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An additional, quantum, particle interacting with a Bose condensate forms self-trapped “polaron” if
the interaction is sufficiently strong. This is contrasted with the case where the additional particle is
identical with those in the condensate, where the “self-trapping” would be interpreted as a consequence
of a Mott transition. There the transition to the self-trapped state, if it exists, is abrupt, unlike the im-
purity case. An external potential enhances self-trapping in the nonidentical case.

I. INTRODUCTION

Low-temperature investigations probing the behavior
of foreign particles in superfluid “He have made use of
two broad categories of impurities: 3He (e.g., Ref. 1) and
ions>* (e.g., He anions or metal cations). The Fermi-
liquid nature of the former seems unaffected while the
latter particles seem to form heavy, classical entities. As
a simple generic model of these systems, we may consider
a quantum particle interacting with a Bose condensate of
“He atoms. It is possible to imagine that a foregin parti-
cle might be “‘self-trapped” in the distortion that has been
created around it by its interaction with “He atoms. Such
a scenario is plausible if the interaction is sufficiently
strong compared to the kinetic-energy costs of creating
this new, correlated, ground state. (Whether the ground
state is actually inhomogeneous, due to the localization of
the self-trapped particle, will be considered in the con-
cluding section.) It is tempting to associate the cases of
the *He and ionic impurities with the untrapped and
trapped regimes of this model, respectively. This issue
will be clarified in this paper for a model system. In par-
ticular, the dimensional dependence will be discussed.

A subject apparently unrelated to the impurity prob-
lem is Bose ‘“decondensation” and its associated precur-
sor effects. Zero-temperature destruction of a Bose con-
densate occurs in at least two instances—the
solidification of “He under pressure and the (assumed) lo-
calization of “He in thin films at low coverages (e.g., Ref.
4). Additionally, this may occur in superconducting thin
films in a magnetic field (e.g., Refs. 5 and 6). The possi-
bility of a relationship between self-trapping and decon-
densation lies in replacing the foreign particle by one of
the bosons. Could the self-trapping of this boson signify
an instability to decondensation? Finally, with “He on
rough surfaces in mind, we consider how disorder may
encourage self-trapping to occur in local regions. Such
“Lifshitz tail states” in the condensed phase may be re-
garded as the precursor to bulk decondensation.

We will discuss the above issues in the context of the
Bose Hubbard model with on-site repulsion U and
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nearest-neighbor hopping ¢. The system is Bose con-
densed in the noninteracting case. Although the conden-
sate is depleted when a weak interaction is introduced,
the system is believed to remain a gapless fluid. At
strong coupling, however, a commensuration effect be-
comes important when the average site occupancy, #, be-
comes close to an integer. The system is locked into a
uniform state with integral site occupation if the hopping
integral ¢ is small compared with U. There is an energy
gap (Eg,, S U) for excitations because such excitations
involve particles hopping out of a site creating a potential
well of depth U in the local Hartree energy. At a site
connected by m hops to the center of the localized state,
the wave function should be of the form (¢/E ;)™ (using
perturbation theory) so that the particle has a localiza-
tion length Ay,.~1/In(E,,, /). Similarly, there is a gap
for the addition or removal particles so that the system is
incompressible. This Mott insulating state becomes un-
stable (E,,,—0) when ¢ becomes comparable to U so
that the cost in kinetic energy is too great to localize the
particles. The converse process of the particles becoming
localized as the interaction is increased may be thought
of as being a self-consistent form of self-trapping.

Indeed, a variant of the Hubbard model with infinite-
range hopping can be solved in a mean-field approach
and the transition between the Mott insulator and the
liquid phases is demonstrated in that case.” The hard-
core limit (U— o) has recently been solved exactly by
T6th® and Penrose,’ who find that the ground state is al-
ways condensed away from integral filling. For general U
and ¢, the Hubbard model has been solved in one dimen-
sion,'® showing a transition from the gapless to the
gapped state occurs when U/t >4V'3 at an average occu-
pancy of unity. [This should be contrasted with the one-
dimensional (1D) model with 8-function repulsion where
no such transition occurs.'"13] In higher dimensions
where the gapless state is believed to be superfluid, there
are unfortunately no exact solutions. Nevertheless, Fish-
er et al.” have used scaling arguments to make predic-
tions about the critical exponents for such quantities as
the superfluid density. Chui'* has also studied the

301



302

solidification problem in a continuum using a density-
functional theory.

