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Electronic states of high-T, cuprate superconductors as studied by the use
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The doping dependence of the electronic states in cuprate superconductors is studied by use of the
p-d-mixing model. The p-d hopping under strong correlation is treated by introducing electronic excita-
tions associated with Cu-0 bonds, which are described by use of composite operators composed of p
electrons and neighboring d-electron spin and charge fluctuations. It is shown that changes of electronic
states with carrier doping are understood by mixing and decays among those composite electronic exci-
tations. By hole doping, transfer of the density of states to the Fermi level is induced from both the

upper Hubbard band and the bottom of the valence band. It is shown that the crossover from a highly

correlated electron band to a simple mixing band may be understood by allowing an interchange of ener-

gy positions between the upper Hubbard and composite excitation levels. The doping dependence of in-

trasite charge and spin fluctuations at the Cu site is also discussed. Specially, a prominent intensity
transfer to a low-energy region with carrier doping is found to result in the charge fluctuation.

I. INTRODUCTION

All the known high-T, cuprate superconductors con-
tain CuOz planes as common structural elements. The
experimental data accumulated so far indicate that the
electronic states on the Cu02 plane are responsible not
only for the superconductivity but also for various
anomalies in the normal state, such as T-linear dc resis-
tivity, constant continuum of electronic Raman scatter-
ing intensity, and so on. ' The nature of the electronic
state on the carrier-doped Cu02 plane is one of the cen-
tral issues in the study of high-T, cuprate superconduc-
tors.

The characteristic feature of those cuprate oxides is in
fact that one can easily change phases of the system from
an insulator to a good metal by a small amount of carrier
doping. The superconductivity appears only in a restrict-
ed metallic region close to the insulator phase. Exten-
sive experimental studies on the electronic state near the
Fermi level (FL) have been performed by photoemis-
sion, x-ray-absorption spectroscopy ' (XAS),
electron-energy-loss spectroscopy (EELS), and in-

frared spectroscopy. Those experiments reveal that
the parent insulating phase is a charge-transfer (CT) insu-
lator with a gap energy about 1.5-2 eV. Carrier doping
on the Cu02 plane causes great changes in the electronic
structure. The rapid accumulation of the state density at
the FL with doping is observed in photoemission, '
angle-resolved photoemission, ' ' XAS, ' and
EELS, which is not explained by a simple band theory.
Upon increasing the state density at the FL, the decrease
of the state density at unoccupied lowest-energy levels is
indicated in experiments of optical conductivity and
XAS. ' For example, the infrared spectral of optical
conductivity shows development of the Drude com-
ponent around the zero-energy range with carrier doping,
followed by suppression of CT excitations whose spectral

intensity is transferred to a low-energy region. This
transfer of the spectral intensity occurs without collaps-
ing the energy-level distances. Further, the angle-
resolved photoemission shows the existence of a large
Fermi surface, ' and in this region there are various kinds
of evidence suggesting an unconventional normal metallic
state, ' and the superconducting state appears. In a heavi-

ly doped region, in turn, the superconductivity disap-
pears and physical properties behave as in an ordinary
metal. These kinds of changes with carrier doping are
universal for all known hole-doped and electron-doped
cuprate superconductors.

The first step to elucidate the mechanism of the high-

T, superconductivity may be to clarify the nature of the
electronic state realized in an intermediate region be-
tween the CT insulator and the conventional metal. A lot
of theoretical models have been proposed to describe the
intermediate metallic region. Many of microscopic mod-
els are based on the two-dimensional extended Hubbard
model, the so-called p-d-mixing model on a square lattice
on the Cu02 plane. Its validity has been discussed in

band calculations and from analyses of photoemission
and core-level x-ray absorption by cluster calcula-
tions. ' ' The Hamiltonian is minimally constructed
from electrons in Cu 3d t 2 and 0 2p (either p, or p~)x —y
orbitals and includes the mixing interaction t between
them as well as the Cu on-site Coulomb repulsion U.
Some of models further contain the mixing interaction
between 0 2p orbitals and Cu-0 intersite Coulomb
repulsion V. The p-d-mixing model has been analyzed in
the weak-coupling ' and strong-coupling limit, or
it is further reduced to simpler effective models, such as
the one-band Hubbard model, t-J model, ' and
Kondo-Heisenberg model. It has been argued that
the electronic state of oxide superconductors is described
by a conventional Fermi liquid plus corrections, by
an exotic state, such as the resonating-valence-bond
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(RVB) state, flux state, chiral state in a gauge
theory, ' ' and by a marginal Fermi-liquid state. The
nature of the electronic state is still one of the controver-
sial subjects.

Since a system changes its phase drastically from an in-
sulator to a conventional metal by small doping, there
arises the question as to which phase the superconducting
phase is closer and where one should start an effective
theory. To answer this question, one needs to explain
doping dependence of the electronic state and to under-
stand causes of the previously mentioned drastic transfer
of the state density with carrier doping. In the previous
papers, we investigated the doping dependence of the
density of states in the highly correlated p-d-mixing mod-
el by use of the Green-function method. ' It has been
shown that there occurs the transfer of the density of
state at the FL inside the charge-transfer gap from both
the occupied p band and unoccupied d band, and that a
highly correlated electronic state with many-body effects
is realized at the FL. Unfortunately, the approximation
used in these works breaks down when the carrier density
is increased due to nonsufficient inclusion of coherent
contributions developed. In this paper, we present a de-
tailed study of the same problem in a slightly different
viewpoint, that is, by using a concept of composite elec-
tronic excitations associated with Cu-0 bonds, and clari-
fy the mechanism of the intensity transfer among several
energy levels with carrier doping and describe the cross-
over from a highly correlated electron state to an ordi-
nary metal.

A detailed formulation of this approach has been
presented in the preceding paper. Here we shortly dis-
cuss the main idea of the formulation. In the previous pa-
pers, ' we started from the electronic states restricted
on a single site, and the mutual effects from the neighbor-
ing lattices are taken into account as corrections. As the
result, we obtain, in addition to the original p and the
upper Hubbard bands, the third stable excitation com-
posed of the p-electron and d spin and charge fluctua-
tions. Since we have only two kinds of electron opera-
tors, we need to introduce at least one additional compos-
ite operator in order to describe third quasistable elec-
tronic excitation, i.e., three kinds of quasiparticles are ex-
pressed by linear combinations of at least three kinds of
operators. The natural candidate in the present problem
is a composite operator composed of a p electron and
neighboring d spin and charge operators. One may also
argue the necessity of composite operators as follows.
Through the Pauli principle, the electronic motion is very
much restricted by the presence of neighboring electrons;
presence of a carrier modifies its surrounding and hop-
ping of the carrier itself is very much affected by such lo-
cal modification of the electronic state at the neighboring
sites. These kinds of effects are hard to include by use of
freedoms only restricted at a single site; when one starts

I

from states defined at single site, many corrections are
necessary. In other words, in order to express
configuration dependence, one needs to introduce com-
posite operators related to several lattice points. Once
one realizes the necessity of composite operators to de-
scribe a highly correlated electron state, one may reinter-
pret the role of composite operators to describe the fol-
lowing physical situation. The p and d electronic excita-
tions are not so independent but form electronic excita-
tions on Cu-0 bonds as a whole. The energy of the p-
electron excitation is, for example, largely modified by
the change of charge and spin states of the neighboring
Cu ions. A p electron and charge and spin fluctuations
on neighboring Cu ions are simultaneously excited; one
may imagine an electronic excitation exciting simultane-
ously its surrounding background. Such excitations are
described by composite operators composed of a p elec-
tron and d spin and charge fluctuations. We present in
this paper results of self-consistent numerical calculations
for the electronic density of state by use of the formula
obtained in the preceding paper. The doping dependence
of both one-particle and two-particle (particle-hole) exci-
tation spectra can be explained qualitatively with clear
understanding of level shifts and mixing among compos-
ite excitations under consideration, specially it will be
shown that the accumulation of the state density at the
FL and the intensity transfer among levels are explained
in the present scheme. Our present results are qualita-
tively very similar to those recently obtained by numeri-
cal simulations.

