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Analysis of cubic zero-field splitting of Fe + and Mn + in tetrahedral coordination
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The S-state splitting for high-spin ions Fe'+ and Mn'+ in tetrahedral coordination has not been satis-

factorily interpreted to date. In this paper, a significant coupling mechanism between the S state and
the F state has been found. It is shown that a large ground-state splitting for Fe'+ and Mn in

tetrahedral complexes is due to a strong covalency effect.

A theoretical explanation of the d S state splitting in
a cubic crystalline field as a very important criterion to
check the ligand-field theory has been proposed by Low
and Rosengarten. ' Recent works " show that, for
Fe + and Mn + in octrahedral coordination, the
ground-state splitting can be satisfactorily interpreted by
simple crystal-field theory. However, for a d '-
configuration ion in tetrahedral coordination, the calcu-
lated values are much smaller than those obtained from
experimental data. In this paper, another coupling
mechanism between the S state and the F state is re-
ported. We have found that the large cubic zero-field
splitting of Fe + and Mn + in a tetrahedral ligand field is
due to a strong covalency effect.

The spin Hamiltonian for the S-state ion in a cubic
ligand field can be written as

H, =— IO~+20&204I .

The parameter a is associated with a fourth-order spin
operator and represents a cubic component of the crystal-
line electric field. The cubic zero-field splitting for a d-
configuration ion in the ligand field can be expressed

1 —12

3a =E(I s) —E(I 7) .

In previous works, ' ' a strong correlation between the
EPR parameter a and the crystal-field strength Dq and
the spin-orbit coupling parameter g has been reported.
In the following we discuss a major contribution due to
the covalency effect.

The covalency effect for Fe + and Mn + in tetrahedral
complexes has been extensively investigated by many
workers. ' ' Deaton, Gebhard, and Solomon'
remarked that, for a Fe + ion in (PPh~)(FeC14), the
ligand-field independent states E( G) and E( D), whose
energies depend only upon electron repulsion terms, are
found to occur at only 56% and 58%%uo of the energies of
the free-ion G term (32 290 cm ') and D term (38 880
cm '), respectively. (Here "Ph" is an abbreviation for
the phenyl group. ) The calculation of Curie, Barthon,
and Canny' shows that the covalency effect especially
for ~ bonding in a tetrahedral field is much stronger than
that of an octahedral field. For example, the normaliza-

(N;) =1—2A,,S, —2A, S +A,, +A,

(N') =1—2A,Q +A,

y, and go, are the metal d atomic orbitals, S„S,and S
are the usual overlap integrals, k„A, , and A, are
molecular-orbital coefficients, g, g„, and g, are the
ligand p and s atomic orbitals. Those ligand orbitals
would give a contribution to the spin-orbit coupling in-
teraction.

The spin-orbit coupling Hamiltonian for a single elec-
tron in a polycentric system is given by Misetich and
Buch as

H, , =(0(r)l s+ gjk(rk)lk sk .
k

(4)

go(r) and gk(rk) are spin-orbit coupling coefficients for
the free metal ion and the free ligand ion, respectively.
Sugano, Tanabe, and Kamimura' indicated that, for a d
orbital in a ligand field, there are two spin-orbit coupling
parameters g and g', defined as

(t~i[v(1T, )ice ) = —3&2ig',

where
~ t2 ) and

~
e ) are wave functions of the t2 state and

the e state, respectively. The explicit expression for g and
g' can be written as

g= (N; ) (gd + —,'A, g„p),

g'=(N;N;)((d —,'kn cr(Lp),

tion parameter for (MnC14) (N, =0.901) is much
smaller than that of (MnC1~) (N, =0.987). The co-
valency effect is associated with the metal d atomic orbit-
als and the p and s ligand orbitals.

According to molecular-orbital (MO) theory the anti-
bonding d orbitals 4, and 4, for a transition-metal ion in
a complex can be written as'

4, =(p, —k,g, —
A, g )/¹,

4, =(p, ky„)/N—;,
where
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TABLE I. Cubic zero-field splitting for Fe'+ in a tetrahedral
field as a function of g2, all in units of cm '. 8 ="~"., C =2728,
Dq = —655 for (FeC14)
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FIG. 1. Cubic zero-field splitting for Fe'+ in a tetrahedral
field as a function of g2 (8 =444, C =2728, Dq= —655, and

$, =380cm ').

where gz is the spin-orbit coupling constant for a d elec-
tron in a free transition-metal ion, and (Lp is the spin-
orbit coupling constant for a p electron in a free ligand
ion. In general the two parameters g and g' are different.
This result is very useful for an understanding of the
large S-state splitting for Fe + and Mn + in a
tetrahedral field.

