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An isolated ferromagnetic bond of coupling constants E, and E y replacing an antiferromagnetic link
in the spin-2 anisotropic Heisenberg antiferromagnet of coupling constants J J y on a square lattice is

investigated within the linearized spin-wave approximation. Two competing interactions affect the local
ordered magnetic moment (S ) and the correlation (S;"SJ"):The longitudinal terms J, tend to enhance
the sublattice magnetization, while the transverse terms J„y represent the quantum fluctuations that
suppress the long-range order. We analyze the interplay between these two effects as a function of K,
and K„y at the impurity link. The linearized spin-wave approximation breaks down for suSciently large

E, and K„y as a consequence of the frustration of the two plaquettes adjacent to the ferromagnetic bond.

I. INTRODUCTION

The discovery of numerous high-temperature super-
conductors has revived the interest in the two-
dimensional Heisenberg antiferromagnet. Several rnecha-
nisms for high-T, superconductivity invoke the strong
antiferrornagnetic correlations within the Cu0 planes.
Properties of the high-T, compounds are believed to be
related to defects in the planes, e.g., static vacancies, '
mobile holes, ' and ferromagnetic bonds.

The addition of holes in La2Cu04, e.g., by doping with
Sr, introduces a local effective ferromagnetic exchange
coupling between the Cu spins. The resulting frustration
affects the antiferromagnetic correlations in the neighbor-
hood of the ferromagnetic link. In Ref. 8 it is argued that
these ferromagnetic defects are the origin of the spin-
glass and superconducting phases of Laz Sr„Cu04.

In a previous paper we studied the effects of an isolat-
ed isotropic (K, =K„s=K) ferromagnetic link on an oth-
erwise antiferromagnetic square lattice with isotropic
Heisenberg nearest-neighbor coupling (J,=J„). We as-
sumed that the simple linearized spin-wave theory pro-
vides a reasonable description of the antiferromagnet at
T=0. The ground state has a broken symmetry (Neel
state) and quantum fluctuations reduce the sublattice
magnetization to an ordered moment of about 0.3. This
is in reasonable agreement with the available numerical
results for the square lattice. ' Since the scattering po-
tential arising from the impurity link is factorizable, the
problem of one isolated ferromagnetic bond embedded in
an antiferromagnetic lattice can be solved exactly within
the linearized spin-wave approximation (LSWA).

The main results of Ref. 5 are the following. There are
two competing interactions affecting the sublattice mag-
netization: The longitudinal terms, involving S„tend to
enhance the ordered staggered magnetic moment, while
the transverse terms, involving S and S, represent the
quantum fluctuations that suppress the sublattice magne-
tization. For small E, the quantum fluctuations are re-
duced in the neighborhood of the impurity link and the
local magnetic moment is enhanced. This process is re-

versed with increasing E, i.e., the staggered magnetiza-
tion is gradually suppressed close to the impurity link
and the two spins joined by the ferromagnetic bond tend
to form a triplet state. This ultimately leads to the break-
down of the LSWA.

In this paper we extend our investigation of the inter-
play of the longitudinal and transversal terms in the
Hamiltonian by studying an anisotropic ferromagnetic
link (E,WE„~ ) embedded in an antiferromagnetic Ising-
Heisenberg square lattice (J, )J„). We discuss the or-
dered magnetic moment at the impurity bond, as well as
the (S;"S")correlation across the link, which again can
be obtained exactly within the LSWA. Although the ex-
citation spectrum of the lattice now has a gap for
J, & J„~, the LSWA still breaks down for sufficiently large

The rest of the paper is organized as follows. In Sec.
II, we introduce the model and obtain its exact solution
within the LSWA. Our results and concluding remarks
are presented in Sec. III.

II. MODEL AND CALCULATION

We consider the two-dimensional spin- —, antiferromag-
net on a square lattice with nearest-neighbor coupling
only. The link joining the sites 0 and 1 is replaced by a
ferromagnetic one of strength E, and E„. The Hamil-
tonian then has the following form:

H= ,' g [J,S S'+J„—(S;"SJ"+SfSY)]——,'(J, +E, )S(Sf

—
—,'(J s+K„)(SoSf +SsoSst ),

with J,)J„)0. Here (ij ) denotes a single term for
each nearest-neighbor pair.

Within the spin-wave theory, the lattice is divided into
two interpenetrating sublattices denoted by a and b, re-
spectively, and the spin operators are replaced by two
sets of boson operators (a;,a,. and b , b )by means of the. .

Holstein-Primakoff transformation. ll 2 Suppressing all
terms higher than bilinear in boson operators (LSWA),
we have
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8= —
—,'XJ, +g[J yq(aqbq+aqbq)+J, (aqaq+bqbq)]

k
—ik d y y 1 y

—i(k„—k')d+ —,'(J, +K, ) — (J„+K„)y(e "
aj, bg. +e " agbg ) — (J,+K, )y( agag+e '

bgbj, .),
4N 4N

(2)

where d is the lattice constant, the impurity link is oriented along the x direction, and

yz= —,'[cos(k„d)+cos(k d)] .

