see that such a
configuration, which we denote as 8, becomes the ground
state, with lower energy than the configuration 2), when
u )u ] = 1 17r/48=0. 71995.

The points uo and u„where there are discontinuous
changes in the ground state, extend into the first-order

lines of Fig. 11 at finite T. We have numerically evalu-
ated the surface tension between regions S and 8 at
T=O, and find that o& @-—0.05. This is equal to the ap-
proximate temperature at which we numerically observe
the first-order line between 2) and 8 to meet the second-
order line between 2) and S.

C. Charge lattice melting transition

We now consider the second-order transition between
phases 2) and %. As discussed in Sec. IV A, the complex
order parameter describing the charge lattice
configuration (see inset phase 2), Fig. 11}is P= (qi, ) /N,

which below T, can take the six values P~ =go(T)e'
m =0, . . . , 5. Viewing g as a two-component planar spin
suggests a mapping between this phase and behavior in
the six-state clock model.

In the six-state clock model, each site of the lattice
contains a planar spin which can point in only one of six
directions, with angles 8 =ma. /3, m =0, . . . , 5. The
interaction between neighboring spins, with angle
difference b,8, is V(~b, 8~). If we normalize V so that
V(0) =0, the most general six-state clock model is
characterized by three parameters, V(n /3), V(2m. /3),
and V(n }. For the special cases V(

~
58~ ) = Vo[1—cos(b, 8)] or V(~b8~), the Villain function (we refer to

these two cases as the usual six-state clock model), this
model in two dimensions is known to have an intermedi-
ate phase with algebraic decay in the spin-spin correla-
tion. This intermediate phase is terminated at both the
low- and high-temperature ends by a Kosterlitz-
Thouless-like transition. For other choices of V( ~b, 8~ ), a
single first-order transition may be possible, as suggested
by the mean-field analysis of Domany and Riedel, or the
example of V(

~
b, 8~ ) = Vo, which is the six-state Potts

model.
For our phase 2), we estimate the form for the effective

V(~b, 8~) by numerically calculating the surface tension
between the six ground states of the system at T=0. If 8
is the phase of the order parameter f, then the surface
tensions we find between the six ground states as denoted
in Eqs. (43) and (44) give an excellent fit to the expression
o ( ~b 8~ ) =0.103[1—cos(58) ]. The prefactor gives a
rough estimate of the temperature of the second-order
melting line in Fig. 11. Provided that this cosine interac-
tion, which we find at T=O, remains qualitatively un-
changed at finite T, we would expect the melting transi-
tion of phase 2) to have the intermediate algebraic phase
of the usual six-state clock model. This expectation is
further supported by a Landau-like symmetry analysis.
Under such analysis, Domany et al. have classified pos-
sible order-disorder transitions in two-dimensional ad-
sorbed monolayers on a substrate. The symmetry of the
charge lattice lattice in phase 2), in their classification
scheme, is denoted as (&3X v'3)R 30 with particle-hole
symmetry [corresponding to the invariance of our Hamil-
tonian (10) under q;~ —q;]. Such a system is predicted
to be in the universality class of the XY model with six-
fold anisotropy, which is the same universality class as
the usual six-state clock model.

According to the above scenario, we would expect to
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see only a finite cusp in the specific heat C (or perhaps
two cusps, if one could distinguish the transitions on ei-
ther end of the expected intermediate phase) due to the
KT-like nature of the transitions. In our case, however,
we observe a diverging specific heat C at a single transi-
tion. To determine the scaling exponent for C, we use the
ratio method of Sec. II C. In Fig. 12(a), we plot
R, = C(L ) /C(L ') vs T for ratios L /L ' = —", , —", , and —",, at

u =0.63. The three curves intersect at a single point with

T, =0.078, R&=2 =2.0+0.2, thus giving a/v=1. 00
+0.14. Hyperscaling, a =2 —d v then gives
1/v=1. 5+0.07. Similar calculations at u =0.60 and
0.66 give values a/v=0. 97+0.14 and 1.10+0.24.

