
PHYSICAL REVIEW B VOLUME 46, NUMBER 6 1 AUGUST 1992-II

Crystal structure of Li„Ni2 Oz and a lattice-gas model for the order-disorder transition
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The crystal structure of Li Ni2 02 for 0 x ~1 is reported. For x &0.62, Li Ni2 02 has a disor-
dered rocksalt structure. For 0.62~x 1.0, Li and Ni atoms segregate into Li-rich and Ni-rich layers
normal to one of the four (111)directions in the cubic lattice. This breaks the cubic symmetry and an

apparently continuous transition to a hexagonal phase occurs. At x = 1, alternate cation layers are near-

ly pure Li and pure Ni. The degree of order is quantified by defining an order parameter q, which we
take to be the difference in the Li composition of neighboring metal atom layers. Using x-ray diffraction
and Rietveld profile refinement, we have measured g versus x. We model Li„Ni, „02as a lattice of oxy-
gen atoms into which cations (either Li or Ni) can be inserted, subject to the constraint that the number
of cations equals the number of oxygen atoms. Interactions between cations on nearest- and on next-
nearest-neighbor sites are included, and the lattice-gas model is solved with use of mean-field and Monte
Carlo methods. We find that the nearest-neighbor interaction is not sensitive to the observed ordering
and that we can describe the experimental variation of g versus x for an appropriate choice of the next-
nearest-neighbor interaction.

I. INTRODUCTION

NiO has the rock-salt structure. Li-Ni-0 compounds
usually have one oxygen atom per metal atom and are
normally based on layers of closed-packed oxygen atoms.
A technique to prepare LiNiO2 has been developed by
Dyer et al. ' Goodenough et al. ' and Bronger et al.
studied the phases in the solid solution series Li„Ni2 ~02
(0(x ( 1). They showed that a disordered rock-salt-type
structure exists for x (0.56 and partial cation ordering
occurs for x & 0.6. They suggested that there is an order-
ing of the cations in alternate (111)c [(111)in the cubic
structure] planes and calculated the order parameter as a
function of x based on the magnetic measurements and
the analysis of the x-ray diffraction patterns.

Rechargeable batteries can be made using two different
intercalation compounds as the electrodes. LiNi02 is
now one of the possible choices for the cathode. ' We
have learned that the performance of the cells depends on
the stoichiometry of Li Ni2 02 used in the cell. Ni
atoms enter the Li layers and presumably these Ni atoms
impede the diffusion of Li. Therefore, it is important to
know how much Ni enters the Li layers as a function of
x. We undertook the work described here because there
has not been a careful structural study on this solid solu-
tion.

To our knowledge Li„Ni2 02 can only be made in
powder form. Therefore structural information is best
obtained using profile refinement methods. The Rietveld
structure refinement procedure obtains a least-squares fit
between the calculated and observed profile intensities
and is now well established. In x-ray Rietveld analysis,
the best fit is obtained by adjusting cell constants, atomic
coordinates, site occupancies, the peak shape, the back-
ground, etc. This method is used here to analyze the
powder-diffraction profiles of Li Ni2 ~02.

Our structural results agree with those previously re-
ported, but are more quantitative. The order-disorder
transition at x =0.62 has been modeled with a lattice-gas
model. The model describes the data well.

II. SAMPLE PREPARATION

Li„Ni2 ~02 samples were prepared by reacting
stoichiometric mixtures of LiOH HzO and Ni(OH)z. The
powders were ground with a mortar and pestle and were
then heated at 700 C for 2 h in air followed by slow cool-
ing over several hours to room temperature. LiOH reacts
rapidly with NiO [which forms when Ni(OH)z decom-
poses around 300'C] which minimizes Li loss due to ex-
tended heating which commonly occurs when Li2CO3 is
used as a starting materia1. X-ray diffraction measure-
ments were made using a Phillips powder diffractometer
with a diffracted beam monochromator. We used Cu Ea
radiation for the measurements described here. Single
phase Li, Ni2 Oz was easily made for 0 ~ x ~ 1. LizCO3
appeared when the [Li]:[Ni] ratio was more than 1. This
could be avoided if the reaction was carried out under 02
(LizO forms instead), but still we could not prepare
single-phase materials with x ) 1.

