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Flux-periodic persistent current in mesoscopic superconducting rings close to T,
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We study the fluctuation-induced persistent current close to T, in effectively one-dimensional super-

conducting rings threaded by a magnetic flux p. Using a transfer-operator approach to the Ginzburg-
Landau theory we calculate the dependences of the persistent current on temperature, flux, and T,. In
agreement with a simple physical argument we 6nd that the temperature dependence of the current
amplitude is similar to that of the order-parameter fluctuations &iiiI2&. We discuss the observability of
a flux-periodic response below T, in view of the existence of metastable states and phase slips. Our
predictions apply to experiments on superconductors whose T, is larger than the correlation energy E,.

During the past few years there has been considerable
interest in mesoscopic superconducting structures. '

Several mesoscopic effects in nonsuperconducting systems
have direct analogs in superconductors, such as conduc-
tance fluctuations3 and conductance quantization. Re-
cently Ambegaokar and Eckern have extended their work
on the collective contribution to the mesoscopic per-
sistent current to superconducting materials ' above T,.

The flux response of superconducting rings has long
been studied in mean-field theory. We consider a mesos-
copic superconducting ring of circumference L, whose
transverse dimension L~ is smaller than both the super-
conducting coherence length g(T) and the magnetic
penetration depth A,. Such effectively one-dimensional su-

perconductors do not exhibit a sharp transition. However,
we denote by T, the (zero-flux) mean-field transition tem-
perature, which enters the Ginzburg-Landau (GL) func-
tional as a parameter. Furthermore, we assume that the
self-inductance of the ring may be neglected so that the
flux threading the ring is equal to the applied flux p 11/pn

(here pn hc/e denotes the normal metal flux -quantum). '

In particular there is no flux quantization. For such rings
fluxoid quantization predicts a mean-field current, which
vanishes for temperatures above the flux-dependent tran-
sition temperature T, (y). However, for sufficiently
small systems there is a sizable "precursor" current above
T, (y) induced by superconducting fluctuations. 's

In this paper we study this fluctuation-induced per-
sistent current in superconducting rings both below and
above but close to T, within the one-dimensional GL
theory. A GL description limits our results to samples,
whose' T, is larger than the correlation energy E,. ' Us-
ing the transfer operator method, we reduce the functional
integral for the GL partition function to a one-particle
quantum-mechanical problem, which may be solved by
straightforward numerical techniques. This method has
been applied previously to one-dimensional superconduc-
tors in the absence of flux. " We find that the magnetic
Aux enters the equivalent quantum Hamiltonian as an
imaginary magnetic field. %e also consider the problem
in the Gaussian, Hartree, ' and Hartree-Fock' approxi-
mations.

Physically one expects that the temperature dependence
of the fluctuation-induced current is similar to that of the
density of superconducting electrons (id' 2&, where

itf iexp(ig) is the complex order (or gap) parameter.
Indeed, we find that sufficiently far above T, the current
amplitude decreases exponentially with temperature,
while below T, it approaches smoothly the linear tempera-
ture dependence obtained from mean-field theory. In par-
ticular the current does not diverge at T, (y), in contrast
to an inference from a recent diagrammatic calculation. '

The scale for the exponential decrease above T, is given
by the correlation energy E,. ' This may be understood by
noting that the fluctuation contribution to the free energy
becomes flux sensitive, when the superconducting fluctua-
tions extend around the ring, i.e., when L (((T) or
equivalently T —T, &E,/8 tr

In analogy to the current amplitude we find that the
flux dependence of the current interpolates smoothly be-
tween a regime above T„where it is strongly dominated
by the first harmonic in (4m@), and a regime below T„
where it is linear with discontinuous jumps at i+i 0.25 as
obtained from mean-field theory. For T T, the flux
dependence does not become singular, in contrast to Ref.
l. Although the thermodynamic response that we obtain
from the free energy is flux periodic, experiments may not
show this at temperatures too far below T„where fluxoid
states become increasingly (meta)stable. We give an esti-
mate of the interval below T„ in which the thermal
phase-slip rate' ' is sufficiently large so that a thermo-
dynamic response may be observed and find that it can
be of order E, for typical parameters. Quantum phase
slips' ' persist to zero temperature but their rate is
significant only for systems with a very small cross-
sectional area.