In the next section, the model is set up and the formu-
las obtained in the preceding paper are summarized. Ex-
plicit formulas used in the numerical calculations are
presented in Appendix A. In Sec. III, after the explana-
tion of approximations used in the numerical calcula-
tions, results of numerical calculations of the density of
states are presented. The mean-field result is shown first
to illustrate an approximate energy-level scheme in our
approach. Then the results including dynamical correc-
tions are shown. One-particle density of states, local
spin, and charge fluctuation spectra are studied in detail
by showing their dependence on carrier density, the mix-
ing strength t, and temperature T. It is shown that an
enhancement of the density of states at the FL is induced
by doping and lowering temperature. The highly corre-
lated states near the FL in the intermediate metallic re-
gion are mainly controlled by composite excitations, and
the crossover to an ordinary metal is induced through the
crossing of the energy levels between shifted composite
and upper Hubbard levels. Section IV is devoted for
summary and discussions.

II. SUMMARY OF FORMULA

We start from the following p-d-mixing Hamiltonian:

II= g (Edd (i)d(i)+ Unt(i)n&(i))+ g s (p (i+ —,'a )p„(i+—,'a„)+p (i+ —,'a )p (i+ —,'a ))
1 J

+ g t[d (i)Ip (i+ —,'a„)—p„(i —
—,'a ) p(i+ —,'a—)+p (i —

—,'a )I+H. c.], (2. 1)
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where d(i), p„(i+—,'a ), and p (i + —,'a ) are annihilation

operators for Cu 3d» orbitals at the ith site, 0 2pX

and 2p orbitals at the i+ —,'a and i+ —,'a sites, respec-
tively. Here the spinor representation is used for electron
field operators. In Eq. (2.1), a„(a ) indicates the shift of
the position in the x (y) direction with a Cu-Cu distance
a, n&(i)=d~&(i)d&(i), nt(i)=dt's(i)d~(i), and U is an
intra-atomic Coulomb repulsion on the Cu ion which is
estimated as 7—10 eV. The mixing energy t between the
nearest-neighbor p-d electron is about 1 eV. We consider
the situation where the d state is Hubbard split and the p
level is located between split d levels. The excitation en-

ergy for the lower and upper Hubbard levels are c& and
ez+ U (=E„},respectively. The FL is situated between
the upper Hubbard level and the p level, which form a
CT gap. Since the typical CT gap is about 2 eV and the
lower Hubbard band is about 5 —8 eV below the p level,
the transition to the lower Hubbard band may be neglect-
ed to discuss the electronic state near the FL. By taking
the limit U —+ ~ with keeping c„finite, the ionic states of
Cu are restricted to Cu'+ and Cu +. In the model (2.1),
the Cu + state is expressed by n = 1 and the Cu'+ state
by n =2. The transition n = l~n =2 is expressed by the
operator rt (i) defined as

rt (i)=d (i)n (i), (2.2)

where n (i)=dt (i)d (i). As for the p electronic
excitation, only the following combination of 2p orbitals
mixes with the 3d orbit:

p (i)= —,
' [p„(i+—,'a„) p„(i———,'a„)

p(i+—
—,'a )+p (i —

—,'a )] . (2.3)

The operator pr(i) satisfies the commutation relation

[pr(i),pr(j)] =y'(i —j), (2.4)

where

p(k)= 1

y'(k)

1/2

g pr(i )e (2.7b)

with 0 being the volume of the unit cell, R; the lattice
point of Cu, and the integration being in the first Bril-
louin zone. The nonbonding p-electron degree of free-
dom will be neglected hereafter.

Let us define composite fields composed of the @-
electron operator and d spin and charge fluctuations,

p„(i ) =pr(i)5n„(i) (}Lt=0,1,2, 3)

with

5n„(i)=dt(i)o„d(i) —(d (i)cr„d(i) }

and

(2.8)

(2.9)

cr„=(l, tr ), (2.10)

(trp, (x)), = g (~)„(pr(x)), .

As in the preceding paper, we introduce the notation

g, (x)
gz(x)

g(x ) =

$4(x )

p(x)
r(x)

p, (x)
po(x)

(2.1 1)

that is, p„(i) represents p electronic excitations in a CuOz
cluster accompanied by charge (p=0) and spin
(p = 1,2, 3 ) fiuctuations of a Cu ion.

Using an abbreviation p(x)=p(t, i), we identify elec-
tronic excitations on a Cu-0 cluster as p(x), r(x)
[= v2 jn ri(x)], p, (x) =o'pr(x)n(x), and po(x)
=pr(x)5n(x), where n(x)=(n, (x),nz(x), n~(x)), 5n(x)
=5no(x), and n =(d d }. Note that the electron fields

are in the spinor notation and that op (x), for example,
indicates

y'(i j)=5(i—j)+y—&(i
—j )

with

y, (i —j ) = ,' [5(i —j——a,—)+5(i—j+a„)

+5(i —j—a~)+5(i —j+a )] .

Their Fourier components are expressed as

zk„a &k~a
y (k) =sin +sin

2 2

(2.5a)

(2.5b)

and write the equations of motion in the form

We have

j,(x)=E p(x)+t„rr(x),

j,(x)=t„pr(x )+c,„r(x)——(p, (x)—po(x) },
j ~(x)=E p, (x)+t„(h,(x}—g, (x)+y, (x)},

(2.12)

(2.13a)

(2.13b)

(2.13c)

with

= 1+y,(k) (2.6a) and

j4(x)= s„po(x) + t„(2 n) r(x)—
y, (k) = —

—,
' (cosk„a +costa ) . (2.6b) + t„(ho(x ) —go(x)+go(x) ), (2.13d)

p(i}= 0
(2')

1/2

fdk'p(k)e' (2.7a)

An orthogonalized set of the bonding p-electron operator
p(i) is defined from pr(i) as

where

t„=2t &n0/2,

h, ( )=axr ~(x)n(x}, ho(x)=r, (x)5n(x),

(2.14)

(2.15a)

P, ( )=xcrpr(x)5n+(x), $0(x}=pr(x)5n+(x}, (2.15b}
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and

tp, (x)=crp (x)5n (x), pro(x) =pr(x)5n (x), (2.15c)

with
6p EF/

and

5n+„(x)=p~(x)a„r(x) (p—r(x)o„r(x)) (2.16a)
tn

ep EF

h, h,
s,+0

5n „(x)=r (x)ogr(x) (—r (x)o~r(x)) . (2.16b)

The abbreviations rr(x) and r 2(x) mean

FIG. 1. Mixing scheme among electronic excitations.

rr(x)= g y(i j)r(—t,j ),
J

with

and

y(l j) fd2ke i j [ 2(k)]1/2
(2n. )

(2.17a)

Si„(x—y ) = (R gl(x)f„(y) ), (2.18)

po(x) mix each other. Time derivatives of p, (x) and

po(x} lead us to further complicated fields. Their mixing
scheme is summarized in Fig. 1.