III. STRUCTURE AND ORDER PARAMETER

The compounds Li Ni2 „02are structurally related to
NiO which has the rock-salt structure with a, =4. 168 A.
In this structure, the metal ions occupy one face-centered
cubic (fcc) frame while the oxygen ions occupy the other
fcc frame. These two fcc frames are shifted by a, /2
along one of the three cubic axes. For 0.0~x &0.62
Li Ni2 02 is cubic and for 0.62 x &1.0 it is hexago-
nal. Figure 1(a) shows the metal atom positions when
x =1 and c& and ah are cell constants in the hexagonal
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IV. REFINEMENT RESULTS

The basis of the Rietveld method ' is the equation

Y,,= Yb+ g GkIk,
k

(3)

Li

(b)

where Y;, is the net intensity calculated at point i in the
pattern and Y;b is the background intensity. In our ca1-
culation, Y;b was chosen as A +BH+C/8 and A, B, C
are profile parameters. G,k is a normalized peak profile
function, it was chosen as a pseudo-Voigt function, '

which is a mixture of Gaussian and Lorentzian peaks. Ik
is the intensity of the kth Bragg reflection and k is
summed over all reflections contributing to the intensity
at point i.

The intensity Ik is given by the expression

Ik =SMkLk IFk I Wk (4)

Ni 0

FIG. 1. Metal positions in Li„Ni, „0,. (a) x=1.0 and
q=1.0, LiNiO& with the perfect ordered structure. {b)0 & x & 1

and 0 & g & 1 with the partial ordered structure. (c) x =0.0 and
g=0.0, NiO.

structure. When ch/a/, =2&6 the unit cell is equivalent
to the cubic one with a, =~2 a/, .

As Fig. 1(a) shows, the metal atoins segregate into
predominantly Li-filled layers (L layers) and predom-
inantly Ni-filled layers (N layers) near x=1. As x in
Li„Ni2 02 decreases, Ni atoms must move into the L
layers and Li atoms may move into N layers. We define a
long-range order parameter as

il=i&x~) —&x„)i,

where

where S is the usual scale factor, Mk is the multiplicity,
L,k is the Lorentz polarization factor, Fk is the structure
factor, and 8'k is an isotropic Debye-%aller factor which
we have assumed is the same for each atom in the unit
cell.

Refinements were done in the space group R 3m, which
is the space group for LiNi02. The least-squares pro-
cedures uses the Newton-Raphson algorithm to minimize
the quantity

y =gw;(Yo —Y;, )

where Y;o is the set of observed diffraction intensities col-
lected at each step across the pattern. w; is the statistical
weight assigned to each observation; we use w;=1/Y;0.
One measure of the quality of our refinement is the Bragg
R factor, Rz, defined as

R// = X 100%%uo (6)
I/, 0

where Iko is the observed integrated intensity of reflection
k calculated at the end of the refinement after apportion-
ing each Y;0 between the contributing peaks and back-
ground when that is refined according to the calculated

&x~ &+ &x~ & =x (2)

and where & xL ) and &x/v ) are the average Li concentra-
tions in the L layers and N layers, respectively. In Fig.
l(a), g = 1 since the structure is perfectly ordered. Figure
1(b) shows a situation for x & 1 where the lattice is par-
tially ordered and has rl & 1. Finally, Fig. 1(c) shows the
cation positions in NiO which has g=O according to our
definition.

In our profile refinements we refine the concentrations
xL and xz. In an L layer each site is filled by an average
atom consisting of xL Li and (1 —xl ) Ni. In an N layer,
each site is filled by x/v Li and (1 —

x/v) Ni. Since lithium
only has three electrons we are most sensitive to lithium
through the absence of Ni, since we assume the number
of cations in the structure equals the number of oxygen
atoms.
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FIG. 2. X-ray diffraction patterns for three Li Ni2 „02sam-
ples with x as indicated in the figure. Miller indices for Bragg
peaks referred to in the text are indicated.
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FIG. 3. Experiment and fitted profile for LiQ965Nil Q3502 as
indicated in the figure. The difference between the two profiles
is also shown.

