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Dislocation structure for one-dimensional strain in a shocked crystal
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Dislocation structures proposed to model plastic deformation at a shock front are analyzed. The
creation and glide movement of the dislocations are considered. Glide-type movement violates the con-
dition of one-dimensional strain except if dislocation dipoles with Burgers vectors parallel and antiparal-
lel to the shock propagation direction are directly generated by alternating shear stresses as in a punch-

ing action. The stress, strain, and dilatation characteristics are presented for a dislocation structure pro-
posed by Armstrong, Miller, and Sandusky (AMS) to give a residual one-dimensional strain state. The
AMS dislocation structure is related to independent results from a molecular-dynamics description of
shear displacements in a shocked triangular lattice and is used as a basis for estimating the extent of
postshock strengthening levels. The shock-strengthening predictions are in reasonable agreement with

postshock deformation measurements.

I. INTRODUCTION

In a dislocation-model description of a plane shock
front, Smith' proposed that a cross grid of edge disloca-
tions with net Burgers vectors in the front was distribut-
ed across the planar interface to account for the proposed
mismatch of lattice planes occurring between shock-
compressed and unshocked material. Meyers extended
the model to consider the possibility that the mismatch
dislocations would occur in periodic zones approximately
parallel to the shock front. Following Smith, ' Meyers
put the cross-grid dislocations onto shear planes oriented
at 45' to the front, thereby indicating that the local lattice
mismatch could be accommodated by shear deforma-
tion. The resulting dislocation structure of the Meyers
model is shown in Fig. 1(a). Realistic dislocation densi-
ties were estimated for the model.

A second dislocation model has been proposed by
Armstrong, Miller, and Sandusky, hereafter labeled
AMS, as shown in Fig. 1(b). In this case, elementary
shear zones are imagined to emanate from points along
the shock front and to be distributed in an interlocked
manner such that the displaced dislocations react to form
prismatic edge dislocation dipoles with Burgers vectors
parallel, not perpendicular, to the direction of shock
wave propagation [Fig. 1(c)]. The reacted dislocations
produce a residual internal state of essentially one-
dimensional strain, as employed in the ideal characteriza-
tion of a plane shock front.

The two dislocation models described above are pro-
posed for events that occur in a time period of highly
transient strain phenomena. The models illustrate frozen
views of possible dislocation processes occurring under
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maximum shock compression conditions. Evidence that
fundamental questions remain to be resolved about dislo-
cation processes in shocks is provided by Johnson's con-
cern regarding the net sign of dislocations needed to ac-
complish the shock-generated shearing process at the ini-
tial impact surface of a crystal. The AMS model has the
particular reaction feature of satisfying a final condition
of one-dimensional strain while not producing a net sign
for the total dislocation distribution. Equal numbers of
positive and negative dislocations occur in a particular
arrangement that promotes the survival of a residual
dislocation nanoscale structure in the unloaded material.
This nanometer-scale defect substructure is of interest for
its relation to molecular-dynamics modeling of shock-
defect interactions and to the subsequent strength
properties of shocked materials. Our purpose here is to
assess these dislocation models in terms of their limited
ability to satisfy the accepted plane shock assumption of
a one-dimensional strain state and to relate the AMS
model to measurements of postshock strengthening.

II. STRESS OR STRAIN STATE CONSIDERATIONS

Plane shock wave compression is taken to produce uni-
directional deformation in the direction of wave propaga-
tion for an assumed isotropic crystal. The associated
strain tensor has only one nonvanishing component E22.

This is defined as

ep2 = ( V Vp ) / Vp
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where Vo and V are the uncompressed and compressed
volumes, respectively. The zero transverse strains in
Hooke's isotropic relations, for example, involving the
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strain in one transverse direction,

e)) =(1/E)[o, )
—v(o 22+o 33)]=0,

lead to the associated stress state
T

E( V —Vo)

Vo(1+v)(1 —2v)
0 0 v

(a)
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(2)

(3)

where E is the elastic modulus and v is Poisson's ratio.
This stress state is considered here for the simple case

where dislocations can move on planes coincident with
planes of maximum shear stress, namely those oriented at
45' to the straining direction. The maximum shear stress

~,„given as

r,„=(o2z
—o ii)/2,

with Eq. (3) becomes

1 —2v E( V —Vo)

2(1—v) 2Vo(1+v)

(4)

This maximum shear stress condition should, in a homo-
geneous sense, exist across the shock front on every plane
oriented at 45' relative to the loading direction. The
value of the imposed strain and its rate of propagation
lead to the expectation that dislocation generation and
movement should occur at numerous local points on the
front rather than at more remote locations. The large
strains must correspondingly be relaxed locally.

