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Electron hopping in the presence of random Aux
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We calculate the distribution of single-particle states for a spinless electron hopping on a two-
dimensional square lattice in the presence of random magnetic flux. The flux is taken to be uniformly
random between 0 and 1 flux quantum, taking on either continuous or rational values. We consider
nearest-neighbor and next-nearest-neighbor hopping. Compared with the density of states without flux,
the allowed energies span a smaller range, and the distribution is relatively flat. If states are filled with

noninteracting fermions, the random flux lowers the energy for a wide range of filling fractions and
next-nearest-neighbor couplings. Examination of the wave functions shows that most of the states are
extended with a tail of localized states near the band edge.

H=(1 —J)gU, c;cl+ g U,.ic, cl,
NN NNN

where c; and c; are the creation and annihilation opera-
tors, respectively, for a particle at site i, and U, is the
phase acquired by hopping from site i to site j. The first
sum is over nearest neighbors and the second is over
next-nearest neighbors. The flux through a plaquette k is

given by

exp(i 2ngk ) =g U.,", (2)

where the product is around the plaquette k and Pk is in

units of flux quanta. The coefficient of the first term was
chosen so that for both J=0 and 1 there is only nearest-
neighbor hopping. As J~ 1, one obtains nearest-
neighbor hopping on two decoupled rotated lattices.

In the problem considered by Hofstadter, the flux per
plaquette is uniform and given by p/q for integers p and
q. A natural generalization is to allow the flux to fluctu-
ate from plaquette to plaquette. Besides being of interest
in its own right, flux phases of correlated electron sys-
tems are subject to fluctuations which alter some of the
mean-field results. Thus, the random flux model may
provide insight into the effect of these fluctuations, since
it is a model consisting of nothing but fluctuations.

For simplicity we will let the Pk's take on random

The problem of a charged particle hopping on a lattice
in the presence of a magnetic field has been of interest for
a long time. In spite of the problem's apparent simplici-

ty, the allowed energies have an intricate structure which
depends on the magnetic flux per plaquette. ' In recent
years this problem, commonly known as the Hofstadter
problem, has taken on added importance in the quantum
Hall effect, and in mean-field treatments of highly
correlated electron systems. There have been a num-

ber of attempts to generalize the discussion. In this pa-
per, we would like to consider the problem of a particle
hopping on a lattice in the presence of random flux.

If we include a diagonal hopping term the Hamiltonian
1S

values uniformly distributed between 0 and 1. (Other dis-
tributions would require the introduction of more param-
eters. ) From Eq. (2) we see that such random Pk's are
equivalent to choosing each U; as a random phase. As is
well known, without loss of generality one can always
make a gauge choice of setting U, , +„=1.This allows us

to make a simple check on our program. The random-
ness destroys translation invariance, meaning that
Bloch's theorem is not available, and we must consider a
finite system with n sites. These complications suggest a
brute force approach to the problem. We generate some
random configuration of (bk's and construct the Hamil-
tonian given by Eq. (1), imposing periodic boundary con-
ditions in both directions. The quantity of interest is
computed using this Hamiltonian and then an average is
taken over flux configurations.

The randomness prevents us from calculating a true
density of states, however, we can compute a closely re-
lated quantity, which we denote by p(E). To compute

p (E) the randomly generated Hamiltonians are diagonal-
ized using standard numerical techniques and the ener-
gies are counted in bins, normalized so that

fdEp(E)=1. Rather than the number of states in an

energy interval, p (E)dE is the probability that there is a
state between E and E+dE. Nonetheless, p(E) tells us

how the states are distributed, and it may be useful to
compare p (E) with the density of states. The density of
states for an infinite lattice with no flux will be denoted
by p(E). (We choose an infinite lattice because for a finite
lattice we would simply obtain a sum of 5 functions. ) Be-
cause p (E) is calculated by the Monte Carlo method it is

subject to statistical fluctuations. We used 300 bins and
averaged enough configurations so as to make the statisti-
cal errors only a few percent. For the sake of clarity we
have not included error bars on all 300 data points.