FIG. 5. The cell constant, cz, of the hexagonal structure vs
"x from Rietveld profile fitting" in Li„Ni2 „02.

intensities Ik, .
Figure 2 shows x-ray diffraction profiles for several

Li Niz „02samples, to show the changes in the profile
which occur as x changes. The (003)H peak decreases in
intensity as x decreases, becoming weak and broad below
x=0.62, indicating short-range instead of long-range
correlations. The sharp peak appears only when the
average composition of the L and X layers differs. The
ratio*of the intensities of the (101)H and the (102)H,
(006)H peaks changes with x and has been previously
used to estimate x in Li Niz 02. '

Figure 3 shows an example of a Rietveld profile
refinement for one of our samples. For x & 0.62, the fits
included at least 12 Bragg peaks while for x & 0.62 only 6
(including two peaks between 80' and 100' 28 scattering
angle) experimentally measured peaks could be used. For
x &0.62, the Rietveld program is unable to the fit the
Broad short-range order peak well near 28=18.5, be-
cause its width does not follow the functional form used

by the Rietveld method. Nevertheless, we refined the en-
tire profile and considered the short-range order peak
separately as we describe later. Table I reports the re-

suits of our refinements. For all refinements, Rz, was less
than 3.4%, indicating good agreement between the data
and the structural model.

The composition of the samples are determined in two
ways. First we simply use the mole ratios of the starting
materials mixed in the synthesis. The Rietveld program
gave the second value of x, obtained by summing xz and
xL returned by the program. We call the first cornposi-
tion "x from synthesis" and the second "x from Rietveld
profile fitting. " Figure 4 shows that these compositions
agree well with each other which gives us confidence in
the quality of our samples and the refinement method.
The solid line in Fig. 4 shows the line "x from
synthesis" ="x from Rietveld profile fitting. " Apart
from 2 points, our data fall systematically to one side of
the line suggesting some small problem with our
refinement methods or in the original stoichiometries of
our starting materials. In what follows we plot refined
qualities versus "x from Rietveld profile fitting" for con-
sistency. Substituting for "x from synthesis" does not
change the results significantly.

All Rietveld profile fitting is based on the hexagonal
structure, even if the structure could be fitted by a cubic
structure for 0.0(x &0.62. The cell constants a& and c&

in Figs. 5 and 6 are in good agreement with the data
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FIG. 4. The composition of Li„Ni, „0,measured from mole
ratios of reactants ("x from synthesis") plotted versus the corn-
position determined from Rietveld profile analysis ("x from
Rietveld profile fitting"). The solid line is "x from
synthesis" ="x from Rietveld profile analysis. "
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FIG. 6. The cell constant, aI, of the hexagonal structure vs "x
from Rietveld profile fitting" in Li„Ni2 Oz.
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below x, =0.62 in an attempt to fit the weak broad peak.
We have sketched a guide to the eye in Fig. 8 which indi-
cates how the long-range order parameter must behave.
We have indicated with squares, those fitting results
which are an artifact of our procedure and not indicative
of true long-range order. More careful fitting of the criti-
cal scattering is needed to fully understand the short-
range order. Before we discuss this short-range order, it
is useful to consider a lattice-gas model for Li, Ni2, 02.

0.992
0.2

I I I I I I 1 1 I I I I I I 1 I I

0.4 0.6 0.8 1

xinLI„NI2 „0, 1.2
V. LATTICE-GAS MODEL

FIG. 7. The ratio
veld profile fitting. "
The straight line

xc =0.62+0.01

aI, /cz multiplied by &24 vs "x from Riet-
The structure is cubic for &24az/cz =1.
fit to the data for x & 0.62 gives

given by other workers. ' For x &0.62 in the cubic
structure, the refined x differ by less than 0.03 between
the cubic and the hexagonal structures used in the Riet-
veld profile fitting. Figure 7 shows &24aI, /cz from Riet-
veld profile fitting in the hexagonal structure, for
O~x ~1. When &24az/ch =1 the structure is cubic.
The error bars are larger for x (0.62 than those for
0.62 &x & 1.0, because fewer Bragg peaks are included in
the refinements. In our estimate the composition of the
order-disorder transition is best obtained from Fig. 7.
We measure x, =0.62+0.01.