A uniform distribution of heterogeneities on the scale
of point defects provides the possibility that a nearly uni-

form distribution of dislocations might occur under
shock conditions. These defects would locally lower the
value of the compression stress o zz required to achieve

~,
„

for the generation of dislocations, even on the scale
of a single atomic vacancy. A molecular-dynamics simu-
lation has been described for the generation of disloca-
tions from a rather large ten-vacancy cluster under plane
shock compression. Figure 2 shows the pre- and
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FIG. 1. (a) Dislocation structure of the Meyers model (Ref.
2). (b) Dislocation dipole structure of the Armstrong-Miller-
Sandusky model (Ref. 3). (c) Specific reactions for dipole forma-
tion.
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FIG. 2. Molecular-dynamics computations of (a) preshock
vacancy cluster leading to (b) postshock dislocation dipole
structure.
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postshock compression configurations of the cluster.
The theoretical shear stress ~& at which dislocations

might be homogeneously generated in shocked nickel has
been estimated by Meyers. On that basis, dislocation
densities were determined for various (V/Vo) values
without regard for the lateral strains produced by the
glide-type dislocation displacements. Such displacements
have to produce axial and lateral strains under any type
of compression. This occurs for each of the models de-
scribed, although the reacted dislocation arrangement in
the AMS model does produce a residual state of one-
dimensional strain.

III. DISLOCATION MOVEMENT STRAIN

To calculate the strain resulting from the movement of
the AMS dislocations prior to reaction, we consider the
single intersecting shear element of Fig. 3 as taken from
the system in Fig. 1(c). The simple shear glide in the x',
direction, along a glide plane with a normal in the xz
direction, produces displacements that can be represented

at an arbitrary point with position r by

u'=[b(AA)/AH)(n r)P, (6)

b(b, A)
2HA

where n is a unit vector normal to the glide plane, P is a
unit vector in the slip direction, and A=( A /b)(b Xg),
with the Burgers vector 1 defined according to the
SF-RH (start-to-finish, right-hand convention described
by Hirth and Lothe ) rule specified with respect to the
line vector g. The dislocation line vector and Burgers
vector are assigned in a manner consistent with the
definition of positive work being done by an external
stress. The area swept out by movement of a dislocation
line of length I through a distance hx is given by
b, A=l(g'XELx) and the shear separation distance H
shown in Fig. 3, is given by H=(H/bx)(gXhx). By
diff'erentiation of Eq. (6), the strain tensor, as described
by Bishop and Groves and Kelly' for small strain, is ob-
tained,

For a slip system oriented as in the case of Fig. 3, this be-
cornes
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where m signifies the mth dislocation. Calculation of the
strain for the dislocation slip pair m =1 and m =4 in the
(x', ,x2) system, the nonzero components of the strain in
Eq. (9) become

I I

(~ 12)1,4 (~ 21)1,4

bi (h, A1Xg, ) b4. (EA4X$4)+
2 A, Hi A4 H4

where V is obtained by employing the relationship
A H=V.

Here we evaluate directly the components of the strain
tensor for each of the dislocations of the shear element of
Fig. 3 from

and are evaluated as

4 6
12)1,4 ( 21)1,4 2~ H ( 1 4

t

(b)

(„=[001]

Similarly for the dislocation slip pair m =2 and m =3,
the nonzero strain components of Eq. (9) are

t I b
(~ 12)2, 3 (~ 21)2,3 2~ H (~x2+x3 )

1

FIG. 3. Shear element (a) model dimensions and (b) strain
transformation.

The sum of the strain contributions for both slip pairs ex-
pressed in the loading coordinate system (x„x2)shown
in Fig. 3 results in the dislocation strain state
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1 b[']=
2 X,H

—gbx; 0

Following the same procedure for the three-dimensional
case, where the contributions of the dislocations from
two additional 45' planes in a plane section rotated 90'
about the 2 axis are included, the strain tensor becomes

1 b

2X,H (14)

This shows that the AMS dislocations generated under
unidirectional compression produce a three-dimensional
state of strain. A similar analysis shows that the Meyers
model also produces a nonuniaxial state of strain. " The
strain tensor above is consistent with the isochoric nature
of dislocation movement. The volume change associated
with the postreaction dislocation configuration will be
evaluated in Sec. V.

SHOCK
FRONT

IV. MOLECULAR-DYNAMICS SIMULATIONS

—[101]+—[011]=—[112],
2 2 2

(15)

and is unfavorable on an energy basis, hence, the standoff
positions that are shown. Further behind the shock
front, the third circle contains a single reacted dislocation
in accordance with

Bandak, Tsai, and Armstrong have described, with
the method of Tsai, ' the evolution of a nanoscale dislo-
cation structure from the shock-induced compression of a
ten-atom vacancy cluster, as shown in Fig. 2. Primary
( 111) and related ( 100) Burgers vector dislocations
were produced within a several-layer, forcewise, mona-
tomic body-centered-cubic lattice. A stress-strain
description was given for the modeled shock compres-
sion. The same method is being applied to evaluation of
the stress interaction between sheared dislocations, as is
proposed to occur in either the AMS or Smith-Meyers
model descriptions.