We first consider systems with only nearest-neighbor
couplings (J=0). In Fig. 1 we see p(E) plotted for
several different lattice sizes. The figures include p(E) for
comparison. Because of the singularity in p(E) it cannot
be normalized the same as p (E). The scale of p(E) was
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FIG. 1. The probability distribution for single-particle states,
p(E), on two different lattices. The dotted lines indicate the
density of states without Aux with an arbitrary normalization.
The lattice sizes are (a) 5 X 5, (b) 9 X9.

simply chosen to make it fit the figures. One feature
worthy of note is that p (E) is restricted to a smaller ener-

gy range than p(E). With flux p(E) falls off rapidly at
E =+1.7 instead of E =+2, although the drop is not as
sharp as for p(E). The same range of E is seen for lattices
from n =9 to n =100, including those with different
numbers of sites in the x and y directions. Note that
since /k =0 is one particular configuration of random
flux there are states in the region 1.7 & iE i

& 2.0, but they
are extremely improbable.

Another interesting feature of p (E) is the oscillatory
behavior, which is most prominent in the smaller lattices,
such as the 5X5 lattice shown in Fig. 1(a). The number
of maxima is equal to the number of lattice sites, and the
distance between maxima is constant across the range of
E. Since the width of p (E) is approximately 3.4 indepen-
dent of lattice size the spacing between maxima is 3.4/n.
Therefore, the oscillations are a finite-size effect.

The amplitude of the oscillations also varies with lat-
tice size, decreasing with the number of sites. For the
larger lattices, such as 9X9 in Fig. 1(b), p(E) is fairly
smooth, except around E =0 and +1.4. In these regions
ht e oscillations are still present, though reduced, with the

same 3.4/n spacing between maxima. ' Note that (E)
is a constant to within about 10%, which resembles the
two-dimensional continuum density of states. The ran-
dorn flux effectively smears out the lattice and eliminates
the singularity, although the lattice still provides a
momentum cutoff that makes E bounded.

An interesting variation is to restrict the ho in
p a discrete Zz subgroup of the original U(1)hases to a

e oppjng

group That is, w. e choose Pk =exp(i2mqk iN) where qk
and N are integers and qk is random from 0 to N —1. For
N =2 there is a sharp peak at E =0, as seen in Fig. 2.
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FIG. 2. The probability distribution for a 7X7 lattice with

hopping phases restricted to the elements of Z, .

This is a finite-size effect since the amplitude decreases
with increasing lattice size. Aside from the peak, howev-
er, p(E) in Fig. 2 is insensitive to further increases in n.
Note that p (E) is approximately constant for iEi & 1.7,
although the deviations from a constant are different
from those of the U(1) model. On the other hand, the Zz
and U(1) models give virtually identical p (E)'s for N )2.
While this is to be expected for large N, it is somewhat
surprising for N =3.

To include the effects of next-nearest-neighbor hoppin
the d'e diagonal U; 's were chosen randomly in the same

pping

manner as the nearest-neighbor U; 's. In terms of flux
this is equivalent to placing an independent Pk in each of
the 4n triangles and choosing it randomly between 0 and
1. Figure 3 shows p(E) for J=0.2 and 0.5 on a 7X7 lat-
tice. For reference the appropriate no-flux densities of
states are also shown. Again, the normalization of the
density of states (DOS) was chosen arbitrarily. While
p(E) changes slightly due to the diagonal coupling, the
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FIG. 3. 'The probability distributions for a 7X7 lattice with
two different values of the next-nearest-neighbor hopping con-
stant J. (a) J=0.2, (b) J=0.5.
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smallness of the change is striking. With JWO, the am-
piu e1 t d of the finite-size oscillations is decreased and t e

11width is increased slightly. This indicates that the overa
structure of p (E) is independent of the details of the un-
derlying lattice. In contrast, the no-flux density of states
changes significantly as J increases, and is asymmetric
about E =0. Note that for E &0 the flux has made a
range of energies highly improbable, while for E)0 the
flux has extended the range of allowed energies.

Let us now consider filling a fraction v of the available
states with noninteracting fermions. Averaging over flux
configurations gives a probability distribution for the to-
tal energy. The randomness broadens the distribution, a-
though it is sharply peaked about the mean value. (With
uniform or no flux the distribution would be a 5 func-
tion. ) The position of the peak is insensitive to lattice
size, and remains unchanged as the lattice size is varied
from n =4X4 to n =10X10. The width, however, goes
to zero as n —+ ~. Therefore, we can compute accurate
energies for the infinite system using finite lattices. For a
given v and J the distribution for the infinite system is a 5
function located at the average energy computed on a
small lattice. We denote the energy per particle on an
infinite lattice with random fiux as Ert (v, J).