Figure 8 shows the order parameter g versus "x from
synthesis. ' At x =1, full order is still not obtained since
g=0.96; this means there are some Li atoms in Ni-rich
layers and some Ni atoms in Li-rich layers even for
stoichiometric LiNi02. This result agrees with that from
recent neutron-scattering measurements on LiNi02. '

For x &0.62, there is still short-range order as evidenced
by the weak and broad peaks in the (003)H position. Our
Rietveld refinements are all done in the hexagonal system
and do not treat the short-range order peak well. The
refinement gives nonzero long-range order parameters

The system Li„Ni2 02 consists of one fcc frame of
oxygen and one fcc frame of metal cations. The octahe-
dral interstitial sites of the oxygen lattice are where the
cations can be positioned. At each site either a Li atom
or a Ni atom can be placed subject to the constraint that
we have x Li and (2—x) Ni atoms per formula unit. A
lattice-gas model is therefore appropriate for the treat-
ment of this material. Interactions between metal atoms
causes the ordered arrangement in the (111)c planes.
Figure 9 shows the structure of the metal frame. There
are 12 nearest neighbors (checkerboard circles) and six
next-nearest neighbors (grey circles) for each site (black
circles). All the six next-nearest neighbors do not share
the same (111)cplane with the site at the origin. Howev-
er, six of the nearest neighbors share the same (111)clay-
er with the atom at the origin and the other six do not.

0.9
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0.3
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0 ~ 1

-0. 1
I i I i I

0.2 0.4 0.6 0.8
x in Li„Ni, „0, 1 1.2 Nearest-Neighbor

Interacti on

FIG. 8. The long-range order parameter from Rietveld
profile fitting vs "x from Rietveld profile fitting. " For x (0.62,
the data do not indicate long-range order (see text). The solid
line is a guide to the eye.

FIG. 9. The cation fcc frame showing the nearest neighbor
(checkerboard) and next-nearest neighbors (grey) to a particular
site (black). The first- and second-neighbor interaction energies
are shown.
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In the lattice-gas treatment we assume interactions be-
tween pairs of metal cations occupying nearest neighbor
(NN) and next-nearest neighbor (NNN) sites and neglect
longer-ranged interactions. These are denoted J

&

J] =J
~

J
&

for Nj-Nj Nj-Lj and Lj-Lj first nejghbor
interactions, respectively. Next-nearest-neighbor interac-
tions use the same notations, except the subscript 2 re-
places the 1. The model Hamiltonian is then

~=p gx, +p gy, +—g(J, xx, +J, xyj+J, yx +JP yyJ)+ —g (J~ xxj+Jz xyj
l 1 l,J L,J

Here, x; =1 if site i is filled by Li and x; =0 if site i not
filled by Li. y,. =1 if site i is filled by Ni and y; =0 if site i
is filled by Ni. p and p are the chemical potentials for
Li and Ni atoms, respectively, and the sums over the in-
teraction terms run over all pairs of nearest-neighbor
atoms (the first term) and all pairs of next-nearest-
neighbor atoms (the second term).

In our model we assume that all available sites are
filled by either Li or Ni and that there are no cation va-
cancies. This allows considerable simplification of our
Harniltonian, since then y,. = 1 —x, . Making this substitu-
tion we obtain

NN 1 NNN

H = g px, +—g J&x;xj+—g Jzx, x +Np
l /, J L,J

where

+6NJNN+ 3NNN (8a)

and

L N+2(JLN JNN+ JLN JNN)

J JLL +JNN 2JLN
1 1 1 1

J JLL +JNN 2JLN
2 2 2 2

Because we can redefine the zero of energy, we drop the
constant terms Np, NJ &, and NJ2 in our subsequent
analysis. Here, x, is equal to 1 if a site is filled by Li and
x;=0 if it is not. Therefore, we have transformed the
Hamiltonjan from that commonly seen for A-B alloys to
that found for lattice-gas models as is usually done. ' '

In order for the (111)c superlattice ordering to be sta-
bilized it turns out that Jz )0.5

~
J

& ~; for details the reader
is referred to Ref. 16. For this case, a Bragg-Williams
treatment of the problem is useful which we make below.
In the Bragg-Williams model we assume a superlattice
structure commensurate with the ordered state. Assum-
ing (111)cordering, the Bragg-Williams Hamiltonian (8)
is obtained by replacing the site occupancies x; with

I

I

x+rt/2 and x —g/2 for sites on alternate (111)c cation
planes. Here x = (x, ) is the average lithium concentra-
tion in the cation sites, equal to x in the compound
Li„Ni, „0and q is the order parameter defined earlier,
in Eq. (1).