Another solvable limit of the Hubbard model has been
investigated by Lee and Gunn.'> The limit consists in
taking U—0 and #— o simultaneously, so that the
product (the Hartree potential) remains constant. In this
limit the ground state is always condensed and can be de-
scribed by a nonlinear Schrodinger equation. Corrections
away from this limit may be calculated using a Bogo-
liubov theory. An additional advantage of this limit is
that an inhomogeneous potential can be treated in the
same framework. The inclusion of disorder raises the
possibility of an Anderson-localized insulating phase—
the compressible “Bose glass.”'®7 As already mentioned,
the conclusions of this paper would have implications for
the nature of the insulating phase.

Let us now consider the dimensional dependence of the
self-trapping. We will only examine the instability of one
particle leaving the condensate to form a localized state
by itself. This process is a highly excited process in the
limit of weak coupling, U —0. (Consideration of the case
with an identical particle being self-trapped is complicat-
ed by the issue of orthogonality of the states'’ and will be
discussed later in this paper.) A crude estimate of the
cost in kinetic energy is t7n“’“, approximating the size of
the localized state with the interparticle spacing. Anoth-
er energy cost comes from the local distortion of the con-
densate necessary to accommodate the localized particle.
An estimate using the compressibility of the condensate
is #icn'/?. Since the reduction in repulsive energy is
~ Un, the instability is expected at low density in one di-
mension and high density in three dimensions and above.
(In contrast, the different dimensional dependence of a
Coulombic interaction means that the Wigner crystalliza-
tion of electrons is expected to occur at low density for
d =1,2,3.) It is interesting to note that any attractive
shallow potential, such as the depression created by the
particle in the condensate, has at least one bound state in
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one and two dimensions.'®!° We will discuss the

relevance of this general result to our problem later.

By restricting the discussion to only one localized par-
ticle, one cannot approach the superfluid-solid transition.
For the homogeneous system, the particles may localize
together at the same time so that there is no intermediate
phase where only a fraction of the particles are self-
trapped. Alternatively, there may be an instability to a
cluster of self-trapped particles whose size diverges as the
transition is approached. Nevertheless, single-particle in-
stabilities should give an absolute limit on the stability of
the condensed phase. Moreover, it is conceivable in an
inhomogeneous system that the instability would occur
preferentially in certain places while the rest of the sys-
tem remains condensed. Therefore, it is reasonable to ex-
amine this restricted problem as a starting point. This
coexistence of localized and condensed particles is related
to the “inert layer” model for “He films on Vycor. Alter-
natively, in the context of localization theory, the one-
particle instability considered here can be regarded as the
remnant of the Lifshitz tail states of the Bose-glass phase.

IL. AN IMPURITY PROBLEM:
NONLINEAR SCHRODINGER EQUATION

For the sake of generality, this “impurity” atom can be
given a mass m’' and repulsive interaction u’ different
from the condensate particles. In this section, a varia-
tional wave function will be used to investigate the insta-
bility. We will find that a weakly trapped state exists for
a strong interaction or heavy impurity. In fact, as we will
see in the next section, this situation does not arise if the
localized particle is identical with the rest because Bose
statistics tends to favor strong overlap between occupied
states, leading to Bose-Einstein condensation.

As in our previous paper,'®> we will adopt a variational
approach in the continuum limit. The Hamiltonian is

g9>9;

impurity
wave function

condensate
wave function

0

FIG. 1. Schematic wave functions for the trapping regime.
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Let us consider the variational wave function

N
Y=—3m R I oir), @

i=1

where ¢(R) is the impurity wave function normalized by
f #*dr=1 (unlike the condensate wave function ¢ which
is normalized to unity per unit volume, see Fig. 1). (Note
that, although we will be considering a spatially localized
wave function, the true ground state may be a superposi-
tion of such states; this point will be discussed further in
the concluding section.) Let us use up as the unit of ener-
gy and the healing length A of the condensate as the unit
of length (A=1). In order to maintain the same normali-
zation condition, let us use a dimensionless wave function
é—A%"2¢. The coupled Euler-Lagrange equations for
the two wave functions are