To determine the critical exponent for the order pa-
rameter, we compute ~g~ vs T for fixed u =0.63. In Fig.
12(b), we show our results for lattice sizes L =6—24. Fit-
ting to the scaling form Eq. (29), and using data from
sizes L =9—24 with a fourth-order expansion, we find

P/v=0. 04+0.01, 1/v=1. 47+0.05, and T =0.0773
+0.0003. These results agree with the above scaling re-
sults for C. The solid lines in Fig. 12(b) are plotted from

Eq. (29) using the fitted values of the parameters.
We thus have evidence suggesting that the melting

transition of phase 2) does not follow the expectations of
a Landau symmetry analysis. We have explicitly checked
for the possibility that the transition we see might be first
order by looking for hysteresis as well as looking for a bi-

modal energy distribution near T, (in which case one

should find scaling as C-L ). We did not find any evi-

dence for either such signature of a first-order transition.
We, of course, cannot rule out a suSciently weak first-

order transition which would be observable only at larger
lattice sizes.

In contrast to the above results along the second-order
line, our results at the point u =0.54, where the second-
order line meets the first-order line at C show different

scaling behavior. A similar ratio analysis' ' ' at point C

gives the exponent a/v = l. 51+0.15 or
1/v=1. 755+0.07. One possible explanation is that C is

a multicritical point.

2.5
(aj u=0.63

2.0

D. Metal-insulator transition

Next we consider the "metal-insulator" transitions
(dashed lines in Fig. 11). As in Sec. III D, we find that as
one crosses from phase A to %, the peak of the specific
heat C ultimately saturates to a finite value as L in-

creases, consistent with a KT transition. The "metal-
insulator" phase boundaries (dashed lines in Fig. 11) are
determined in the same way as on the square lattice (see
Figs. 5 and 6), and we again find that these lines meet the
first-order line between phases A and 2), below point C.

In Figs. 13(a) and 13(b), we show the finite-size-scaling
behavior of e '(T, L) for u =0.5 (in phase A just below
the first-order line) and u =0.63 (in phase 2)), respective-
ly. Comparing the estimate for T, given by the point at
which the curves for different L intersect [see discussion

by Eq. (31)j, with the KT bound Eq. (30) given by the in-

tersection with the dashed line 4T, we see that, for
u =0.5, e '(T, ) =4T„consistent with the KT universal

jump of the ordinary dilute (u =0) CG. However, at
u =0.63, we find that the estimate of T, gives a jump
larger than the universal KT value, E '(T, ) &4T, . Simi-

lar nonuniversal jumps are found at other u in 2).
As a more precise test, we carry out finite-size-scaling

fits to Eq. (32), as was done for the square lattice in Sec.
III D. In Fig. 14, we show vs T the y+, together with the
fitted parameter e„', for the two values of u in Fig. 13.
For u =0.5, we see that the minimum of yz, occurs where

=4T, consistent with the KT universal jump. For
u =0.63, we see that, at the T where Ps, is minimum,

e &4T, consistent with a larger than universal jump.
These results thus support the conclusions of Fig. 13.
The transition temperature of this "metal-insulator"
transition at u =0.63, as given by the minimum Ps, in

Fig. 14(b), is T, =0.076. In contrast, the melting transi-

tion temperature of the charge lattice of phase Xl, as ob-
tained from the analysis of specific heat C in Fig. 12(a), is

T, =0.078. This suggests that, as T is increased within

phase 2), there is first a "metal-insulating" transition to
an intermediate conducting phase with finite charge lat-
tice order, followed very closely by the charge lattice
melting transition.
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is at (T„2 ) ~ (b) The finite-size-scaling behavior of the order
parameter ~itj~ at u =0.63. Symbols with error bars represent
the MC data. The solid lines represent the results of fitting Eq.
(29) to a fourth-order expansion in T—T, using data from
L =9—24. The fitted values of 1/v=1. 47 and P/v=0. 04 were
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used.
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E. Metastable region at large densities