The electronic states can be studied by the retarded
Green function defined as

r, (x)= gy, (i —j)r(t,j ) .
J

(2.17b)

As is seen in Eqs. (2.13a)—(2.13d), p(x), r(x), p, (x), and

where l, n (=1,2, 3,4} denote field components, R indi-
cates the retarded time-ordered product, and ( ) is the
thermal average. Denote the Fourier transform of
Si„(x—y }as S&„(to,k),

Si„(x—y)= ' f dtod k exp[ iso(t„—t )+ik (x— y—)]S& (co„k), . (2.19)

One has the spectral representation for Sl„(co,k) as

Si„(a),k)= fdKol„(K, k)' 1

N K+l5
(2.20)

1 0 0
0 1 3b

0 3b 4a, +3(y, +y,'yi(k))

According to the result of the preceding paper,
Si„(co,k) is obtained in the form

where

0 b Xo+Xoy i«)
(2.24)

Sl„(co,k) = I(k) I(k)1

The one-particle spectral function is obtained by

(2.21)

g, =(5n;5n; ) =(2—n ),
go=(5n5n ) =(2 n)(n —1)—

(2.25a)

(2.25b)

(2.25c)

o.,„(co,k) = —( I/n. )lmSl„(co, k) . (2.22)
and

The matrices Ii„(k), mi„(k), and 5m,„(to,k) are shown to
satisfy the Hermiticity conditions y,'= —(y,5n;5n; ), go= —(yi5n5n ) . (2.25d)

I(k)=I(k)
m(k)=m(k)

(2.23a)

(2.23b)

Since there is the Hermiticity requirement for m(k), it is
enough to evaluate the upper half components of the ma-
trix m(k). The mean field m(k) is obtained as

and

5m(co, k) =5m(co*,k)t . (2.23c)

and are given in the following.
The normalization matrix I(k) is obtained in the

preceding paper as follows:

m&& =c.

m, 2 =t„y(k),

m, 3 =3t„by(k),

m, 4=t„by(k},

(2.26a)

(2.26b)

(2.26c)

(2.26d)
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m22 = c.„—2b-
n

(2.27a) (a)

m23 =3e„b——(3(y, +y,'y f(k) )+4a, ),
n

(2.27b)

m24 ——e„b+—(Xo+Xoyi(k) )
n

(2.27c) --e
/

m33 E (3(g, +g,'y&(k))+4a, )

+t (4b +6b(a 1) 3(y'+o y o )yf(k))

(2.28a)

m34 =t„( 6ab—+(2—n )3b —
—,'(y'+o, +go )y&(k) ),

(2.28b)

and

m~4 =ep(Xo+XoÃ«})

+t„[y,b+b(2a n) ——
—,'(3yo+ +go )y~)(k)],

(2.29)

(c)

FIG. 2. Loop diagrams for dynamical corrections. Each line
indicates the propagation of the following mode: the dotted line
for the p electron, the solid line for the d electron, the dotted-
wavy line for composite electrons, and the wavy line for spin
and charge fluctuations of the d electron. The double solid line
indicates y& representing the nearest-neighbor site. The shaded
bubble indicates the fluctuations formed by 5n+„.

where

b,'= —(r,~p,') = —
&p, r",~ ),

Vl V 'i

y'+o„= —
& y', 5n+„5n„),

(2.30a)

(2.30b)

Gh ht(x —y)=(Rh, (x)h, (y));,„
S S

and

q' o„=—(y', 5n „5n„) . (2.30c)

The dynamical correction 5m(to, k) is obtained from
the decay processes induced by h, o, g, o, and tp, o defined
in Eq. (2.15). Since composite excitations are expected to
be of local nature, we neglect k dependence of 5m(co, k)
in this paper, and effects of decay processes are evaluated
for localized states in a Cu-0 cluster. We approximate
5m(co, k) by one loops composed of fermion and fluctua-
tion propagators. By neglecting the interference among
different decay processes, we evaluate 5m(co, k) by

pII, (x —y)=([5n~ (x),5nk (y)]), (2.32)

where p, =0 (for charge), @=1,2, 3 (for spin), and 1 and k
indicate components of fluctuations 0, + as

and so on, with the suffix "irr" indicating an irreducible
part of the g line. These functions correspond to one-

loop diagrams in Fig. 2 of the fermion P line and spin and
charge fluctuation lines. Let us define spectral functions
of spin and charge fluctuations p~lk(co, k) given by the
Fourier transform of p~+(x —

y ) with

5m»(x —y ) = t„ I G„„t(x—y )+G p(x —
y )

S S

+G t(x —y)],
+s+s

(2.31a)

5n„(x)
5n, (x)= 5n+„(x)

5n „(x)
(2.33)

5m34(x —y)=t„[G„„t(x—y)+G t(x —y}
s 0 s 0

+G t(x —y)],
+s+0

(2.31b)

where 5n+„(x) is given in Eq. (2.16). The spectral func-

tion of the lowest bubble diagrams shown in Fig. 3(a) is

and
(a)

5m 44(x —y ) = t„ I G„y (x —
y )+G &(x —y )

0 0 0 0

+G t(x —y)],
V'0V'0

(2.31c} (b)

where the Green functions G are defined as
FIG. 3. Lowest bubble diagrams for fluctuations. (a)

p y o ~y-(6n+„) fluctuation; (b) (5n „)-(5n „) fluctuation.
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given by

b +(co,k) = fdv[fF(v) f—F(v+co)]

X
~ fd qtr[cr„o t(v+co, q+k)

(2m )
P p r

Xo„o. t (v, q)]

b (co,k) = fdv[fF(v) f—F(v+co)]

z
d qtr[o„o ~ (v+co, q+k}0

(2m )

Xo„o t(v, q}],
(2.34b)

and that of Fig. 3(b) is given by

(2.34a) where fz(co) is the Fermi distribution function. Then the
spectral functions g{co,k) of G(co,k) in Eq. (2.31) are
evaluated as

0
gh ht ~" = f"v~ ~ v), 'q pM~ — k —q)yf(q)«(v, q)H(q»

S S (2m. )

0
g„y(co,k)= fdvg(co, v) d qp~(co —v, k —q)y&(q)& t(v q)y&(q)

0 0 (2n. )

0
t(~, k) = fdv@~,v), d'q [3p++(co v, k—q)o —t (v, q)+ 3hz+—(co v, k—q)c—r t (v, q}j,

S S (2m. ) prpr 2 p rp

g& &t(~,k)= f dv&(co, v), d2q( —
—,')b +(co—v, k —q)o t(v, q),0

s 0 (2m. )' p+

g«t(~ k) =fdv@~,v), fd'q [p'++(~ v, k—q)y—'(q)a t(v, q) ,'b, +—(co—v,k —q)o —t },0
0 0 21T 2 Vr

g t(co, k)=9g t(co, k),
+s&s +0+0

g y(co, k) = —3g t(co, k),
+s&0 tpf'0

and

(2.35a)

(2.35b)

(2.36a)

(2.36b)

(2.36c)

(2.37a)

(2.37b)

g t(co, k}=fdv8(co, v) fd q
'

tp (—co —v, k —q)+3p' (co —v, k —q) —2b (co —v, k —q)]cr & (v, q),0
0'pV'0 (2m )

(2.37c}

where

&(co,v) = [1+f~(co v)]fF( v)+—fq(co —v)fp(v)— (2.38)

and pik(co, k) is pIk(co, k) (i =1,2, 3) and fs(co) is the Bose distribution function.
The relevant spin and charge fluctuations to the dynamical correction 5m (co,k) of one-particle states are described by

the field operators 5nt (x) defined by Eq. (2.33). In order to calculate the energy spectrum of intrasite spin and charge

fluctuations, we use the relaxation function. In the preceding paper, the spectral functions of intrasite fluctuations are
expressed in the form

pL {co)=R/k (co)+a~(R
Iok (co)+R/'o(co)aik+ a~IR ioo(co)aik

with R/k(co) being given by

R/k(co}= ——Im I'"CO 1 FP
coF" Mlo —5M"( co)—

(2.39)

(2.40)

where a~i, F",Mg, and 5M"(co) have the forms

a~(=(0,ao5„O+a, 5„;,ao5„o+a,5„,), .