There is an interesting connection between the fluc-
tuation-induced current considered in this paper and the
mesoscopic persistent current. ' The collective contribu-
tion to the mesoscopic persistent current is induced by
electron-electron interactions and for attractive electron
coupling it may also be thought of as arising from Cooper
pair correlations above T,. However, inelastic scattering
suppresses the mesoscopic persistent current exponential-
ly, while it aA'ects the fluctuation-induced current only
weakly through a downward shift' of T,. The amplitude
of the fluctuation-induced current is of order" T,/pn for
typical mesoscopic parameters, compared to the mesos-
copic persistent current with typical amplitude ' ' E,/po,
this should simplify experimental observation greatly.
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The results of this paper are relevant to the disorder-
averaged response in a single-ring experiment. Multiring
experiments involve the additional complication of a
sample-specific T,.

Calculation. We consider a disordered, superconduct-
ing ring of circumference L, transverse size L&, and
M =kFL ~/4x channels. A convenient disorder parameter
containing the elastic mean free path l,~ is the effective
number of channels M,((=MI,)/L, which is proportional
to the dimensionless conductance in the normal state.
The correlation energy E, x hD/L (here D =UF1,)/3 is
the diffusion constant) can be expressed in terms of the
effective number of channels as' E, (x: M,(rh~, where A~
denotes the average level spacing at the Fermi energy.
The superconducting coherence length g(T) is given by

)r AD/(8[ T T,
~
).—In the presence of a magnetic flux

the GL functional in reduced variables
r

pA/2 4@iE[e'(x)] -EpT dx' V p %"(x)
A

+@le(x)l'+ l lv(x&l')

(1)
contains the two parameters A and EpT, . Here % denotes
the order parameter in reduced units and g takes on the
values + 1 ( —1) for temperatures above (below) the
zero-Aux mean-field transition temperature T,. The Aux
dependence of E[%'] is controlled by the reduced cir-
cumference of the ring A L/g = (8)r[ T —T, (/E, ) 'i . In
terms of standard parameters of superconductivity, EDT,
is proportional to the condensation energy of a ring sec-
tion of length (, EpT, cx: (H, /8x)L~(, where H, denotes

the critical magnetic field. Using the mesoscopic parame-
ters introduced above, we may also write

(2)r) sl2
I T Tc I Ee

21((3) E, T,

Here (,"(z) denotes the Riemann zeta function. To exhibit
the geometry and disorder dependence explicitly, we do
not introduce a special symbol for the "reduced" transi-
tion temperature (T,/E, )(1/M, (r). The current is ob-
tained from the free energy by differentiation, '

(I)- Inz(v )
Tc 8

8((

T
ln [d% (x)][d%' (x)]exp j E[% (x—)]/T, j .

(I)p 8y J
(3)

We assumed that for T near T, the important tempera-
ture dependence is contained in E[%']. By using the
transfer operator technique" and interpreting the spatial
variable x as an imaginary time variable t, the one-
dimensional GL theory can be transformed into a
quantum-mechanical eigenvalue problem. The quantum
Hamiltonian can be conveniently obtained by the follow-
ing correspondences. We interpret the order parameter as
a spatial coordinate, [Re@'(x),lm%'(x)] r(z), define a
vector potential A (4+i/A)v)[r2, —r(], where r; denotes
the components of r (we shall also employ the notation
8; 8/8r;), and use 2Ep I/O. Then the functional in-
tegral for Z(p) is equivalent to that for the partition func-
tion of a (quantum) particle in the presence of an anhar-
monic (scalar) potential V(r) = —,

' [rl+ (4)r/A) p ]r
+ —,

' r and the vector potential A,

(' h/2 1 drZ(o) =J [dr(r)]exp —— dzh~-&2 2 dt
—i A(r)+ V(r)dr

dt
(4)

The free energy may now be written as Z(p)
g„exp( —2EpAC„) in terms of the eigenvalues g„of

the corresponding Hamiltonian H= —,
' (i AV+A) + V(r).