Making the substitution and doing some algebra we ob-
tain the Bragg-Williams Hamiltonian

—=px+3(2J, +Jz)x ,'Jzrj—— (8b)

from which one can immediately see that the nearest-
neighbor interaction, J&, does not couple to the order pa-
rameter within mean-field theory. Figure 9 shows this as
well; distributing 6 Li atoms randomly over the 12
nearest neighbors of a central Li atom "costs" 6J& in en-

ergy, the same as if the atoms are in the ordered state, so
we do not expect J& to couple to this ordered state. The
order parameter g is actually fourfold degenerate corre-
sponding to the four cubic directions, [111],[111],[111],
and [111],with order parameters r1, , rid, A)3, and g4, re-
spectively.

Does the system select just one q or some linear com-
bination of all four? To answer this we consider the rela-
tive entropies for these two situations. In mean-field
theory, entropy is maximized in lattice-gas arrangements
with all site occupancies equal to one half, which is not
possible in an ordered state with rt) 0. When rtAO, en-

tropy is maximized in ordered states where the magni-
tude of the deviation from half occupancy, is the same on
each site. This certainly is true for our ordered state
where alternate (111) planes have average compositions
x+rt/2 and x —rt/2. In an ordered state which is a mix-
ture of the four (111) states, the magnitude or absolute
value of the deviation of the average occupation from 1/2
will vary from site to site. Hence entropy is maximized
in phases corresponding to one of the four possible (111)
superlattices and not a mixture. A detailed proof of this
is given in the Appendix.

The Bragg-Williams free energy is easily shown to be

kgT=—+ x++ ln x++ + 1 —x++ ln —ln x++ + x —+ ln x—
N X N N 2 2 2 2 2 2 2

+ 1 x
2

ln 1 —x—
2

(9a)
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Expanding in powers of g we obtain

F k~T 1 1—=px +3(2J, +Jz )x ——3 Jz r) +kii T[x lnx + ( 1 —x )ln( 1 —x ) ]+ —+
8 x 1 —x

a 1 1 4
k T

x (1—x)
(9b)

Using the Landau theory of phase transitions we expect
that F will be minimized for q=0 whenever

kgT —+ —3J, &0
2 x 1 —x

(9c)

and that Fwill be minimized for g )0 whenever

kmT 1 1—+ —3J, &0.
2 x 1 —x

(9d)

This phase transition to TWO occurs in the Bragg-
Williams treatment when equality holds above, giving

k~T
x, (1—x, )=

M2
(9e)
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FIG. 10. (a) The order parameter vs x calculated by the
Bragg-Williams model for the values of J, /k~T shown and

Jl =0. (b) The order-disorder phase diagram calculated using
the Bragg-Williams model for J, =0.

where x, is the critical lithium concentration in
Li, Ni, ,O beyond which ordering in (111)c planes
occurs. The data in Fig. 8 show that the ordered state
disappears for x &x, =0.62 in Li Ni2 02 which corre-
sponds to x, =0.31 in Li Ni, „O.Substituting x, =0.31
into the above equation gives

J2 =0.78 .
8

Figure 10(a) shows rI versus x in Li„Ni2,02 for
Jz/(kii T) =0.78 (chosen so that x, agrees with the data)
and for Jz/(ks T) = 1.35 (chosen so that the maximum in

il agrees with the data) calculated by minimizing the
Bragg-Williams free energy given by Eq. (9a) with respect
to q. This can be directly compared to the data in Fig.
8. The agreement is encouraging and suggests that better
solutions to the statistical mechanics, such as Monte Car-
lo methods, are in order. Figure 10(b) shows the mean-
field phase diagram for the model.