We now follow the same procedure as in Ref. 5 (see also Refs. 1 and 2) and introduce the standard one-particle
Green's function in matrix form

'«ag, a, )&,
(4)

Since the Hamiltonian is bilinear in boson operators and the scattering potential is factorizable, the exact Green s func-
tion is obtained by applying the standard equation of motion method

Cq q (z)=0~(z)5~ ~.—J, +K,
G„(z)

1 0
—ik„d

0 e

1 0
,„,„ t"'„,(z)—

0 e

1 1 0

0 e
k(z)

e " 0

where G&(z) is the Green's function for the lattice in the
absence of impurity links

g~Q( )
z x» x z

(6)
2 J2+J2 y2

and

AI B&~ Co D&z
(7)

A2 B2 C2 D2

Here I and &; denote the identity and Pauli matrices, and

J, (J, +K, ) —J„»(J„»+K„» )y f,
A =1+

J,(J„+K„) J„(J, +K, )—yg

iz(J„+K—„») J„»+K„»

In the absence of impurity link, the sublattice magneti-
zation and the transversal correlation are given by

&S:,) =-,' —(,', )
' 1/2

K(x2+1 —ri ),
(9)

(SxSx ) —1 (atbt)

I" dx+vP —x'K(x'+1 —q') .
V'q' —i

Here g=J, /J„and K(x) is the complete elliptical in-

tegral of the first kind. Expressions (9) follow from the
unperturbed Green's function C„(z). The changes of the
local ordered magnetic moment and the transverse corre-
lation as a consequence of the impurity link, 5(S;,. ) and

5(S,";Ssj.), are obtained from the second and third terms
of the Green's function, Eq. (5). The momentum integra-
tions can be expressed in terms of modified Bessel func-
tions of integer order I„, which appear in pairs {two-
dimensional integral) in integrals of the form

I„(y)=I dtI„ I exp[ tV 1+y—], (10)
0 2'g 2'g

where y= izlJ, —is an imaginary frequency. For the
sites joined by the ferromagnetic link, we obtain

—(J, +K, )Xi+(J„+K„»)X2
5(S; &= dy

64m J, 0 (1+y )(A Bz C —D)— —
(1 la)

5(Sxgx )
1

128m J,
—(J,+K, )X3+(J„+K„»)X4

(1+y )(A —8 —C D)—
(1 lb)

where

X, =16J,[A(1—y )+2iyD][Io(y)]

+J„A [I'(y ) ] +88J,J„„IO(y)I'(y ),
Xz = 16Jz[8(1—y )+2yC][IO(y)]

+J 8[I (y)] +8AJ,J„ IO(y)I*(y),
(12)

X, = 16J,~B ( 1+y )[I0 (y ) ] +J„B[I'(y ) ]

+8J,J„(A + iD)IO(y)I'(y),

X4 =16J,'A (1+y')[Io(y) ]'+J„'» A [I*(y)]'

+8J,J„»(8+C)Io(y)I'(y) .

Here I*(y)=ID(y)+I2(y)+2II(y) and the functions A,
8, C, and D, Eqs. (8), take the form

J,+E,
A =1— (1+y') ' 'Io(y)

4J,

J„„+K
[1—(1+y )'» Io(y)],

Xg
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J„+E"(1+ ') ''J( )
4J,

J,+E,
4Jzy

I:1—(1+y')'"J~o(y) 1,

4J, J,+E,

(13)

3.5

3.0

2.5

2.0
U

FV

The t and y integrations are now performed numerically.
The results for 5(S;o) and 5(S,"oSb, ) are Presented in
Sec. III.

III. RESULTS AND DISCUSSION

From symmetry considerations the magnetic moments
at the two sites joined by the ferromagnetic link have
equal magnitude and opposite sign. It is then sufficient to
discuss only one of these sites. If E,+J,=0 and

Ezy +Jzy 0, the impurity link has the same antiferro-
magnetic coupling strength as all other bonds, so that it
is actually not an impurity. The sublattice magnetization
in this case decreases monotonically as a function of
J„~/J, from 0.5 (Ising limit J„~=0) to 0.3034 for the iso-
tropic antiferromagnet (J„=J, ). The transversal corre-
lation between nearest neighbors is zero in the Ising limit
(no quantum fluctuations) and its antiferromagnetic char-
acter grows monotonically with J y and reaches —0. 1378
for the isotropic antiferromagnet. The J, and Jzy terms
of the lattice Hamiltonian give rise to competing effects:
the longitudinal terms yield the ordered magnetic mo-
ment, i.e., the Neel state, while the transversal terms
represent the quantum-mechanical fluctuations which
tend to suppress the long-range order.

The situation E,=Ez =0 corresponds to a missing
link. Our numerical results show that the absence of the
bond slightly increases the local magnetic moment at the
sites labeled 0 and 1 for all values of the anisotropy g & 0.
As expected, the transverse correlation across the missing
link is antiferromagnetic but strongly reduced with
respect to an unperturbed antiferromagnetic bond. The
value of (S,"oSb, ) is zero in the Ising limit and its magni-
tude slowly increases with J„ to —0.05 for the isotropic
case.