Explicitly the eigenvalue equation is

1 ~2 1 4x
v (r28) r)82)

8E 2EO A

I

lar momentum l plays the role of the harmonic index in
the Fourier expansion of the partition function,

Z(p) = g Z) exp( i4)rid)—
I ~ —oo

exp( i4xly) g ex—p( 2EpARe@„,) ) .—(6)
I ~ —oo n

+—rir2+ —r4 (()„(r)=c„y„(r). (5)1 2 1 4

It is an important feature of the Hamiltonian that the vec-
tor potential A is imaginary and consequently H is non-
Hermitian. The anti-Hermitian flux-dependent term is
proportional to the angular momentum operator and thus
commutes with the remaining part of the Hamiltonian be-
cause of rotational invariance. Therefore it is convenient
to choose (I)„(r) as a simultaneous eigenfunction of the
angular momentum operator, —i(r)82 —r28()p„((r)
=l(()„((r). This choice splits off explicitly the imaginary
part of the eigenvalues, Im@„(= (I/2Ep)(4x/A)lp, which
secures the flux periodicity of the free energy. The angu-

The real part of 8„I is flux independent and satisfies the
eigenvalue equation of a two-dimensional quartic oscilla-
tor.

Before discussing the full problem, it is instructive to
consider the Gaussian (GA), Hartree' (HA), and
Hartree-Fock ' (HFA) approximations. The quartic
term in the GL functional is replaced by

((@)2)(@(2 h (GA)
O

(HA) 2, d y(HFA)

=4. For the case considered in this paper (T, )E,)the. .

GA gives the same results as a recent diagrammatic calcu-
lation. ' Both HA and HFA provide insight into the limi-
tations of the Gaussian result. The self-consistency condi-
tion for &~+~ ) is conveniently written in terms of the pa-
rameter y =(A/2)r) (g+)((y( )/2),
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phase-slip rate is diIIicult to estimate since the standard
expression' ' for the thermal phase-slip rate I is valid
only for +=0 and L»g(T). Although these conditions
are hardly satisfied here we use the expression' '

i/2

I = — exp] —4J2Eo/3f
4J2Eo

3

with r, ' =S(T,—T)/rrh, to obtain a rough estimate of
the phase-slip rate below T, (vI=0.25). The prefactor in

Eq. (9) is typically of the order 10to-10" s '. For
(T,/E, )(1/M, ff) 1.0 the exponent is 7t(T, —T)/E, j 3/2,

yielding a significant phase-slip rate for temperatures
within a few E, below T,. This interval shrinks as
(T,/E, ) (I/M, ff) decreases F.or (T,/E, ) (I/M, ff) =0.1

the exponent equals 70[(T,—T)/E, ]3/, so that the tem-
perature range over which phase slips are relevant below
T, becomes a fraction of E,.

The temperature dependence of the current is shown in
Fig. 1 for (T,/E, )(1/M, ff) 1.0. The qualitative features
are independent of this particular choice. As expected
from the physical argument given above, the current ex-
hibits a behavior qualitatively similar to that of the
order-parameter fluctuations (~h~z) (whose temperature
dependence is exhibited in Refs. 9 and 11). The curve for
the exact current interpolates smoothly between that for
the Gaussian current far above T, (see inset in Fig. 1) and
the mean-field current below T, . The exact current ap-
proaches the mean-field current from below in analogy
with the corresponding curves "for (~tIt( ). Hartree and
Hartree-Fock currents are also shown. Whereas the Har-
tree result shows qualitatively the same behavior as the
exact result over the full temperature range, the Hartree-
Fock result provides a much better approximation in the
"critical regime. "

One of the striking results of the Gaussian approxima-
tion was that all harmonics contribute equally at T„ thus
leading to a flux dependence (I)ee(T,/po)cot2nvI. ' By
contrast, the exact solution for (T,/E, )(l/M, ff) =1.0

T Tc
y yx Ec

2lg(3)
8x E, M,g

4

sinh 2'
cosh 2' —cos4xp

This shows that above T, the quartic term in (1), which
was neglected in previous work, ' becomes increasingly im-
portant with increasing (T,/E, )(l/M, ff). With these
approximations the eigenvalue problem reduces to that of
a two-dimensional harmonic oscillator, and from Eqs. (6)
and (3) one then obtains for the current

(7)

(9)
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FIG. l. Temperature dependence of the persistent current in

units of T /pp, for (T,/E, )(l/M, )=Ir1.0 and VI =0.125, based on
the exact numerical result (solid curve), Hartree (long-
dash-short-dashed curve), and Hartree-Fock (dashed curve)
approximations. The inset shows a blowup for T & T, including
the Gaussian approximation (short-dashed curve) for the
current.
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In the Gaussian approximation (y 0) one recovers the
results of Ref. 1 for the case T, & E,. In particular one
finds y 0 for T T„ i.e., all harmonics have the same
amplitude in this limit, cf. Eq. (S). Below the zero-flux T,
the solution for y becomes imaginary and the (Gaussian)
current diverges at the flux-dependent transition tempera-
ture T, (p) T, —2nE, wz (as obtained from y =2ip with

y 0). These conclusions do not carry over to the HA
and HFA approximations, where the new parameter
(T,/E, )(1/M, N) enters and y contains an additional
term. Both temperature and flux dependences remain
nonsingular in qualitative agreement with the exact nu-
merical result.