Fioo 0 0
FP= 0 FP FP

0 F+* F++

(2.41)

(2.42}
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(Mo )0+ (Mo )0+

Mo"= (Mlo)o+ (M~o)++ (2.43)

and

—(Mlo )0+ —(M~o )++

0 0
5M"(co)= 0 5M++(co+i5) 5M+ (co+i5)

0 5M+* (co+i5) 5M++ ( co—+i5)
(2.44)

The values of cc~l, F",and (Mo )lk are self-consistently determined from

1
dao ——Im

1 F" co(1+fs(co))
co —X"(co )

(2.45)

and

YIk
= f dco ——Im X"(co)

1 F" co(1+fjl(co)) r (2.46)

with

X"(co)=(Mlo +5M"(co) )F"

+1k Xtk +lxok Xto+k ++Ix00+k

and

Ytk yak +!yok yto+k ++ly00+k

The explicit forms of xtk and ytk are given as

(n —l)(2 —n )
—2b (2 n)—

2 n 1
xlk = —2b(2 —n ) 2 (1—a )+—(ao+a, )

—2b

—2b(1 n)—
—4b

(2.47)

(2.48a)

(2.48b)

(2.49a)

—2b(1 —n )
—4b

n —1 1
4 a+ ao

n

and

l
+1k

2 n

0
2 n 1

2 (1—a)+ —(ao —a, ) .
n n

2b

(2.49b)

n —1 1
4 a+ —ao .

n n

where a=(p p ), b=(p r ), ao=(p po), and
a, = (pzp, ), and

5y~++ =—I4(1—a)b —2(2 —n )b'

(2.51a)—5„0(bo+b,') —5„;(bo ,'b,') ), ——

with

r~(x —k x+k )

(E& E& )X+k+C XOk
—(E —E )x" —c x"

p —k p Ok

+5yt'k (2.50)

and

5y+ =t„.—2ab+ab — 5„o+5„;
4 —n

n
—2ba„'

(2.51b)
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5y" = ——
I 8ab+4(n —1)b' 2—bo J,

n
(2.51c)

where a„'= —(r &r ), b=(pyr )t, b'= —(pyr 2),

ho=(por, ), and b,'= (p, r, ).
Y]

The dynamical correction 5M"(co)Ik is estimated from
particle-hole pair excitations induced by the source

5j+„(x)=t„pty(x )ogy(x) — p—ty(x)o„o p (x)5n„(x)1

r~, (x—)o „r(x)
V]

(2.52a)

and

5j p(x) =t„pty(x)o/y(x) p-ty—(x)o~ogy(x)5n~(x)
1

n

r(x)cr&—r &(x)P y]
(2.52b}

Let us denote the one-loop response function of 5j+ (x ) as

J++(co) and J+ (co),

(R5j+„(t)5j~+„(t'))= f dcoe '"" ' 'J~++ (co)

comparison with the Hubbard approximation. In our
scheme, the expression of the propagator in Eq. (2.21) is

quite general and the approximation comes in the evalua-

tion of I(k), m(k), and 5m(co, k). We may say that the
present interest is in the propagation property of g„and
that contributions from other possible modes are amal-

gamated in I(k), m(k), and 5m(co, k). In the Hubbard
approximation, the self-energy

X(co,k) =(m (k)+5m (a)k, ) )I(k)

is directly evaluated by use of the equation of motion
(2.12) in combination with the point splitting method and
the introduction of certain decomposition rules such as
the random-phase approximation. As was mentioned in
the preceding paper, due to the nonidentity property of
I(k), it is rather difficult to find the condition for X(co,k)
to satisfy the necessary requirements for the total propa-
gator, specially when one uses the corrected full propaga-
tors for the evaluation of X(co,k}. We approximately
evaluate 5m(co, k} by the one-loop continuum composed
of full propagators of quasistable electronic excitations
and fluctuations, following the spirit of loop expansions
in terms of renormalized quasistable excitations. Al-
though 5m (co,k) is one loop, the full propagators contain
infinite order of the repetition of loops through the rnix-

ing scheme induced by m (k) and I(k).

(2.53a)

and

5M~++ =+f dK — ImJ~++(K)
1

7TK

1
(2.54)

co K+ i5

The detailed expressions for 5M"(co) are given in Appen-
dix A. Once the one-particle propagator of g is deter-
mined, I", Y", and 5M"(co) are calculated first by Eqs.
(2.48), (2.49), and the formula in Appendix A, and then
F" and Mg can be determined to satisfy Eqs. (2.45} and
(2.46).

Finally, it is worth noticing that the spectral functions
pL(cu) are related from the following relations which are
easily obtained by the fact that 5n+„and 5n „are Her-
mitian conjugate,

and

po (co)= —po+( —~),
p"-o(~)= —pa+( —~»
p" (~)= —p~+ ~( —co),

p+o(~} po+(

(2.55a)

(2.55b)

(2.55c)

(2.55(1)

p"-+(~)=p+-(~) . (2.55e)

Finally, we comment on our approximation scheme in

(R5j+„(t)5j „(t'))= f defoe
' " "J" (co) .

277

(2.53b)

We have

III. NUMERICAL CALCULATION AND RESULTS

In our calculation, the given parameters are bare exci-
tation level e (for the 0 2p state), E„(for the upper Hub-
bard level of the Cu 3d state), p-d-mixing interaction t,
and temperature T. Small but finite damping constants y
and y are introduced for numerical calculation. We re-
place E,e„by e iy, c—„iy, resp, e—ctively, in m(k) of
Eqs. (2.26a) —(2.29), and coF" by (co+i y )F" in Eq. (2.40).
The origin of energy is taken at the chemical potential
and the d- and p-electron numbers n and n, respectively,
are determined from '

n~=2f de
2 f d qcr g(co, k)f~(co),(2~)'

(3.1a)

1S y(co, k) =
co —s —t (k)S y(co, k)

(3.2a)

(co —
s~ )S t(co, k)

S y(co, k) =
co —s —t (k)S i(co, k)

where t (k)=4t y (k) and S ~(co, k)=(n/2)S g(co, k).
I I

(3.2b)

2 Q
(2~)'

——1=2f dco fd qcr q(co, k)(1 fF(co)) (3.1b)—
under given parameters c, , c„, t, T, y, and y .

The equations listed in the preceding section form a set
of self-consistent equations. We apply a simple iteration
technique to solve those self-consistent integral equations.
We express p- and d-electron Green functions S y(co, k)

PP
and S t(co, k) in the following forms by introducing the
one-p-electron irreducible part S g(co, k) of S q(co, k):

7l"I
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By introducing X„(co,k) further, we express the one-p-
electron irreducible part as

n l2S g(co, k) =
co —E —X (co k)

(3.3)

The expression of X„(~,k) is given in Appendix B. Those
expressions are convenient for physical interpretation in
the later discussion.

Since k dependence appears only through y &(k) [here
note that y (k)=1+yf(k)], o. r(co, k) is given in the

n n

form o t(co, yf(k)), and k integration can be performed
n n

to get the one-particle density of state as

[2. 0—

0. 0
0

1.0

0. 0
2. 0—

1.0—

o i

-2 0
Energy

(c)—

I

2

(ev)

o. ~(co)= f d kcr g(co, y, (k))
&n |n (2~)2 n n

= f dx W(x )cr
& && (co,x ),

n n

where the function W(x) is defined as

(3.4a)

(3.4b)

FIG. 4. Mean-field result of the density of states for p (fine

solid line) and d (bold solid line) electrons. Parameters are
t =0.5 eV, Do=1.2 eV and c~ is changed as (a) —1. 1 eV, (b)
—0.7 eV, and (c) —0.38 eV, which is indicated by the dotted
line.