In Fig. 4 we see Ez as a function of filling fraction for
J =0. This is nearly linear in v, as is to be expected from
a flat DOS. For comparison the energy per particle
without fiux, Ez(v, J), is also shown. Note that at small
v the random system has a much higher energy, while at
large v the energy of the random system is on y s ig t y
h' h . For 0.3&v&0.7 the random flux lowers the en-ig er. or

theergy. e comp g. W compare E with a no-flux system because t e
random flux configurations are clustered around total flux
+„t=0,and the probability of a configuration with

%0 oes to zero as noae. On a finite lattice it is
ithpossible to select only those rare configurations wi

%0, however, the total energies obtained are the sametot
as those found by including all flux configurations.s. Add-
ing a constant flux per plaquette also leaves the energy
unchanged since the random flux per plaquette goes from
0 to 2m. Note that this means the magnetic susceptibility
is zero.

For J & 0, ER is still linear in v, although the intercept
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FIG. 5. The energy shift due to random flux,
AE(v, J)=E&(v,J)—E&(v,J). The contours are 0.025 apart
and the dotted curve is the hE =0 contour.
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FIG. 4. Energy per particle on an infinite lattice as a function
of filling fraction orr" f J=0 The solid curve is for random flux

and the dotted curve is for no flux.

FIG. 6. Ig{x)I2 plotted for two different states with a single

(random) flux configuration on a 40X40 lattice with J =0. (a)
E =1.5843, (b) E =1.7201.



46 BRIEF REPORTS 3119

at v=0 increases with J. This reflects the narrower range
of p(E) as J increases. Rather than plotting Fig. 4 for
each value of J it is simpler to look at the energy shift
EE(v, J)=EN(v, J) E—~(v, J) as a function of v and J.
As shown in Fig. 5 there is a large region of v-J space in
which the random flux gives a lower energy. For
0.45 & v & 0.65, the random system has a lower energy for
all J, and for v & 0.3, the random energy is always higher.
The largest (downward) shift of 0.1 occurs at J=0.4,
v=0. 6. As a consistency check we note that the results
are the same for J=O and 1 since both have nearest-
neighbor hopping only. Figure 5 is not symmetric about
J=

—,
' because the nearest-neighbor hopping for J=1 is

on two decoupled rotated lattices.
Finally, let us consider the wave functions. In particu-

lar, we are interested in seeing if the states are extended
or localized. Two typical wave functions for a random
flux configuration with J=0 are shown in Fig. 6. Note
that a large lattice was used to minimize finite-size effects.
Also, states with energy kE have the same ~f(x)~ . The
wave function in Fig. 6(a) is typical of those with
~E~ &1.6, and appears to be extended. On the other
hand, for ~E~ & 1.6 the states are localized, as seen in Fig.
6(b). There appears to be a smooth crossover from ex-
tended to localized states, with the localization length de-
creasing as ~E~ increases. For ~E~ &1.6 it is difficult to
distinguish extended states from those with a localization
scale comparable to our finite system size. We believe
that the flat part of the DOS contains extended states,
while the tails of the distribution around ~E~=1.7 con-
tain localized states.

This picture is very similar to the impurity-broadened

Landau levels found in the quantum Hall effect. In the
case of random flux, however, only a tiny fraction of the
states are localized since the mobility edge is near the
edge of the DOS. Also, the exact mechanism of localiza-
tion is unclear since there is no scalar potential whose
minima indicate the localization centers.

We have seen that the single-particle states are distri-
buted quite differently in the presence of random flux.

p (E) does not have a singularity, and the range of avail-
able energies is narrower than without flux. The states
with 1.7 & ~E~ & 2.0 are extremely improbable. In all the
cases considered the flux makes p (E) approximately con-
stant, leading to a distribution resembling the continuum
density of states with a cutoff. This is also seen when the
hopping phases are restricted to elements of Zz. The in-

clusion of next-nearest-neighbor hopping changes the
shape of p(E) only slightly, indicating that p(E) is in-
sensitive to the type of lattice. If states are filled with
noninteracting fermions random flux lowers the total en-

ergy in a band around half filling. The width of this band
and the amount by which the energy is lowered increase
with the amount of next-nearest-neighbor coupling. Ex-
amination of the wave functions shows that across most
of the band the states are extended, while near the band
edge they are localized.

As we have noted, this paper represents merely a step
into a potentially rich area. Many interesting questions
and situations remain to be studied. The problem of lo-
calization is especially interesting. Also, we can consider
the problem of a particle hopping in the presence of a di-
lute distribution of random fluxes.
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