Finally, we consider the metastable region, denoted as
8 in Fig. 11. In this region at low T, every site contains
either a +1 or —1 charge. Thus, it has the symmetry of
the Ising antiferromagnet. In the short-range Ising anti-
ferromagnet on a triangular lattice, frustration results
in an infinitely degenerate ground state, with a finite
T=O entropy density, and T, =O. However, in the CG,
the long-range interactions lift some of the degeneracies
caused by the frustration, giving an antiferromagnetic or-
der in one of the directions a;. The remaining random-
ness in the other direction leads to a ground-state degen-
eracy of 2, which gives a vanishing T=0 entropy densi-
ty, ln(2 )/L ~0 as L ~~. One might thus expect that
a finite T, is possible. In Figs. 15(a)—15(c},we show for
u=0. 8 the specific heat C, inverse dielectric constant
E ', and average charge density (q, ). The sharp transi-
tions seen in C and e ' suggest a possible transition at
finite T, . Furthermore, hysteresis loops for (q; ) might
indicate that the transition from 8 to S is first order.
However, we now argue that this behavior is, in fact,

merely a nonsingular crossover region to the disordered
phase S.

In Fig. 15(d), we show two types of domain excitations
of a ground state. Each is formed by taking a strip of
even length I of the ground state and reversing the sign of
all the charges in the strip. In type (ii), the strip is chosen
so that the net dipole moment of the excitation, with
respect to the ground state, vanishes. In type (i), the
charges at the ends of the strip are replaced by vacancies,
to again give a vanishing net dipole moment. In Fig. 16,
we plot the numerically computed excitation energies
b E(l } of these domains, using only the Coulomb interac-
tion part of the Hamiltonian, Eq. (9). For type (i), we see
that hE approaches a finite constant =0.79 for l ~10.
Including the chemical potential term in u, Eq. (10), we
have EE(u)=0.79+2u, where the second term comes
from the two vacancies. For domains of type (ii),
b,E=4.9 for I ~10, independent of u. In each case, we
find the excitation energy is essentially independent of
which ground state is chosen as the background. Since
AE approaches a finite constant in both caes, once a large
enough (l ~ 10}domain is created, there is no further cost
in energy to increase the domain length, and as a result
the domain may grow and the system may switch to a
different ground state. Since there is always a finite prob-
ability —e to create such domains at any T & 0, the
ground state order will be destroyed at any finite T. This
is analogous to the case of the 1D Ising model, in which
domain-wall excitations destroy the ground-state order at
any T&0 and lead to T, =O. Thus, the apparent transi-
tion seen in Fig. 15 is just a crossover region where these
domain excitations proliferate, and the true transition
temeprature is at T=O.

From Fig. 15(b), it appears that these domain excita-
tions also drive e '~0 In Fig. 1.7 (a), we plot e ' for
various lattice sizes L, using the same number of MC
steps. In Fig. 17(b), we plot e ' for fixed L but different
numbers of MC steps. We see that an increase in either
the lattice size or in the number of MC steps causes a
downward shift in the apparent transition temperture
where e '~0. As we expect that there is a constant rate
per unit area per unit time to create the critical domain
excitations of Fig. 15(d), increasing either L or the num-
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ber of MC steps are equivalent ways to increase the num-
ber of such excitations created in a given simulation. We
therefore expect that, in the limit L~00 for infinitely
long simulation times, we would find e '~0 at any finite
T.