W(x)= f d k5(x —y, (k)) .
0

(2m)
(3.5)

In the present paper, the k dependence of I(k) in Eqs.
(2.24), m23(k), m24(k), m33(k), m34(k), m~4(k) in Eqs.
(2.27b) —(2.29) and fim(co, k) will be neglected, since the
composite operators are primarily of local nature.

Since the function W(x) given in Eq. (3.5) has the van

Hove singularity at x =0 which makes time for conver-
gency longer, we replace W(x) in Eq. (3.5) by

W(x) =-,'e(x+1)e(1—x ),
which is equivalent to the approximation

(3.6)

(k)- k— (3.7)

or to the approximation used in the Ref. 53. The shapes
of the density of states o y (co) depend on which form of

n n

W(x) is used. However, the analysis shows that the
essential result at the FL in the present p-d-mixing model
is insensitive to the choice of W(x).

First, we show the results of mean-field approximation
where the dynamical correction 5m(co, k) is neglected.
The renormalized energy levels of modes p, g, p„and po
are self-consistently determined, and therefore the lattice
effect is taken into account in the static approximation.
In Fig. 4 we present the density of states of p [2o r(co),

PP

where the factor 2 is for spin up and down, fine solid
lines] and d [o. r(co), bold solid lines] electrons with hole

doping. We choose parameters as t =0.5 eV,
(
—=s„—E ) = 1.2 eV, y =0.05, and temperature T=0.05

eV. By fixing b,o, we change E as (a) —1. 1 eV, (b) —0.7

eV, and (c) —0.38 eV whose positions are indicated by
the dashed lines in Fig. 4. The obtained constants are
summarized in Table I, where nd is n obtained from
(3.1b), the hole density nr, defined as the reduction of to-
tal electron number with respect to case (a).

In the mean-field approximation, a four-peak structure
is expected, since there are four levels corresponding to p,

TABLE I. Calculated physical constants for given cp

(without dynamical corrections).

Cp

n~

nd

ao
a,

(a)

—1.1 eV
1.794
1.200
0.000
0.128
0.241
0.068

—0.015

—0.6 eV
1.731
1.241
0.023
0.165
0.253
0.079
0.000

(c)

—0.4 eV
1.563
1.223
0.210
0.275
0.264
0.085
0.263

g, p„and po. In fact, the calculated density of states is

composed of three main peaks and one satellite peak.
The first main peak at higher energy is the upper Hub-
bard band which is largely of Cu d character. The other
two main peaks are mainly of 0 p character. Since
t (k) =0 at k=0 in the present model, the d electronic
state never mixes with the p electronic state with k =0 so
that the d-electron density of states vanishes at co=a .
The bare p band is strongly renormalized and split into
two peaks around co= a .

In Fig. 5 we show the density of states of the composite
states, —,'cr t(co) (solid lines) and o t(co) (dashed lines).

s's~s ~o&o

The state near the FL is dominated by the component of
p„while the state corresponding to the upper Hubbard
band by the component of po. The satellite peak has the
mixture of po and p, . The reason for this can be easily
understood by considering Eqs. (2.13c) and (2.13d). The
operator po mixes with r directly, while p, does not. This
is due to the local constraints of r5n0=2r and m=0.
Around c,po mixes with p through 5no, whose contribu-
tion is small, while p, mixes with p by changing spin

states, which is the main mixing. It is easily shown that
the renormalized excitation level of p, is around
c. +t„/60, that is, the splitting of the bare p band is
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4 . 0—

4. 0—

2. 0—

oo~n 4'0',

2. 0

—P S P 0

(c)

(b)

0. 0 I I I

—2 0 2
Energy (eV)

E,p

n

nd

a

ap

a,
cs

c,

(a)

—1.1 eV
1.724
1.277
0.000
0.166
0.241
0.076

—0.011
0.057
0.192

(b)

—0.6 eV
1.647
1.268
0.086
0.215
0.257
0.080
0.073
0.113
0.194

(c)

—0.4 eV
1.473
1.272
0.256
0.321
0.280
0.093
0.269
0.231
0.155

TABLE II. Calculated physical constants for given cp (with

dynamical corrections).

FIG. 5. Mean-field result of —'e f(co) (solid line) and
S S

0. g(co) (dashed line). Parameters are the same as in Fig. 4.
PQPQ

mainly due to the mixing with p, .
The change with doping is, roughly speaking, rigid-

band-like in this mean-field approximation, although the
band near the FL becomes wider and the upper Hubbard
band becomes slightly narrower in bandwidth. The
values of b, ao, and a, are all increased by doping.

Next, we present the results with dynamical correction.
In Fig. 6 we show the density of states of the p (fine solid
lines) and d (bold solid lines) electron with increasing hole
doping. Given parameters are same as in Fig. 4, except
for =0.05 eV. The obtained constants are summa-

rized in Table II. In contrast to the results in Fig. , t e
or y-

electronic structure is sensitive to doping. In an insulat-

ing case (a), there are two bands, one is the upper Hub-
bard band, another is the valence which is mainly p char-
acter and shows the precursor of splitting around co=a. .
As doping proceeds, a state develops at the FL forming
three-peak structure. The upper Hubbard band moves to
higher energy and its intensity is decreased especially in

the p-electron component mixed in the upper level. The
weight at the bottom of p band also decreases. The peak
structure of Fig. 6 is similar to those obtained in numeri-

1.0—

cal simulations. 74-76

In Fig. 7 we show the spectral densities o t(co, k) and

t(co, k) for the metallic case of Fig. 5(c). A quasiparti-

cle band crosses the FL and it has a large Fermi surface.
The precursor of this band can be seen, in the insulator
phase, as a damping mode on the top of the valence band,
as is shown in Fig. 8 ,'which corresponds to the case of

In Fig. 9 the densities of states of p, [—,'cr t(co), solid
S S

lines] and po [0 t(co), dashed lines] are presented.
PpP p

Drastic change by doping occurs in the p, component. In
an insulating case (a), p, has a peak around co- —1.6 eV,
but this state has damping nature because it overlaps
with continua from h„, g„, and y„, as is shown in Fig. 10.
By doping, this p, state shifts its weight rapidly at the FL
and increases its intensity, forming a sharp narrow band.
From these results, we may say that the state near the FL
is mainly controlled by the mode ofp, .

Figure 10 shows the continuum contributions to the
s ectral of the self-energy. The figure presents loop con-spec
tributions expressed by the following combination

G„„,(co)=t„[G„„t( )+coG t(co)+G t(co)]
S S

+2t„ao[G t(co)+G t(co ]
s 0

+t a [G t(co)+G t(co)+G t(co)],
Aph Q fpttp +o+o

(3.8a)

0. 0
2. 0

1.0

0. 0a

(b)— opp+(~, k) ops]+ (~, k)

1.0

0. 0
—2 0

Energy (eV)

FIG. 6. Density of states for p (fine solid line) and d (bold
solid line) electrons. Parameters are t =0.5 eV, ho=1.2 eV and
c is changed as (a) —1.1 eV, (b) —0.6 eV, and (c) —0.4 eV,P
which is indicated by the dotted line.

W «4M.4';V~.A-N-PV
MX %Pl-'YV~

gi i VI'l44;h~
AEliXI!EM. %'.P~

Wll: Y:1.'W=~l '. I, :. v.
—1.0 0 1.0

(eU)
—1.0 0 1.0

(eV)

FIG. 7. Spectral density of p and d electrons for the case of
the metallic phase [Fig. 6(c)].
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Opp~(~, k) V~~ (~, w)

—l 0
/(

1 0 ~ —1 0

+ / / MX &//''
/ i' Wr,

/ Xr, &///. Lpr ~//
/ I~lpr M//

A LPr
O'LVr ~/

/~
/& ~ii'

0 1 0
(eV j

FIG. 8. Spectral density of p and d electrons for the case of
the insulator phase [Fig. 6(a)].