1 B
——V2+:p2+—— 2 ¢=Egp,
2 p}»d¢

3)
(—3aV2+Bp')p=cd ,

where a=m /m' and B=u'/u. The mass ratio « is small
when the impurity is massive. The interaction ratio 3 is
large when the impurity is strongly repelled from the oth-
er particles. These equations always have the trivial solu-
tion of a delocalization impurity (i.e., constant ¢ and
e=p). This is, in fact, the only solution in our previous
dense, but weakly interacting, limit where the number of
particles in a healing volume diverges: pA?— . Howev-
er, away from this limit, the last term on the left-hand
side of the first equation represents the “feedback” pro-
cess where the impurity atom causes a local depression in
the condensate. From the second equation, this distor-
tion in the local Hartree potential acts as a well to trap
the impurity in a bound state (e <f). Therefore, it is
reasonable to expect a self-trapped ground state to exist
when the feedback is strong enough (e.g., a strongly
repulsive impurity with 8>>1).

Is there a perturbative solution to the pair of nonlinear
equations (3) which marks the onset of the self-trapping
instability? This corresponds to the case of weak trapping
where the distortion of the condensate is small and the
size of localized state A, is consequently large. More
quantitatively, the effect of the impurity feedback can be
treated perturbatively if it is much smaller than the Har-
tree term. Since the magnitude of ¢ should scale as
Ap2’?, the dimensionless quantity n=PB/pA. has to be
much less than unity. Let us use 7 as an expansion pa-
rameter for the distortion in the condensate so that the
equation for ¢ can be linearized. Write

P=@o+ne,+0(n?)

and

E=E,+nE,+0(n}) .

Since the condensed limit should be recovered as n—0,
@o=1+0(1/V), E4=1, and E; ~O(1/V). The linear-
ized equations are

(—1V2+2)p = —Apd8% ,
(—1aV2+2Bng)p=(e—B)é .

Eliminating the condensate distortion from the equations,
one obtains a nonlocal nonlinear Schrédinger equation
(NLSE) for the localized wave function:

(4)

[—4v*=2¢ [ Gur—r g ar o=z, (5)

where g =pB>/apA? is the coupling constant for self-
trapping. It should be noted that g is not necessarily
small in this perturbation theory. In a d =2 tight-
binding model, it translates into g =U/t. We can see
that the feedback is strong when the kinetic-energy cost
is low (massive impurity) or when the repulsion is strong.
We can also see from the form of the coupling constant of
the feedback that the mean-field theory of our previous
paper'” (which has no feedback) breaks down when the
number of particles in a healing volume is small.
€=(e—pB)/a should be negative for a self-trapped solu-
tion. The nonlocal kernel G (r) is the Green’s function
satisfying

(—1V242)G (r)=8(r) . (6)

This is a short-ranged kernel because it decays exponen-
tially for separations much greater than A /2. In one di-
mension, its asymptotic form is %e‘zl"l. In two dimen-
sions,

G(r)=—K,(2l1]), 7

1
T
where K, is the zero-order modified Bessel function of
the first kind.

Equation (5) minimizes the energy functional:

Fl¢]=1 [1V¢l%dr—g [ [#*D)G (t—r)¢¥(r )drdr’ .
(8)

The tendency for self-trapping is clearly seen as the at-
tractive potential term in this effective energy. Let us
start by discussing the local case, i.e., 2G (r)=8(r). This
corresponds to a condensate of vanishingly small healing
length. The kinetic term scales as 1/A2 while the attrac-
tive potential term scales as —1/A{_. Therefore, F
should vary like a /A% —b/Af_ when one performs a
scale transformation on any trial wave function. Hence,
one expects that a stable trapped state exists for d =1.
For d =3, although a delocalized state may be stable,
there should be a state of lower energy which collapses to
a point (A),,—0, E— — ). (This is known as Derrick’s
theorem.) The marginal dimension is two where a critical
coupling constant g, is necessary for collapse.

It is well known that the 1D local equation can be
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solved exactly and the answer verifies the argument given
above. The solution is ¢=sech(x /A,,.)/(2A;,.)!"? with
§=—1/2A}.. The localization length is A,,,=2/g. The
distortion in the condensate is —(ag?/8B) sech?(x /A,y ).
Therefore, the disturbance in the condensate is perturba-
tive for g2<<8B/a. Since the localization length be-
comes much greater than the healing length, this weak-
trapping regime is expected to survive when the nonlocal-
ity of the kernel is restored.