Figure 4 is shown as an application of the description
given here to model results reported by Liu, Zhang, and
Yu. In this case, simulation of the shock compression of
a two-dimensional "triangular lattice" with atomic in-
teractions following a Lennard-Jones potential was inves-
tigated. The dislocation structure obtained by following
the present procedures is marked. The two circled dislo-
cation pairs closest to the shock front represent unreact-
ed pairs of the type corresponding to the AMS model. In
this latter case, though, the AMS reaction is

FIG. 4. Dislocation interpretation of Liu, Zhang, and Yu
(Ref. 5) shocked "triangular" lattice.

—[101]+—[011]=—[110],
2 2 2

(16)

V. DISLOCATION REACTIONS
AND VOLUME CHANGE

The idealized AMS dislocation arrangement was con-
trived to produce the dislocation reactions shown in Fig.
1(c). The interlocking nature of the proposed shear ele-
ments allows reactions to occur and produce the prismat-
ic edge dislocation dipoles. As was shown, the reactant
dislocations on 45' planes generate a three-dimensional
shape change during their displacement. Only if the di-
poles could be imagined to form directly by a Auctuating
"punch-type" action, which would produce alternating
shear stresses on planes containing the shock propagation

and this is consistent with the Smith-Meyers description.
This reaction is very favorable, of course, and should be
expected to occur in this orientation eventually for all
dislocations if suScient dislocation mobility exists behind
the shock front. The application points to the impor-
tance of crystal structure and lattice orientation on the
shocked dislocation structure.
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direction, would a fully one-dimensional state of strain
result for the dislocated state from start to finish. A
schematic of such a process is shown in Fig. 5. This may
produce prismatic loops directly with no need for the la-
teral dislocation motion required to produce reactions.
In any case, the residual strain field of the resulting
prismatic edge dislocation dipole arrangement produces
no volume change in the elastic strain field. This is
shown by considering the residual strain field for one di-
pole embedded in an infinite half space. Following
Head' s' potential theory results which give the stress
field of one dislocation at (x,y)=(a, O) in a semi-infinite
solid with a free surface at (O,y), the stress field and con-
sequently the strain field of a dipole were calculated. The
superposition of strains for the regular arrangement of di-
poles gives its full strain field and, therefore, the dipole
dilatation is

FIG. 5. Direct dipole formation by alternating "punch-type"
shear displacements.

5(x,y)=E z(zx, y)+6««(x, y)+Ezz(x~y) ~ (17}

5(x,y) = (1+v)(1 —2v)
E jo„„(x,y)+o««(x, y)] . (18)

For dipole dislocations at (x,y)=(a, h) and
(x,y) =(a, —h), with orientation giving Burgers vectors
perpendicular to the free surface, Eq. (18) becomes

where the strain in the z direction is zero due to the plane
strain condition. In terms of stress, the dilatation is

(1+v)(1 —2v)
5(x,y) = [o„„(x—a,y+h)+o««(x —a,y+h)+cr, (x —a,y —h)+o «(x —a,y —h)] . (19)

After substituting the expressions obtained for the stress components, Eq. (19) becomes

( 1 2v)b
( +h) 1 1

2~(1—v) [(x —a) +(y+h) ] [(x+a)~+(y+h) ]

4a 4ax (x +a)
[(x+o) +(y+h) ] [(x+a) +(y+h) ]

+(y —h)
1

[(x —a) +(y —h) ]

1

[(x+o) +(y —h) ]

4a 4ax (x +a)
[(x +a) +(y —h) ] [(x +a) +(y —h) ]

(20}

Representing this expression in polar form and integrat-
ing gives the volume change for one dipole

b, V= f f 5(r, 8)r dr d8, (21)—m/2 "p

where rp =xp+yp is the dislocation cutoff radius and R
is the dimension of the crystal. The integral vanishes to
verify that no volume change occurs. This result couples
with the earlier deformation strain result (from the dislo-
cation movement strain tensor shown above) to produce
no net volume change. Both results are consistent with
the continuum dislocation theory of plasticity.