VI. MONTE CARLO RESULTS

Here we use the Monte Carlo method to calculate the
order parameter versus x and T. The Metropolis
method' is used to get the equilibrium ensembles of the
system described by the Hamiltonian in Eq. (8a). The
calculation uses an fcc lattice of cation sites and periodic
boundary conditions. As order develops we do not know
a priori along which of the four equivalent cubic direc-
tions [1 1 1], [1 1 1], 1 1 1], or [ 1 1 1] the order develops.
To calculate the long-range order parameter we calculate
the average site occupancy in layers normal to [1 1 1] and
then take the difference between the average occupancies
of the set of alternate planes. This we call g, . We repeat
this procedure for planes normal to the [1 1 1], [1 1 1],
and [1 1 1] directions, finding i)z, r)3, and g4, respectively.
In the ordered state, only one of the four order parame-
ters is significantly different from zero. The overall order
parameter g is then defined to be

n =(n'i+rl~+ rI3+rI~)'" (10a)

to ensure that our computation is sensitive to the devel-
opment of long-range order in any of the four possible
directions and to ensure that g is positive. The fcc lattice
has four atoms per unit cell. Our lattices ranged in size
from a 4X4X4 unit cell to a 12 X 12 X 12 cell or from 256
atoms to 6912 atoms.

Figure 11 shows g and x in Li Ni2 „Ozcalculated for
J2=1.2k~T, and J, = —0.5k~T for a variety of lattice
sizes. We examine the effect of the choice of J& below.
At x = 1, when the lattice is half filled by Li, the order pa-
rameter reaches a maximum of 0.92, which is approxi-
mately independent of lattice size. However, the order
parameter depends on the lattice size near the critical
composition, x, . The finite-sized lattice we use shows re-

sidual order below x, which decreases as the lattice size
increases. Figure 12 shows ( rI ) versus x for
J2=1.35k~T with J, = —0.5k~T calculated by Monte
Carlo (I. =12) and mean-field theories for zJ= 1. 5 3ksT
and Jz =0.78k~ T. We cannot fit the experiment using
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FIG. 11. The order parameter g from the Monte Carlo cal-
culations for various lattice sizes and a fixed next-nearest-
neighbor interaction constant. The results are averaged over
1000 equilibrium ensemble and J& = —0.5k& T.
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FIG. 13. Order parameter g vs x in Li„Ni2 „02for

J,=1.35k& T and various Ji i'k~ T ( —0.5, 0.0, 0.5, 1.0, 1.35, 2.0).
For —0.Sk~ TJ, ( 1.0k~ Tx, is rather insensitive to Jl.

mean-field theory at both x =x, and x =1 with the same
J2.

The data in Fig. 7 suggest that experimentally
x, =OR62 and the data in Fig. 8 show that the maximum
in g at x =1 is q,„=0.96. Figure 12 also shows our at-
tempt to fit the data with the Monte Carlo calculation us-
ing J2=1.35k&T and J& = —0.5k~T on the largest
(12X12X12) lattice size considered. The fit is excellent
in the ordered state which shows that Li Ni2 „02can be
well described by a lattice-gas model. Figure 13 shows
the effects of the choice of J& on the results for
—0.5k~ T & J, & 2.0k+ T. For fixed J2, increasing

~ J, ~

reduces the extent of the ordered phase, but the reduction
is very minor for

~ J, ~
(J2/2. As Fig. 13 shows, the three

curves for r) versus x for J&/k+T= —0.5, 0.0, 0.5 with

J2 = 1.35k& T are almost identical. Only when

~ J, ~
)J2/2 does the behavior of rI vs x deviate

significantly, affecting the value of x&, much more
strongly than q,„.Although we could increase the value
of J2 for J, =1.0k&T to obtain agreement with the data
at x&, this would affect the agreement between the pre-
dicted and observed values of g,„atx = 1 in

0.8

Li„Niz „Oz. When ~J, ~-=2Jz the [111] ordering is
severely affected as shown by the curve in Fig. 13 for
J, =2.0k~ T, J2 =1.35k& T. This result is consistent with
earlier work. ' When J& & —0.5k& T, the, phase transition
to the ordered phase becomes clearly first order in the
Monte Carlo calculations (at J& = —0.5k+T it is hard to
tell whether the transition is continuous or weakly first
order; for J& )0, the transition is clearly continuous). A
region of coexisting phases is observed near the transition
point for J, = —1.0k~ T. That is, a coexistence between a
disordered phase with composition, x&, and an ordered
phase with composition, x2, occurs for x& ~x ~x2. This
is consistent with experiment and therefore we feel that
J& is most likely positive.

These results clearly suggest that J2 is larger than J, in
this material. This is somewhat surprising since the
cation-cation bond length corresponding to J2 is v 2
times that corresponding to J& and usually interaction
strengths decrease with distance. The interactions J, and
Jz are made up of Li-Li, Ni-Ni, and Li-NI interactions as
given in Eq. (8a). Each of these interactions is very com-
plicated to estimate.