In the 2D problem, a variational criterion can be estab-
lished for the critical coupling g, above which the NLSE
encourages collapse. This is of interest because it will be
argued that the nonlocal case has self-trapped solutions
above the same critical value. For the local equation, the
functional in (8) becomes

Floc[¢]:%fk2‘¢k‘2

dk g dk
(2m)? 2 f lpktz w2’ ©

where ¢, and p, are the Fourier transforms of the wave
function and density, respectively. The scale transforma-
tion discussed above is

d(r)—¢'(r)=kd(kr) , (10)

so that k <1 corresponds to stretching the wave function

and «>1 corresponds to a contraction. As a result,
" 1y — 2

PPk =Px/x and Fi,.[¢"]= 36T —gR,), where

T=1[|ve|%dr,
Ro= [ 4'dr .

It is obvious from this argument that the collapse occurs
if a starting wave function ¢ can be found such that
g >T/R,. In other words, the critical g, should be the
value of (T/Rg),, At first sight, one might conclude
that the minimum is zero corresponding to the nontrap-
ping solution of ¢=1/V /2, This is incorrect because the
scale transformation (10) on a constant ¢ does not pro-
duce collapse. Moveover, one cannot treat the constant
wave function as the k—0 limit of a spatially varying
wave function because the ratio T /R, is invariant under
the scale transformation. Therefore, we have to be care-
ful about the Hilbert space of wave functions in which
the variational argument is employed. Since any trap-
ping solution to Egs. (3) should have exponential decay
asymptotically, an appropriate choice is the space of
smooth square-integrable functions defined on the infinite
plane. For instance, a Gaussian ¢ gives T /R, =27 and
d~(1+r)e " gives a value of (144/77)w. In other
words, each square-integrable wave function is in the Hil-
bert space but its infinite-size limit is not so that there is
no paradox in the various limits having different values of
T/R,. A lower estimate of g. /27 ~0.93 can be obtained
computationally. This can also be checked by attempting
to solve the NLSE iteratively.

In order to progress further, the nonlocality of the ker-
nel G (r) has to be restored. The scaling argument above
breaks down when A,,. becomes comparable to the range
of the kernel A/2. The attractive potential term no
longer decreases indefinitely so that the collapse of the
wave function is halted for d = 2, we expect that a bound

(11)

state of size A may exist for the nonlocal NLSE at large g.
However, the NLSE is invalid for tightly bound solu-
tions. These will be discussed in the next section. Never-
theless, the effect of the nonlocality is more pronounced
in the marginal dimension of two—it manages to stabilize
weak-trapping solutions with A,,, much greater than the
range of the kernel.

To see how this assertion can be proved, consider the
nonlocal contribution to the variational functional F (8).
In Fourier space,

dk ¢ f lol®  ax
(2n)? k+4 2m)?
The nonlocal corrections F —F,,. will be positive and
hence repulsive at every k vector so that even long-
wavelength components may be stabilized against col-
lapse (at marginal dimension). Since we are concerned
with weakly trapped solutions, we can focus on these
small-k contributions. Performing a Taylor expansion in
k for the kernel, we can write F as

Flg]=1 [ Kk2g,[? (12)

— g 21,2 dk

F=F,  +< ket o )/ . (13)
loc 8 flpk’ ( )(277_)2

Performing the scale transformation (10) for a given
shape, the functional varies as

F(K)Z%K2(T—gRo)+%gK4R{)+O(K4) ,

(14)
Ry= [|Vp|¥dr .
Now, suppose that the stable weak trapping exists for a
given coupling g and use it as the starting wave function
¢. This minimizes F so that 3F /0k=0 at k=1. This im-
plies that F,;,=—gR/8 and
T/R,
g=——. (15)
1—Ry /2R,
Note that the ratio R, /R varies as 1/A, while T/R,
does not. This means that the above equation can always
be satisfied for any g > (T /Rg)pi, With a wave function
of any shape by an appropriate choice of size for the
wave function. The optimum wave function (which mini-
mizes F_;, ) should also maximize Ry and R, /R for a
given g. Such a wave function should therefore minimize
the numerator in (15). Hence, we come to the conclusion
that the critical coupling g. for the existence of a self-
trapped solution in the nonlocal problem is the same as
the one at which collapse occurs for the local problem.
Moreover, the scaling behavior of R /R, in (15) suggests
that the size of the trapped state diverges as

}\'100~(g _-gc)AI/z (16)

as the threshold is approached from above (g —g. <<g).

How is this weak trapping related to the bound states
of a shallow potential well ¥ <0? Comparing with our
NLSE, we should make the correspondence:

V(r)H—ngG(r—r’ )X (' )dr'

so that, using (6), the strength of the well is [ |V|dr=g.