V. THE FRACTIONAL COULOMB GAS
ON A TRIANGULAR LATTICE

We now consider the case of the fractional Coulomb
gas on the triangular lattice given by the Hamiltonian (9)
with fractional charges as in Eq. (11), q;=n; f, n; in-—
teger. The charges in this model may be mapped onto
the vortices in the uniformly frustrated XY model on the
dual honeycomb lattice, ' ' which serves as a model for a
Josephson-junction array (JJA) in a transverse magnetic
field. In this mapping, f is the number of flux quantum
of applied magnetic field per unit cell of the array. We
consider the two cases f= ,' and —,'. —

A. f= —,
'

The f=
—,
' case has been previously investigated in the

context of the "fully frustrated" JJA on a honeycomb lat-
tice. Monte Carlo simulations of the corresponding XY
model have been carried out, and the degeneracy of the
ground state has been discussed. In the Coulomb gas
formulation, the system consists at low temperatures of
equal numbers of +—,

' charges, and the ground states cor-

respond to those of region 6 in the dense integer CG, dis-

cussed in Sec. IV E. The primary difference from region
6 is that vacancies are no longer a permitted excitation.
It is therefore expected that domain excitations of type
(ii), as shown in Fig. 15(d}, will destroy the ground-state
order in this system at any finite T & 0.

We have carried out independent simulations of the

f=
—,
' CG and present our results for e ' and C vs T in

Figs. 18(a) and 18(b). The results show very similar be-
havior to that seen in Figs. 15(a) and 15(b) for region 8
of the dense integer charge model. They are also qualita-
tively similar to the results of Shih and Stroud for the
helicity modulus f and C in the corresponding XYmodel
once one considers that the smooth background spin-
wave excitations present in the XY model have been dis-
carded in the mapping to the CG. As in Fig. 17 for re-
gion 6 of the integer model, we see that e ' shows a

FIG. 18. (a) Inverse dielectric function e '(T) and (b)
specific heat C(T) for various triangular lattice sizes, L, for

f= —'. 60000 total MC passes were used.

downward shift in the apparent transition temperature,
as the size of system is increased. Therefore, we believe
that the f= ,' model—, similar to region 6, has T, =0.

B. f=I'

In the f= ,
' model —at low temperatures, the system

consists of a —,
' density of charges q =+—', and a —', density

of charges q= —
—,'. There are three degenerate ground

states, which we may denote by (+,—,—), ( —,+, —),
and ( —,—,+ ), according to which charges sit on the
three independent sublattices ( A, B,C) of the triangular
lattice. The ground state has the same periodicity as
phase Xl of the integer charge model, discussed in Secs.
IV A and IV C. It is characterized by the complex order
parameter g= (qk ) /N, with the same wave vector ko as

0

in Fig. 11. The three-fold degeneracy corresponds to ro-
tations of the phase of the complex order parameter g by
2m. /3. A symmetry analysis predicts the melting transi-
tion of this charge lattice to be in the universality class of
the three-state Potts model.

In Fig. 19(a) we use the ratio method and plot
Rc =C(L )/C(L') for ratios L/L'= —", , —", , and —",, . From
the common intersection of the three curves, we get
T, =0.76 and Rc(T, )=2 ~'=2. 22+0.21, giving
a/v=1. 15+0.11 and 1/v=1. 58+0.06. These values are
approximately the same as found in the melting transi-
tion of phase 2) in the integer charge model.

In Fig. 19(b), we plot the square of the order parameter
for L =6—24. From a fit to the fourth-order expan-

sion of the scaling equation, Eq. (29), using data from
L =12—24, we find P/v=0. 09+0.03, 1/v=1. 59+0.07,
and T, =0.0755+0.0002, consistent with the analysis of
C. In contrast, the exact exponents ' for the two-
dimensiona1 three-state Potts mode1 are
P/v= —,', =0.1333, 1/v= —', =1.2, and a/v= —', =0.4.