0. 4—

0. 2

0. 0

0. 4—
3

0. 2

0. 0

0. 4

0. 2

0. 0

(b)

I I I

—2 0 2
Energy (ev)

FIG. 10. Continuum contribution G„„,(~) to the self-energy
of composite excitations. Parameters are the same as in Fig. 6.

which is the (p„p, ) component of 5m after diagonaliza-
tion of I (cf. Appendix B) and ao is defined as

&o=3b l(yo b ) . (3.8b)

and

((pro sp ) (2 —no)) =C, +C,

(p r o sp n, ) = —C, +—,
' C, .

(3.9a)

(3.9b)

Doping dependence of C, and C, is shown in Fig. 11. In
the insulating case, C, /C, —

—,
' reflecting the degeneracy

—P

0

Q

In the present approximation, the intensity around the
FL is considerably small compared with that of the
higher-energy region, even after the large intensity of
states develops at the FL, as seen in case (c) of Fig. 6 or 9.
In order to investigate the behavior around the FL more
accurately, it is necessary to treat the spectral whose
main weights are around the FL. Such an improvement
in the composite-operator approach is in progress.

As is seen in Table II, the mean field a, is the one
which changes largely by carrier doping. In order to
clarify the physical meaning of a„ let us consider p-hole
densities C, and C, coupled with a Cu spin in spin singlet
and triplet states, respectively, in the ground state. They
are obtained from the relations

of singlet and triplet states, which means that a p hole
spin has little correlation with a Cu spin. In turn, C, in-
creases with the p-hole density nz almost proportionally.
This change is mostly controlled by a, . The result indi-
cates that p holes are mainly doped in the spin singlet
state ofp hole and Cu spins.

In Fig. 12, we show the spectrum of Cu-site spin (solid
lines) and charge (dashed lines) local fluctuation in the
following form:

1 e~"+1 2

2 e~"—1

which give the sum rule

Idrop~oo(co) =1 .

(3.10)

(3.11)

They are determined self-consistently with the electronic
states of p, g, p„and po shown in Figs. 6 and 9. Note
that they are intrasite fluctuations. The doping depen-
dences are quite different from each other between the
spin and charge channel. In an insulating case (a), spin
fluctuation has a sharp peak at co=0 and the weak spec-
trum at higher energy extending to 4 eV, while charge
fluctuation has very little intensity at the low-energy re-

gion and a prominent peak around co=1.8 eV which is
identified as the CT excitation. When holes are doped,
the low-energy spin fluctuation around co=0 eV de-
creases and the weight is broadened up to the region of
co=0.5 —1.5 eV. On the other hand, the CT excitation is
drastically reduced and the reduced peak shifts to a
higher energy co-1.8 eV. Although the charge fluctua-

Q. 0
4 0—

')
Q

0. 0
4. 0—

(b) —,

I

I

(a) —,

0.3-
C,0.2,~ x

o.i-

0. 0
—2 0 2

I:nergy ( eV)

FIG. 9. Density of states for p, [ —'o. t(r(rl, solid line] and p(r
~s~s

[o r lor}, dashed line]. Parameters are the same as in Fig. 6.
PpP 0

Cs
I I I

O ( 0 2 O.3 h

FIG. 11. p hole densities coupled with a Cu spin in singlet

and triplet states in the ground state. Parameters are t =0.5 eV,
ho=1.2 eV. The hole concentration n~ is calculated by chang-

ing c~.
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--- Charge—Sp in

0.50-
0.25
0.00
0.50-

zn 0.25
IQ.

0.50
0 ' 25
0.00

0

(b)

(a)

2 4
Energy (ev)

0
I

4

FIG. 12. Spectrums p(co) of Cu spin (solid line) and charge
(dashed line) local fluctuations. Parameters are the same as in

Fig. 6.

tions shown in Fig. 12 are not directly related to the opti-
cal conductivity arising from the zero momentum transi-
tion, the tendency with doping is very similar to the re-
sults observed in the ir spectroscopy. Interestingly, the
peak position of the CT excitation in cases (a) and (b)
does not reflect directly the transition corresponding to
the smallest energy gap expected from the one-particle
density of states of p and d electrons shown in Fig. 6.
Rather, the local charge fluctuation spectrum shows the
charge-transfer gap formed between the p band below c
and the upper Hubbard band. The result can be under-
stood in the following way. The energy gap in the charge
fluctuation is formed by the p-hole —d-electron pair
creation. In the local fluctuation, the pair creation inside
a CuOz cluster is expected to dominate. When hole con-
centration is small, the total spin of the p-electron system
in the CuOz cluster is nearly zero in the initial state of the
transition, while in the final state the upper Hubbard lev-
el is occupied so that the spin of the Cu ion is zero.
Therefore to the transition energy, the spin-dependent in-
teraction does not operate, that is, the transition energy is
nearly the difference between the energy of the upper
Hubbard level and c, shifted only by the effect of charge
fluctuation. When electrons gain itinerancy, intersite
effects start to dominate and the intensity related to local
transitions is rapidly decreased as is seen in Fig. 12(c). In
this way, this phenomena can be understood as one of
characteristic features of the highly correlated electron
system. In optical conductivity, most of the contribu-
tions arise from the transfer interaction, and therefore at
least two lattice sites are involved and the above-
mentioned local constraint of spin freedom does not
operate, that is, the observed gap in the insulator phase is
more closer to that expected from the distribution of den-
sity of states as is shown in Fig. 13. Also, the transfer of
the spectrum to a low-energy region is more drastic.

Next, we show the t dependence of the density of states
in Fig. 14. We choose t=0.5 eV for cases (a)—(c) and
t=0.7 eV for cases (d) —(f). The values of e and e„are
adjusted in such a way that the energy difference between

FIG. 13. Optical conductivity o.(co). Parameters are the
same as in Fig. 6.

) 4. 0—

2. 0—
3

0. 0

I

I

I

I

I
I I

'
I

4 ~
0—

2. 0—

0. 0

o 2 0
I

1.0—
3

(b) — 2. 0—

1.0—

0, 0

2. 0—

1.0—
(f)

0, 0
—2 0

Energy

(a) — 2. 0—

1 0—A-, , —

2

(eV) Energy (eV)

FIG. 14. Transfer t dependence of the density of states.
(a)—(c) are for t =0.5 eV, and (d) —(f) are for t =0.7 eV. (a) and
(d) show the full density of states, o. t(co) (bold solid line) and
o. t-(co) (fine solid line), (b) and (e) are for o.„(co)

PP[=—(1/vr)ImS t(co)] [cf. Eq. (3.21)] and (c) and (f) are for

cr„(co) [ = —(1/n. )ImX„(co)] [cf. Eq. (3.3)].

the renormalized upper Hubbard level and the FL gives
the same value in cases (a) —(c) and (d) —(f), and the hole
density is about 0.22. One can see drastic changes of the
spectral distribution. The accumulation of the density of
states at the FL is more drastic for larger t by transfer-
ring intensities from the upper and lower portions of the

spectrum. The bandwidths of the upper Hubbard band
and the lower p band are also broadened. In order to un-

derstand the origin of the intensity transfer without des-
troying the three-peak structure, we present
—(1/n )ImX~(co) [=cr„(co)] in Figs. 14(c) and 14(A, and
—(1/m)ImS t(co) [—:o„(co)] in Figs. 14(b) and 14(e).