46 POLARONS AND BOSE DECONDENSATION: A SELF-... 305

In one dimension, the size of the bound state is A, ~1/g
with energy €~ —g?2. This is therefore very close to the
solution of the NLSE. In two dimensions, the bound
state of a shallow well is exponentially larger than the
size of the well I:

AMoc/I ~e'/% with E~-117e_1/g . 17

If this result could be applied to the NLSE, it would im-
ply that the bound state is much larger than the distor-
tion in the condensate. However, the first equation in (4)
shows that such a bound state would enlarge the distor-
tion. An iterative procedure starting with this wave func-
tion will lead to a delocalized solution. Indeed, the weak-
ly trapped solution of the NLSE is supported by a distor-
tion of the condensate of a similar size. Hence, the
shallow-well bound state (g—0) cannot be a self-
consistent solution of the NLSE, giving further support
to the above conclusion that a finite coupling g ~0O (1) is
necessary for self-trapping.

What is the effect of inhomogeneity on the trapping of
the impurity? To be specific, let us consider a local defect
in a two-dimensional system, described by a potential
well oV (r) for the bosons and o'V (r) for the impurity.
An interesting competition arises when the two coupling
strengths o and o’ have the same sign. Both the impuri-
ty and the condensate are attracted to this well. On the
other hand, the interaction term u’ would prefer to find
the impurity at a region of low condensate density. If the
potential is weak (0,0’ << 1), we can discuss this problem
in the weak-trapping framework as above. Potential
terms have to be added to (5) so that the nonlinear
Schrodinger equation becomes

~Lvi Ligwior—pon
2 a

—2g [Gr—r)¢%dr |¢=%p, (18)

where W =0V —E,+ @} is the residual potential defined
in our previous paper.!” Recall that the eigenstates of
this potential have non-negative energies and that the
low-lying states are not expected to be strongly localized.

To investigate the possibility of bound states in this
two-dimensional problem, we will use again the result for
the single-particle Schrodinger equation that the integrat-
ed strength of a potential with bound states should be
negative.'®!® In fact, the strength of the residual poten-
tial f W dr should be zero—it cannot be negative be-
cause there are no Lifshitz tail states, nor can it be posi-
tive since the spectrum has the lowest eigenstate at zero
energy. This means that the system described by (18) will
always have a bound state if

(o'—Bo) [ V(rdr<o0. (19)

Since we are discussing a potential well, the bound state
exists if o' /o > 8. As expected, the impurity atom will be
trapped by the potential well if it is sufficiently attracted
to the well compared to the other particles. Therefore,

we can see that the critical g, becomes zero when the
above condition is satisfied. It seems that the self-
trapping effect becomes irrelevant to the onset of bound
impurity states. If condition (19) is reversed in sign, then
the impurity atom will not be trapped at the defect site.
Instead, the onset of a bound state will probably occur
elsewhere by the self-trapping mechanism when g >g..
The sensitivity in two dimensions to inhomogeneities dis-
cussed here seems to be quite a generic property. It
should be related to the diversity of experimental results
on superfluid thin films on various substrates.

In summary, the impurity problem has weakly trapped
states for d =1,2. In three dimensions and above, a simi-
lar argument suggests there are trapped states are tightly
bound on the scale of the healing length when the cou-
pling is sufficiently strong. Indeed this result is found in
the problem of an electron coupled to the acoustic pho-
nons of a lattice.?’ Toyozawa investigated the case of
strong electron-lattice interactions. When the zero-point
fluctuations of the phonons are included, the delocalized
ground state may have an abrupt transition from a state
localized to a lattice site. (There is no healing length in
the lattice problem so that the lattice spacing acts as the
short-distance cutoff.) This occurs when the Debye fre-
quency of the phonons is less than the electron band-
width. There is also a jump of several orders of magni-
tude in the effective mass of the electron. The hopping
matrix element becomes heavily renormalized:
w0 —> oSy, where S = (@ (R)|® (R+8)) is the overlap
integral for the wave functions of displaced lattice distor-
tions when the impurity with momentum k hops from
site R to its neighbor. A self-consistent calculation shows
that there are only solutions for S close to unity or zero.
The calculation is facilitated by the collapse of the elec-
tron wave function onto a site so that it does not have to
be variationally determined as well.