The critical composition, x„where order develops, is
most easily determined by plotting the fluctuations of the
order parameter

(10b)

0.6

0.4

0.2

0.4 0.8 1.2
x in Li „Ni2 p2

f.6

FIG. 12. Order parameter g vs x in Li„Ni2 02. The solid
points are the data from Fig. 8 and the curves are from the
Monte Carlo simulation (L =12, JI = —0.5k& T) and the mean-
field theory.

versus x. Noise-free fluctuation quantities such as
(rj ) —(g) are very difficult to calculate with conven-
tional Monte Carlo methods, particularly if successive
spin configurations are highly correlated (autocorrela-
tion). In order to alleviate this problem we have used
Ferrenberg and Swendsen's multihistogram method'
which allows optimal use of all the simulation data.

The probability distribution at chemical potential p,
P„(x), is generated by building a histogram of the num-
ber of lattice-gas configurations that have x in the range
x; and x;+Ex, where i labels a bin in the histogram and
Ax is the bin size. In this work we used hx =4X10
From the reweighting transformation
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P„(x)exp[ —Px (p' —p ) ]P„(x)= g P„(x)exp[ P—x(p' p—, )]
(10c)

X((xq) —(x ) (q) ),
(1 lb)

(1 lc)

which all have maxima at the phase transition. Figure
14(a) shows the fluctuations in the order parameter g for
three different lattice sizes, L =4, 8, and 12. Two other
lattice sizes, L =6 and 10 (not shown) were also simulat-
ed. The solid lines in Fig. 14(a) are calculated using the

OL= 4oL=8
~ L=12

one can see that the exact probability distribution at p ac-
tually contains all the necessary information needed to
calculate P„(x) for any other chemical potential p'. In
practice P„(x) only contains information on distributions
for p' near p, due to poor counting statistics in the wings
of the histogram far from (x )„.However, data quality
can be improved considerably by combining numerous
histograms generated at different p's.

In order to obtain an accurate estimate of x, we have
calculated the following three fluctuation quantities:

(1 la)

x, (L)=x,(~ )+ AL (12)

The fits [Fig. 14(b)] were rather insensitive to the ex-
ponent z but the best results were obtained for z =1.5
giving three x, values 0.612 ((rl ) —(q) ), 0.627
((x ) —(x) ), and 0.6208 ((gx) —( Ir)( x)) with an
average x, =0.620(5).

VII. SHORT-RANGE ORDER

Figure 15 shows the (003)H Bragg peak region mea-
sured at several values of x in Li„Ni2 02. The data are
displayed with different intensity scales, but this does not
affect the peak shape. As x decreases below x =0.62, the
width of the peak increases rapidly. The broad weak
peak indicates the presence of short-range order, the pre-
cursor to the long-range order which develops for
x )0.62. This short-range represents the tendency of Li
atoms to avoid simultaneously 611ing next-nearest-
neighbor sites. Detailed analysis of the short-range order
will be presented elsewhere.

VIII. DISCUSSION

multiple histogram method and discrete data points are
obtained by standard averaging at each LM simulated. For
each p, 1000 MCS were allowed for the system to reach
equilibrium and a further 10000 MCS for averaging of
thermodynamic quantities. In order to estimate x, in the
thermodynamic limit we have extrapolated assuming a
power-law dependence on lattice size

100=
I

10=

0.4 0.5 0.6 0.7 0.8
X in. Li Nia, 02

0.9

We have shown that the order-disorder transition in
Li Ni2 02 is well modeled with a lattice-gas treatment.
Our model reproduces the data very well using

J2 = 1.35k& T with a wide range of J, ( —0.5k~ T
(J, (0.5k~T). It remains to determine the value of T
In our opinion, the temperature of importance is the tem-
perature at which the Ni atoms can no longer move. For
the lattice-gas treatment to be reasonable, both Li and Ni
must be mobile and diffusing freely from site to site.