The vertical dashed lines show the position of the renor-
malized upper Hubbard level e„[=e„2bt„/n—]. The
peak structures in —(1/m)ImX„(co) indicate the renor-
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Energy (eV)

FIG. 15. Temperature dependence of the density of states for
composite excitations p, [ 9 cr t(co), solid line] and pe

PsPs

[o rico), dashed line]. Parameters are the same as in Fig. 6(c),
PpP p

and T=0.06 eV (a) and 0.03 eV (b).

1.0—

" 0. 0
2. 0—

(b)—

COa 1.0—

0. 0
—2 0

Energy (

I

2
eV)

FIG. 16. Temperature dependence of the density of states for
o. y(co) (fine solid line) and o. t(~) (bold solid line). Parame-

PP 7l"I

ters are the same as in Fig. 15.

malized positions of composite excitation induced by the
mixing among po and p, . In —(I/m)lmS t(co), the in-

tensity distributes according to the m.ixing between the
renormalized upper Hubbard level and composite elec-
tronic levels. This structure is not the direct observable,
but appears in the intermediate step of the mixing
scheme. In the case of Fig. 14(c), s„ locates above the
peak of —( I/n )ImX&(ro), while their positions are inter-
changed in the case of Fig. 14(f). This difference induces
a drastic change of intensity distributions in Figs. 14(b)
and 14(e); although the energies of peak positions are
similar, their intensities are interchanged. This causes
the large intensity transfer in the final density of states in
Figs. 14(a) and 14(c). As can be seen in those figures, the
density of states is very sensitive to the value of t. As t is
larger, more intensity grows at the FL absorbing the
weight from the bottom of the valence band and the
upper Hubbard band. In addition, the larger t cases
(a)—(c) are "qualitatively" different from cases (d) —(f) in
the sense that the crossover happens concerning the level
position of the pole at co =c„and the peak of
—(1/n)lmX&(cu), leading to the development of the state
at the FL and the collapse of the upper Hubbard band. It
shows similar electronic state obtained from a simple
nuxing of p- and renormalized d-electron levels. Experi-
mentally, the collapse of the upper Hubbard band occurs
by carrier doping. Our results of doping dependence

FIG. 17. Temperature dependence of the continuum contri-
bution G„„,(co) to the self-energy of composite excitations. Pa-
rameters are the same as in Fig. 15.

with fixed t also show the reduction of the weight of the
upper band, as seen in Fig. 6, which is qualitatively con-
sistent with the experiments of XAS, EELS, and ir spec-
troscopy.

Finally, we show the temperature dependence. The
state ofp, is enhanced and becomes more stable at the FL
by lowering temperature. This is shown in Fig. 15: (a)
T=0.06 eV and (b) T=0.03 eV. As a result, the density
of states develops further by lowering temperature in p-
and d-electron channels and the splitting of the valence
band becomes clearer as seen in Fig. 16: (a) T =0.06 eV
and (b) T=0.03 eV. In Fig. 17, we show the continuum
given in Eq. (3.9). Cases (a) and (b) are for T=0.06 eV
and T=0.03 eV, respectively. At lower temperature, the
intensity of the continuum at the FL is decreases. This is
the reason for an increase of the intensity at FL with
lowering temperature.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have analyzed the electronic state of
the highly correlated p-d model in the viewpoint of the
composite electronic excitation associated with the Cu-0
bond. The composite operator is constructed as p&5n„,
and it is a combination of a relevant electron operator p~
and an operator 5n„describing the change of its environ-
ment. It is shown that the electronic state near the FL
close to the metal-insulator transition of oxide cuprate is
dominated by such composite excitations and that, due to
the change of the renormalized levels and mixing
strength, rapid modification of intensity distribution is in-
duced. The mean-field result gives the approximate peak
structure of intensity distribution, while the dynamical
corrections work to pin the intensity at the FL and in-
duce the transfer of state density to the FL from both
upper and lower energy regions. The intensity transfer
with carrier doping among levels, without modifying
much of the energy distances, is one of the characteristic
features in the metal-insulator transition of the highly
correlated electron system, and the behavior is well un-
derstood by means of the mixing among composite elec-
trons in the present analysis.

The characteristic features in the highly correlated
electron system have been pointed out in this paper. One
is qualitative changes of the electronic structure depend-
ing on the parameter t. There occurs the crossover from
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the composite electron p&5n„domination to the restrict-
ed d-electron r denomination in the mixing scheme for
the electronic state near the Fermi level. This may be in-

terpreted as the change from a highly correlated electron
state to a bandlike electron state. This change can be ex-
plained by the crossover between the levels of the renor-
malized composite electron level and the upper Hubbard
level. The other is the behavior of the local fluctuations.
Reflecting the highly correlated nature of the electron
system, the pair creation energies are also very much
modified due to the mutual interaction and they show
different energies from the simple energy difference
among one-particle states. However, the intensity corre-
sponding to such transitions is rapidly decreased with in-
creasing itinerancy, together with the domination of in-
traband transition processes.

The present analysis of the p-d-mixing model leads us
to three important properties of the Cu02 plane. (1) The
electronic state near the FL may be sensitive to interac-
tions which change properties of the Cu-0 bond due to
its composite character. The short distant Coulomb in-
teraction between d and p electrons may induce stronger
effects through fluctuations. Phonon effect related to
Cu-0 bonds may not be negligible. (2) There is a rapid
change of the charge fluctuations. The charge fluctuation
related to intrasite transfer is more enhanced in the low-

energy region than the local one. Experimentally, it
seems that superconductors show the maximum T, when
such rapid change occurs. It is still an open question

whether or not this kind of rapid weight shift of charge
fluctuations is related to some kind of electronic instabili-

ty at the Fermi level. (3) There is a crossover from the
composite excitation dominant mixing region to the sim-

ple p and upper Hubbard level mixing region. The
itinerancy for composite excitations becomes largest just
at the crossover point. It is also an interesting question
whether or not such a crossover is related to the suppres-
sion of the superconductivity for the highly doped region.
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APPENDIX A: FORMULA TO OBTAIN ImJ~++(co)

In order to calculate the dynamical correction
5M~++ (co) and 5M~+ (co), we first evaluate the response
function J~++(co) and J~+ (co) given in Eqs. (2.52a) and
(2.52b) by one-loop approximation. The detailed expres-
sions for —( I ltr)ImJ++ (co) and —

( I/tr)lmJ~+ (co) are
as follows. Note that J++(c0)=J+~(co)=J+~(a))
=J'++(co). We have

1——
ImJ++ (c0)=2t„fdv[ f~(v)+ fp(v+c0)]

1X o t (v+co)o t (v)+ [[o t(v+c0) —2o t(v+c0)+cr t(v+a))]cr t (v)
rpy n2 PpPs PsPs P,p',

+o t (v+co)[o t(v) —2cr t(v)+o t(v)]
PyPy PpP p PpP PP

+2[o t (v+co) —o t (v+co)][cr t (v) —o t (v)]
PpP r Psp y PpPy PJPy

—[g t (v+co)+3g' t (v+co)]o t (v)]
PrPr PyPy

2+o t(v+co)o „t (v)+ —
I [o t (v+co) —o. t (v+co)]o t (v}'2" 2 n Pop y P,Py P P

y I yl

+o t (v+co)[a t (v) —o t (v)]]PrPr Pp pp

2
2cr t(v+—co)o 2t(v) ——

[ [cr t(v+co) cr t(v+—co)]o t (v)
p r Pyrr& n Po' p r p r

yl

+o t(v+co)[o. t (v) —cr t (v)]]p r ppr 2 p r
yl

(A 1)
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1——ImJ'++(co)=2t„ f dv[ fz(v)+fF(v+co))