I

surements may be compared with the often-used relation
between dislocation density p and Bow stress expressed in
terms of the resolved shear stress ~

r =ra+ aGb v'p (22)

where 'Tp is the friction stress for dislocation movement,
6 is the shear modulus, and a is a proportionality factor.
The dislocation density is proportional to the reciprocal
value of d . Kuhlmann-Wilsdorf' has given an updated
description of the relationship, including specification of
a as

VI. DISI.OCATION DENSITY
AND SHOCK STRENGTHENING

(2—v) da= ln
12m(1 —v) b

(23)

The models discussed, particularly those associated
with Meyers and AMS, enable an estimation to be made
of the dislocation density values occurring during the
shocking process. The high density of dislocations pro-
duced by shock loading is proposed to account for the
strengthening that has been measured afterwards in a
number of materials. '

On a reasonably direct basis, shock-strengthening mea-

Thus, a depends weakly on the cell size d except at small
d (i.e., as 1~b) where a~O. This is the region of in-
terest in the present case.

Figure 6 shows the variation of a and h~=~ —
7p with

cell size d. On this basis, the value of d/b corresponding
to a measured total uniaxial strain for nickel under 10
GPa plane shock compression, as considered by Meyers,
gives a value of a=0.240. Using this value in Eq. (22)
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FIG. 6. Kuhlmann-%'ilsdorf dislocation parameters for
shear-stress-dislocation-density relationship (Ref. 21).

along with the dislocation density reported by Meyers,
we 6nd that the predicted strengthening increment is ap-
proximately ten times larger than a related experimental
result reported by Follansbee and Gray. ' For the AMS
case we reevaluate the value of d/b using Eq. (14), which
gives the cell size as

d =4b&2/e2z, (24)

recalling here that @22 is the component of the dislocation
movement strain in the direction of compression. Fol-
lowing Meyers, the strain was calculated at maximum
compression volume [see Eq. (1)]. This leads to a 33%
lower strain value relative to the total transient strain, in-
cluding the rarefaction, that was calculated by Follansbee
and Gray. ' Taking the total transient strain into ac-
count in the present calculation would reduce the overes-
timate of strengthening and would bring the results closer
to experiment. Applying the present procedure to calcu-
late the dislocation density, the predicted strengthening
for the case reported by Follansbee and Gray for nickel,
and those reported for pure iron by Dieter, ' both under
10 GPa shock compression, is still four to five times times
greater than the measured values.

Another way to view the strengthening of the
postshock prismatic dislocation dipole nanostructure
(prescribed by the AMS model) is analogous to that of
dislocation loop structures in irradiated iron. In
both cases the prismatic 1oops act as obstacles impeding
the slip motion of relatively large (in terms of line length)
microscale dislocations. Their Burgers vector character
presents a reactant feature through which slip disloca-
tions annihilate those components of the dipoles carrying
an opposite Burgers sign and intersecting the slip path.
This effect, referred to as channeling, is proposed here to
be responsible for the observed lack of change in work
hardening occurring after the initial strengthening in-
crement in shocked iron and for the indication that the
shock strengthening is athermal.

Here, we consider on a more direct basis the shock
strengthening of iron where nearly the same experimental
results have been reported by the five different sources
cited earlier. ' ' ' We start by considering the
strengthening increment resulting from the stress field of

where o.
22 and o» are the dipole stress components eval-

uated at the position of the slip dislocation. Substitution
of these stresses gives the glide resistance force due to one
dipole

~ ( +h/2) Gb x 2(y+h/2)
[x +(y+h/2) ]

(y —h /2)
[x~+(y —h/2) ]

where h is equal to half the dipole separation d. A sum-
mation of the contributions of all the dipoles gives the
force on a dislocation moving through the AMS nano-
structure. The general case, where nanoscale dislocations
may occur and react to form a less uniform distribution
of dipoles, still retains the dislocation spacing and sign
distribution as the determining features for the resistance
to glide.

A 12-dislocation cell was found to be representative of

y'/h
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FIG. 7. Glide paths for force calculations on a dislocation
threading through the AMS nanostructure.

the nanostructure prior to any occurrence of channeling
reactions. This approach resembles that of the theory of
solution hardening. In this case, however, the obstacles
are line segments rather than point-source entities. The
total stress field of the reacted AMS nanostructure is used
to calculate the force acting on a glide dislocation thread-
ing through the structure along a particular path. Har-
dening caused by long-range elastic interaction of disloca-
tions is of interest because of the indicated athermal na-
ture of shock strengthening.

Take a dislocation to be moving parallel on a 45' plane
through a two-dimensional cell containing only a pair of
dipole dislocations located at the points (O, h/2) and

(0, —h/2) as shown in Fig. 7. The dipole dislocations
within the cell are assumed to be fixed. With the disloca-
tion line vector taken as g'= [100]for all dislocations and
b = [110]as the Burgers vector of the slip dislocation, the
added glide force becomes

F (x,y+h/2) =b[o22(x,y+h/2) —o»(x,y+h/2)],

(25)
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whereas the idealized three-dimensional AMS network
presents attractive as well as repulsive forces acting on
the dislocation line segments.
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