In Fig. 20, we plot e '(T,L ) vs T for various sizes L.
The intersection of the curves with the dashed line 4T
gives the KT upper bound on T„which is noticeably
higher than the estimate of T, given by the common in-

tersection of the curves for different L. This suggests that
e '(T, ) has a possibly larger jump to zero at T, than the
universal KT value. Comparison of Figs. 19(a} and 20
suggests that e ' vanishes at a temperature slightly lower
than the melting temperature where the order parameter
P vanishes.
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shown. The common intersection of the three curves is at
(T„2 "). {b) The finite-size-scaling behavior of the order pa-
rameter ~/~i for f=
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'. Symbols with error bars represent the

MC data. The solid lines represent the result of fitting Eq. (29)
to a fourth-order expansion in T—T, using data from
l.= 12-24. The fitted values of 1/v= 1.59 and P/v=0. 09 were
used in making the axes of the plot. 10 total MC passes were
used.

VI. CONCLUSION
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We have carried out extensive Monte Carlo simula-
tions of the integer and fractional two-dimensional
Coulomb gases, on square and triangular lattices, and
have found rich critical behavior. One of our goals has
been to investigate whether the discontinuous jump to
zero of the inverse dielectric constant e ' at the "metal-
insulator" transition might be larger than the universal
Kosterlitz-Thouless value e '(T, )=4T, once the charge
density is suSciently large. Such a possibility has been
suggested by Minnhagen"' for the dense Coulomb gas
in a continuum. We find that whenever the ground state
of the system is the charge vacuum (phase A ), there is no
strong evidence for anything but the universal KT behav-
ior, no matter how dense the system. When the ground
state is a charge lattice, however, we find some evidence
for a possibly larger than universal jump for phase 27 of
the integer model and for the f= ,' fractional model, —

both on the triangular lattice. This may be due to the
coupling of domain excitations of the charge lattice with

the pair unbinding excitations of the Kosterlitz-Thouless
theory. Although our phase diagrams do not agree quan-
titatively with those predicted by Minnhagen, some quali-
tative similarities do exist. In both cases, the "dilute"
phase (our phase A ) is bounded by a line of KT transi-
tions which meet a first-order line at a temperature below
the end point of the first-order line. Across the first-
order line there is a discontinuous jump in charge densi-
ty. In Minnhagen's calculations, the dense phase above
the first-order line is a dense charge fluid, where e '=0.
The nonuniveral jump in e ' in his model comes from
crossing this first-order line. Some evidence for this pic-
ture has been found in Monte Carlo simulations for the
continuum integer Coulomb gas on the surface of a
sphere by Caillol and Levesque. In our model, the dense
phase above the first-order line is an ordered charge lat-
tice with e ') 0. The ordering into a charge lattice is a
direct consequence of having our charges sit on discrete
periodic sites rather than being in a continuum. We
therefore cannot rule out the behavior suggested by
Minnhagen for the continuum model.

A second goal of our investigations has been to deter-
mine whether the melting transitions of Coulomb in-
teracting charge lattices can be classified by the type of
symmetry analysis used for short-range-interaction mod-
els. Here we have found several examples where the criti-
cal behavior we find does not agree with that expected
from symmetry. For the tricritical point of the integer
model on the square lattice, we find a/v= l. 1, compared
to the Ising tricritical a/v=1. 6. For the melting of the
six-fold degenerate phase S of the triangular lattice, we
find a/v=1. 0, different from the expected KT behavior
of the six-state clock model. For the melting of the three-
fold degenerate phase of the f= ,' fractional mod—el on
the triangular lattice, we find a/v= 1.15, as compared to
the expected value for the three-state Pot ts model
a/ v0. 4. At the apparent multicritical point C of the
integer model on the triangular lattice, we find a/v= 1.5.
The exponents we find have consistent values when ob-
tained from different finite-size-scaling methods, applied
to different physical quantities. We have no clear ex-
planation for the failure to agree with symmetry predic-
tions, nor why, in the first three of our above examples,
we find the same value a/v= l. One possibility might lie
in the very long-range nature of the Coulomb interac-
tions. We, of course, cannot rule out the possibility that
all these transitions are really weakly first order, which
would only become evident when studying larger lattice
sizes (where we would expect to see an apparent
a/v=d =2 coming from the bimodal energy distribution
at a first-order transition).
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