1
X o t (v+co)o t (v)+ j [cr g(v+co) 2—cr t(v+co)+cr y(v+co)]o t (v)

PyPy n ~ PoPo PoPs PoPs

+2[o r (v+co) —o y (v+co)][cr t(v)+ —,'cr r (v)]
PoP y PsP y POP y

' PSPr

1+o.
y (v+co)[o r (v)+ —', o g(v)+ —o t(v) ]

PoP o Pops 9 Psps

—[g ~ (v+co)+ —,'g' r (v+co)]o y (v)]

2+o t(v+co}cr g (v)+ —
I [o y (v+cu) —o t ( v+co)] rct (v)

ff r 2T n Pop r PsP y PyPy
1 1

+cr g (v+co)[cr g (v)+ —,'cr g (v)]]
popy 3 PsPy

2—2o g(v+co)cr t (v) ——[[o y(v+co) cr —t(v+co)]o f (v)
P f P f n Po" p P f

r] r]

+o t(v+co)[o t (v)+ —,'cr t (v}]]
p r po 2 P f

r] (A2)

——ImJ+ (co)= 2t„ fdv[f—F(v)+fF(v+~)]1

X cr t (v+co)o y (v)+
2 I+[o r(v+co) —2o r(v+co)+cr g(v+co)]o t (v)1

n PoPo PsPs PsPs

+cr t (v+co)[o t(v) —2cr t(v)+cr t(v)1
PyPy PoPo PoPs PsPs

+2[o y (v+co) —o g (v+co)][o y (v) —o t (v)]
PoP y P,Py pop y PsP y

—[go t (v+co)+3g' t (v+co)]cr ~ (v)]
PyPy PyPy

+o y (v+co)o y (v)+ —[[o t (v+co) cr t (v+co)]o t(—v)2
ff ff n PoPy PsP y

Y ]

+cr ~ (v+co)[o y (v) —o g (v)]]
Pypy PoPr P,Py

—2[o y(v+co)o y (v)+o g (co+v)o t(v)]
p r p p p r

y]

——[[cr r (v+co) —o q (v+co)]o g(v)
2

n Po" z p p r
y]

+cr t(v+co)[cr g (v) —cr r (v}]
P f po 2 P f

]

+[o y(v+~) cr t(v+—co)]cr y (v}
por P f Pyf

+o. ~ (v+co)[o g(v) —o r(v)]]
P Pof P f

y y 1

(A3)
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——ImJ+ (co) = —2t„fdv[ fF(v)+ fF(v+co)]
1

X o. t (v+co)o t (v)+ {+[o t (v+co) —o t (v+co)][o t (v) —cr t (v)]
1

PyPy n PpP y P~P y PpP y P~p y

+[o t(v+co) ——', o. t(v+co) —,'cr—t(v+co)]o y (v)
PpP p PpPs Psps

+cr t(v+co)[cr t(v) —-', o t(v) —
—,'o t(v)]

PpPp PpPs Psps

+[cr t (v+co)+ —,
'o. t (v+co)][o t (v)+ —,'o g (v)]

PpP y Psp y Ppp y Psp y

—[g t (v+co) —g' t (v+co)]o t (v) j

+o t (v+co)cr t (v)+ —{[cr t (v+co) —
—,'o t (v+co)]o t (v)

rr "' z n Pppy P~p yyl

+o y (v+co)[o t (v) —
—,
'o. t (v)] j

ypy PpPy 3 P Py

—2[o t(v+co)o t (v)+o t (c0+v)cr t(v)]
p p r

& p r 2 p r

——{[o t (v+c0) —o t (v+co)]o t(v)
2

n Ppr 2 p r p r
]

+o t(v+co)[cr t (v) —o' t (v)]

+ [cr t(v+co)+ ,'cr t—(v+co)]o t (v)

+o t (v+co)[cr t(v)+ ,'cr t—(v)]j (A4)

where

By definingg" t(a))= fdv[fF(v co)fF( v)+f—F(~ v—)fF(v)]—
(B2)

and

Xphoo(co
—v)o. t (v)

y y

(ASa) I„'(*—y) = ( {'P„(x),+„(y)j ), (B3)

the recurrence formulas are obtained from Eqs. (B1) and
(B2),

g' t(co)—:g' t(co)=g' t(co)=g' t(co) .
Pypy PyPy Pypy PyPy

APPENDIX B: DIAGONALIZATION OF I(k)
AND THE FUNCTION X„(co,k)

(Asb) n —1

I„'(k)=I„„(k)—g a„' (k)I„(k),
m=1

I —1

a„&(k)= I„&(k) ga&'~ (k)a„(k)I'—(k)

(B4)

I„'(k) .

As seen in Eq. (2.24), the matrix I(k) has off-diagonal
components. In actual calculation, it is more convenient
to construct the orthogonalized set {V„j from {P„j in
such a way that off-diagonal components of
( {%„(x),%, (y) j ) are all zero. We transform {g„(x)j to
{4„(x)jby

Now the equation of motion (2.12) is transformed to

i 4(x ) =J—(x ),-a
Bt

where

(B5)

(B6)

n —1

%„(x)=f„(x)—g a„(—iV)g (x),
m=1

(B1)
n —1

J„(x)=f„(x)—g a„(—iV)J (x) .
m=1

(B7)

where coefficients a„( iV) are determ—ined to satisfy
components of ( {%„(x),%„(y)j ),

Then the generalized mean field mo(x —y) and the
dynamical correction 5m (x —y ) are transformed to
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Mo(x —y) and 5M(x —y ), respectively, by the recurrence
formula,

I~ 0
(B10b)

n —1 m —1

M„=m„—g a„&(k
1=1 1=1
n —1

a*, (k)a„t(k)Mt, ,
1=1

(B8)

and

A B
(Mo +5M )I' (Bloc)

where M is either M(k)or 5M(co, k) and m is either m(k)
or 5m (co, k). The Green function of [4„]is expressed as

S t(cok, ) =I (k') 1 I'(k) .
coI'(k )

—M(k )
—5M(co, k)

(B9)

By dividing 4X4 matrices into 2X2 submatrices as

S z is obtained in the form

S =
1

1S2= co —A —B C
co D

S =ST
3 2 7

co —A —B C Iq
1

co D
—1

1B ID
co D

(B1 la)

(Bl lb)

(Bl lc)

S1

S3

S2

S4
(B1Oa)

1, 1S4= ID+ CS2 .
co D co D

The 2 X 2 submatrices A, B, C, and D are given as

(B1 ld)

t„y (k)
(B12a)

0 0B=-
b, (k) b,

0 c, (k)C=—
0 c~(k)

[M(k)+5M(co, k)]3~/I3(k) [M(k)+5M(co, k)]3~/I4(k) d, (co, k) d~(co, k)

[M(k)+5M(co, k)]3~/I3(k) [M(k)+5M(co, k)] 4~
/I 4(k) d, (co, k) d4(co, k)

where

b, (k) = 1+3b /I3(k), b2 = —1,
c, (k)=b, (k)I3(k), cz(k)=I~(k) .

(B12b)

(B12c)

(B12d)

(B13a)

(B13b)

The effects of composite electronic excitations to the p and d electrons appear in the form B(cu D) C in Eq. —(Bl la),
which is written as

and

B C=1

co D

0 0
0 X„(co,k)

(B14)

2

X„(co,k) = — [b, (k)[(co—d4(co, k))c, (k)+d~(co, k)c2(k)]+b~(k)[(co —d, (co,k))c~(k)+d3(co, k)c, (k)]]
n

X j(co—d, (co, k))(co —d4(co, k)) —d, (co,k)d3(co, k)] (B15)

The function X (co,k) appears in the expression of one-p-electron irreducible part S ~(co, k), i.e., Eq. (3.3).
7l7l
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