With increasing E, and Ez, the basis of the LSWA,
namely, the Neel state, breaks down locally. In Ref. 5 we
found this breakdown of the approximation scheme for
the isotropic case at Ezy=E, =Jzy J Similarly, for
the Ising limit the breakdown can be visualized as the
frustration of the two plaquettes adjacent to the impurity
link, so that the Neel state is locally not the state with
lowest energy. The spins at sites 0 and 1 tend to form a
triplet with zero spin projection in the z direction, and
the antiferromagnetic bonds of the plaquettes can no
longer all be satisfied. Mathematically the breakdown is
caused by zeros in the denominator of the integrals (1 la)
and (1 lb). The function (t)(y) = 3 —B —C D is-
monotonically increasing with y for all values of the cou-
pling parameters, so that the integrals are finite as long as
P(y =0)&0. The boundary for the instability is then
given by P(y =0)=0 and is shown in Fig. 1 as a function
of the anisotropy of the lattice J„„/J,=g '. The curves

1.0

5 I I I I I I I I I I I I I I ! I I . I ! I I I I0.
0.0 0.2 0.4 0.6 0.8 1.0

Jxy ~ Jz
FIG. 1. Boundaries for the breakdown of the LSWA as given

by the condition P(y =0)=0 as a function of g
' and various

ratios a. At these boundaries both (S;0) and (S,"0Sb, ) diverge,
so that the approximation actually becomes inaccurate before
reaching the curves from below. The inset corresponds to the
boundary if g=1. The behavior for a ) 1.54 is anomalous as a
consequence of the vanishing gap in the excitation spectrum for
g=1.
represent anisotropy ratios of the impurity link propor-
tional to those of the lattice

E, /K, ~ =ar) =aJ, /J„„. (14)

In the Ising limit the boundary is at E,=3J„while for
finite values of g ( & 1) the boundary is an increasing
function of a. For all g) 1, the excitation spectrum for
the pure lattice has a gap. This gap vanishes for g=1
and, as a consequence, the value of E, at the instability
for g = 1 does not necessarily agree with its limit as g —+1.
These two values are different for a ) 1.54 as shown in
the inset of Fig. 1. At a =1.54 there is a crossing of two
curves satisfying P(y=0)=0, which only happens if
g=1. For a =g= 1 we recover the instability discussed
in Ref. 5.

Our results for the local magnetization and the
transversal spin-spin correlation function' are summa-
rized in Figs. 2 and 3 as a function of K, /J, for fixed g
and a. Both (S;o ) and (S,"So&b) diverge at the instabili-
ty line, but the approximation is, of course, already in-
valid somewhat before. This is indicated by the dashed
lines in the figures. Although for small Ez and E, the
local ordered moment is slightly enhanced over the corre-
sponding sublattice magnetization for the pure lattice,
this trend is reversed by increasing the ferromagnetic
couplings. This is the consequence of increased quantum
fluctuations and the trend of the spins at sites 0 and 1 to
form an S,=O triplet state. The quantum fluctuations
decrease with increasing a and, hence, (S;o ) increases
while (S,oS'b, ) decreases (the spins are less ferromagneti-
cally aligned in the xy plane). Note the deviations from
this trend for g=1 and a & 1.54 [Figs. 2(d) and 3(d)],
since the limit g~1 is not equal to the corresponding
values at g = 1, as a consequence of the vanishing gap in
the excitation spectrum.

In summary, we studied the behavior of a ferromagnet-
ic link embedded in a two-dimensional antiferromagnet
on a square lattice within the LSWA. Two competing in-
teractions affect the ordered magnetic moment and the
transversal correlations locally, namely, the z component
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FIG. 2. Magnetic moment for a site at the impurity link

(S;p ) as a function of E, /J, for various a ratios [see Eq. (14)]
and (a) g =4, (b) g =2, (c) g = 3, and (d) g = 1. The correspond-

ing sublattice magnetizations for the pure lattice are (a)
(S,*;)=0.4960, (b) 0.4824, (c) 0.4520, and (d) 0.3034. The
dashed lines indicate the region where the approximation is not
believed to be accurate.
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FIG. 3. Transversal correlation across the impurity link

(S pSbI ) as a function of K, /J, for various a ratios [see Eq.
(14)] and (a) r)=4, (b) 1)=2, (c) 1)=—,, and (d) r1=1. The corre-

sponding correlations for the pure lattice are (a)

(S,";Sb, ) = —0.0159, (b) —0.0338, (c) —0.0578, and (d)
—0.1378. The dashed lines indicate the region where the ap-
proximation is not believed to be accurate.

of the interaction (Ising terms) and the transversal terms
(fluctuations). For sufficiently large ferromagnetic cou-
plings the LSWA breaks down as a consequence of the
frustration of the two plaquettes adjacent to the impurity
link. With increasing a, the transversal interaction is re-
duced giving rise to an increased ordered moment and a
reduced transversal correlation across the link. Only if

the coupling constants of the impurity link are very weak
is there an enhancement of the local order with respect to
the pure lattice and a strongly reduced transversal corre-
lation.
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