By utilizing Eq. (5) and basis functions IJ,MJ ), we
have calculated the spin-orbit coupling matrix elements
for a d configuration. A significant coupling mechanism
between the S state and the I' state has been found,
which is

&'s, —,', *-,'IIH, .II"F,—,', *—,
' ) =

In this work the values g„(,=380 cm ' for Fe + and

gt =310 crn ' for Mn + in tetrahedral fields, are estimat-
ed in a reliable range following previous works. ' Tak-
ing the same values of the Racah parameters 8, C, and
the ligand-field strength Dq as those of Deaton, Gebhard,
and Solomon' (B=444 cm ', C =2728 cm

TABLE II. Cubic zero-field splitting for Mn + in a
tetrahedral field as a function of gz, all in units of cm
B =630, C =3040, Dq = —600 for ZnS:Mn2+.

10 [E,(I,)—E (I,)] 104[E (I ) E(I )]—

Obviously, this interaction, which vanishes for a pure d
orbital (g=g'), is due to the covalency effect. In order to
minimize the number of parameters, we take
g, =((+g')/2 and (2= (g —g') /2 and rewrite g and g' as

E{r )

E(r)

E (r )

E(r )

165

-' 45
CO

C5

—25

Dq = —655 cm ') for Fe + in (PPh&)(FeC14), and Kushi-
da, Tanaka, and Oka ' (8 =630 cm ', C =3040 cm
Dq = —600 cm ') for ZnS:Mn +, we obtain the ground-
state splittings as a function of parameter gz by diagonal-
izing the complete matrix for the ligand field and spin-
orbit coupling. The results for Fe + and Mn + are listed
in Tables I and II respectively. We find three significant
results: (1) The covalency effect splits the fourfold state
E(I s.cosal+ —,

' ) +sinai + —,
' ); I+—,

' ) ) into two Kramers
states E,(l s)=E(I s:cosal+ —,

' )+sinai+ —,
' ) ) and

E2(I s)=E(I's. lk —,
' ) ). (2) The covalency effect can bring

the E2(l s) state close to the twofold state
Eo(I 7)=E(I 7sinal k —', ) —cosa I + —,

' ) ), thus constituting
a quartet state, which is at lower energy than that of Kra-
mers doublet state E&(I s). (3) The covalency effect gives
rise to a great contribution to zero-field splitting and a
linear relationship exists between E,(I s) —Eo(I 7) and
the parameter (2 (for (2 & 16 cm '). As shown in Figs. 1

and 2 we have

10 [E (I ) —E (1 )]=18/ +51.6 cm

for (FeC14)
(9)

10 [E,(I s) —Eo(I'7)]=7.3/2+8. 1 cm

for ZnS:Mn2+

Obviously, when the parameter $2 is equal to zero the cal-
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FIG. 2. Cubic zero-field splitting for Mn + in a tetrahedral
field as a function of g2 (8 =630, C =3040, Dq= —600, and
/&=310 cm ').
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TABLE III. Comparison between calculated and experimental values of cubic zero-field splitting for
Fe + and Mn + in a tetrahedral complex, all in units of cm

Complex
Expt.

10 (3a)
Calc.

10 [E,(1 ) E—(I )] 10 [E (I ) E—(I )]

(PPh4)(FeC14)
YGaG.Fe +

ZnS:Mn~+

Cs3ZnC1 Mn +

'See Ref. 13.
bSee Ref. 23.
'See Ref. 25.
"See Ref. 22.

255'
186b

23.7'

248.9
176.4
22.2
31.6

50.3
33.0
2.9

—20.3

11
11
2

12

culated values of splitting, 51.6 X 10 cm, ' for
(FeC14) and 8. 1 X 10 cm ' for ZnS:Mn +, are much
smaller than those of the experimental data (3a),
255 X 10 cm ' for (FeC1~) and 23.7 X 10 cm
for ZnS:Mn +. A reasonable fit between
10 [E&(I 8) —Eo(I 7) j and 10 (3a) for (PPh4)(FeC14), and
ZnS:Mn + can be found by (2 equal to 11 cm ' and 2
cm, respectively. Similarly, from the EPR and optical
experimental data of Fe + in YGaG [B =744 cm
C =2560 cm ', Dq = —654 cm ', and 10 (3a) =186
cm 'j (Refs. 10 and 23) and Mn + in Cs3ZnCls (B =558
cm ', C =3524 cm ', Dq = —360 cm ', and
10 (3a)=32. 1 cm ' (Refs. 24 and 25), we obtain the pa-
rameter g2 equal to 11 cm ' and 12 cm ', respectively
(see Table III). This implies that the covalency effect is
very important for understanding the large S-state split-
ting of high-spin ions Fe + and Mn + in a tetrahedral

ligand field.
We can draw the following conclusions: (1) In general,

a significant spin-orbit coupling mechanism exists be-
tween the S state and the F state; this gives rise to a ma-
jor contribution to the ground-state splitting for d-
configuration ions in the ligand field. (2) The large cubic
zero-field splitting for Fe + and Mn + in a tetrahedral
ligand field is due to a strong covalency effect.
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