Since only the first few eigenvalues Re@„,t contribute
significantly to the partition function (6), we truncate the
Hamiltonian (5) in the harmonic oscillator basis provided
by the HFA. The truncated Hamiltonian is diagonalized
numerically.

Results Here w.e show results for the two representa-
tive values (T,/E, )(1/M, ff) 1.0 and 0.1. The first value
could be realized by choosing a system with, e.g. E, =50
mK, M,ff 100, and T, 5 K. The values for E, and M, ff

are close to those of the copper rings employed in the first
successful experiment on persistent currents in normal
metals by Levy etal. The value (T,/E, )(1/M, ff) =0.1

could be realized by using a "low-T, "material with, e.g. ,
Tc 0.5 K.

As a first step towards estimating the regime below T„
in which one might expect a periodic flux response, one
needs to know the temperature range in which fluxoid
states are metastable in the sense that they minimize the
GL functional. The pertinent calculation has been per-
formed in Ref. 14. We deduce that there exist no meta-
stable states for T) T,(p=0.25) =T, rrE, /S; this im-—
plies that a periodic flux response should be obtained in
this regime. For p=0.25, the n =0 and n =1 fluxoid
states (here AZ=2rrn is the total phase shift of the order
parameter around the ring) are degenerate and a free-
energy barrier exists between the two states when T
& T, (vI 0.25). The height of the barrier increases with
decreasing temperature. The phase-slip rate across this
barrier is the relevant relaxation rate in the temperature
range T, —5rrE, /4& T & T,(y=0.25), in which there is
at most one metastable fluxoid state. Unfortunately this
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FIG. 3. Persistent current in units of M,sE„/Po vs the scaled
transition temperature (T,/E, )(l/M, s), for p =0.125 and
T=T„. The maximum shifts towards higher (lower) values of
(T,/E, )(l/M, tr) with increasing (decreasing) temperature T
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FIG. 2. Flux dependence of the persistent current in units of
T„/&, for (a) (T&/E„) (I/Mes) =1.0 and temperatures
(T —T, )/E, = —0.5 and (T T„)/E„=——1.5, and (b) for
(T,/E, )(I/M, s) O. I and (T —T, )/E, = —0.25, based on the
exact solution.

shown in Fig. 2(a) exhibits a quite different behavior.
The flux dependence of the current crosses over from be-
havior for T & T„ that is strongly dominated by the first
harmonic, to mean-field behavior for T« T„that is linear
when (p( (0.25 (i.e., the harmonics decrease as 1/l). The
flux dependence remains dominated by the first harmonic
down to about (T —T, )/E, —0.5. For lower tempera-
tures the maximum of the current-flux characteristic
continuously shifts towards larger (o(. For (T,/E, )
x(I/Mgff) 0.1, on the other hand, one finds an inter-
mediate regime close to T, shown in Fig. 2(b), where the

flux dependence is somewhat reminiscent of that in the
Gaussian approximation at T,. This reflects that the
Gaussian approximation becomes better for decreasing
(T,/E, )(1/M, ff).

The amplitudes of most superconducting fluctuation
phenomena increase as a function of the sample T,. By
contrast, the T, dependence of the fluctuation-induced
current exhibits a maximum. This can be seen from the
current expression (8) in HA and HFA, which contains
T, not only in the prefactor, but also implicitly in the ex-
ponent through y. The exact T, dependence is shown in
Fig. 3 for T T,. For this temperature the maximum
occurs at (T,/E, )(1/M, ff) =1.0. With increasing (de-
creasing) temperature T the position of the maximum
moves towards larger (smaller) values of (T /E, )
x (1/M, ff). For the values of (T,/E, )(1/M, ff) considered
here, the exponential correction at T T, is small and the
current amplitude is of order T,/po.
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