- (b)
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~ P44 o.ee-
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0.64-
z = 15

2:, = 0.620(5)

C

C3

(003) Region

0.00 0.05 0.10 0.15

FIG. 14. (a) The Auctuations in the order parameter calculat-
ed from Monte Carlo averages (data points) and the multihisto-

gram method (solid lines) for three lattice sizes. Averages and
histograms generated from 10000 Monte Carlo steps at equilib-
rium for J2 = 1.35k& T and JI

= —0.5k& T. (b) Power-law (see
text} extrapolation of x, to infinite lattice size giving an average
x, =0.620(5). x, 's for finite lattice sizes were calculated from
three fluctuation quantities that all have maxima at the phase
transition.

=0.55

=0.67

15 20 25 30 35
Scattering Angle (Degrees)

FIG. 15. X-ray di6'raction shows the short-range order in

Li„Ni2 02 for O~x ~0.62. The Bragg peak in the (003)H re-

gion has been multiplied by a scale factor which increases as x
decreases to make the peak visible at low x.
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During cooling of our samples the Ni atoms freeze at
some temperature; [probab1y around 600'C since syn-
thesis of LiNi02 is very slow ()40 h) at this tempera-
ture] thus our samples are instantaneous records of the
equilibrium that existed just above that temperature. Us-
ing T =600'C, we calculate J2=0.11 eV. Preliminary
high-temperature diffraction measurements using an in
situ furnace show that the ordered phase in Lip 66Ni, 3402
is reversibly suppressed at about 1000 C, consistent with
our estimate of T above. Further high-temperature work
is in progress.

One goal of our research is to extract the cation-cation
interacalation energies so that we can model the behavior
of Li-Li„Ni02 interaction batteries with lattice-gas mod-
els as has been done previously for other intercalation
compounds. ' ' Unfortunately, we have shown that the
value of the nearest-neighbor interaction, most important
for that application, cannot be determined from the
order-disorder in Li„Ni2 „02since the nearest-neighbor
interaction is not sensitive to the observed order parame-
ter for this materials. Other measurements, such as the
variation of the Li chemical potentials in Li„Ni2 „02
with x are needed to determine the Li-Li contribution to
J1.

The Li transition-metal oxides (LiMOz) show a rich
variety of structures based on close packed oxygen lay-
ers. ' The Li and M atoms form a variety of ordered ar-
rangements which can probably be explained by suitable
choices of cation-cation interaction energies in a lattice-
gas formalism. One of our goals is to determine a set of
interactions consistent with the observed structures.

APPENDIX

Reality of the x; implies the following constraint:

Iq 9—q (A2)

+ ——Jz (rii+ ri2+ rl3+ rl4)
8 x 1 —x 4

k~T '1
192 f(4)

(1—x)
(A.3)

where

f' '= g ri ri&rirrl, 5(q +q&+qr+q, ),
a,P, y, c

(A4)

where 5(q +q&+q +q, ) is a discrete delta function. Ex-
panding the fourth-order term (A4) we have

f' '=24 g ri +3 g ri, rip~+2rl, ri~ri3ri4
a uAP

=24 3 g rl, —2 g rio+ 2', r12ri37/4
a

(A5)

(A6)

which determines whether or not one q is selected. In
order to make a meaningful comparison of free energies,
the values of the g must be chosen so as to satisfy

~2+ ~2+ ~2+ ~2 ~2

For simplicity we will test the two extreme cases for
which (A7) is satisfied.

Thus q~ =g~ and we define q1=q +q* with similar

relationships for the other three order parameters. Substi-
tuting (Al) into the Landau expansion (7) we obtain

F/N=px+3(2J, +Jz)x
r

In order to prove that entropy is maximized when only
one of the four degenerate order parameters q1, g2, q3, or
g4 is selected, we must write the general site occupancy
as

Case 1: g1=g2= g3 =g4=

f =24(3ri —
—,'ri +—,'ri )=63ri (A8)

8

x;=x+—g riz exp(iq r;), .
a=1

(Al)
Case 2: 'g 1

=7f, 'g 2
= 'g 3

= t)4
=0:

f =24(3v] —27) )=24ri" . (A9)

where x is the uniform site occupation. r, is the lattice
vector for site i, and the q are the eight ordering wave
vectors, q, =(1,1, 1), q2=(1, 1, 1), q3=(1, 1, 1),
q =(1,1, 1), q, = —q, , q = —q, q, = —q, a dq, = —q.

Since the coefficient of the fourth-order term is positive
definite and (A9) & (A8), the free energy is minimized for
case 2 to over case 1, i.e., only one of the four g's will be
selected.
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