III. A QUESTION OF IDENTITY

In the previous section, a nonlinear Schrédinger equa-
tion has been set up to describe a weak-trapping regime
for an impurity atom in two dimensions. We will now
discuss its analogue for identical particles. (We will con-
tinue to use the healing length A as the unit of length and
up as the unit of energy.) A hint that the system of iden-
tical particles is radically different is the sensitivity of the
impurity system to inhomogeneities which should be con-
trasted with the result of our previous paper!” that the to-
tally condensed state is stable to the introduction of a
random potential in the limit g—0. In fact, we will see
that weak trapping is absent when Bose statistics are
reinstated for all particles.

The variational wave function (2) describing the system
with one particle outside the condensate forming a local-
ized wavepacket has to be symmetrized now:

1

N
\ll: 3, 2
(N+1)1/2VN/2C1{/2 syzmd’(fjthl)il;ll‘l’(r,) (20)

where Cy is the normalized integral:
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-1+ N -
Cy=1+7 [gpdr=1+pls|*, 1)

p is the average number of particles in a healing volume
in our units. S is therefore defined as the overlap between
the condensate wave function and the localized state.

The Hamiltonian has a rather complicated expectation
value:

(W|H|W)=[NCy_ Tog+L(N —1)Cy_,R,+2pST,
+T,,+2R,+2p(1—1/N)R,S1/Cy , (22)

where T ’s are the matrix elements for the kinetic energy

dr
To==1[eV" 7
To=—1[oVi¢dr, (23)

T11=——;_—f¢V2¢dr )

and R’s are the interaction matrix elements
dr
R,= f¢47, Ry= [¢’¢dr, R,= [¢*¢%dr. (24)

It should be noted that integrals such as S, Ty, and R,
would be absent for fermionic problems where the parti-
cles occupy mutually orthogonal states. We will see that
these overlap integrals are also responsible for the
difference between the system of identical particles and
the impurity system discussed previously.

To find the variational ground state, we have to mini-
mize #=(H). Lagrange multipliers E and & will be
used to constrain the normalization of the condensate
wave function and the localized wave function as in the
previous section. The general Euler-Lagrange equations
involving #, E, and € are quite complicated. It can be
checked that they contain the totally condensed state as a
solution. However, we are interested in a state with a lo-
calized ¢. By imposing the conditions that
@(r)—@(w)=~1 and ¢(r)—0 asymptotically, # and E
can be determined in terms of the remaining Lagrange
multiplier €. The equations can then be simplified to

—%V2<p+ e+S3e*—1)1p=¢,

2
2+__ 2
¢ p¢
192 2y 2 2 ' (25)
—1Vip+(2—pS*)p°d—2Sd°p=¢'¢ ,

where €' is a linear combination of the Lagrange multi-
pliers. We can see that these coupled equations reduce to
the impurity case (3) with a=1 and B=2 if the terms in-
volving overlaps are dropped. In other words, the corre-
sponding coupling constant is g =4/p.

This comparison leads us to ask whether there is a
weak-trapping solution in this identical case when the
number of particles in a healing volume drops below 2 /7.
Recall that the feedback mechanism for self-trapping re-
quires the special state ¢ to localize at a local depression
of the condensate. This means that the sign of the second
term in the ¢ equation in (25) should be positive. There-
fore, the condition

pSt<2 (26)

has to be satisfied for a trapped state to exist. However,
for a weakly localized state of size A, >>A=1, its over-
lap with the condensate is large: S ~A}/2. Hence, we do
not expect a perturbative solution to exist for the self-

trapping of identical particles.
IV. DISCUSSION AND CONCLUSIONS

The results of Sec. II predict that there will be a self-
trapping transition for foreign particles coupled to a con-
densate. Taking the condensate to be that in “He, then it
seem empirically that *He and the ionic systems are on
opposite sides of g, —with the ions self-trapped. In fact,
most of our effort was in investigating the marginal case
of two dimensions, as naively there was the possibility of
a considerable disparity between the extent of the wave
function of the self-trapped particle and the distortion in
the condensate. Of course, this is not relevant in the case
of two-dimensional ions, as they will stick to the sub-
strate, in preference to “He; however, it is relevant to the
consideration of *He in “He films.

First, we return to the issue of localization of the self-
trapped particle. In the limit of Ref. 15, i.e., #— o and
U —0, where there are no quantum fluctuations (with
scaled appropriately to yield a finite g), the problem
reduces to a nonlinear Schrodinger equation, as in our
approach leading to localization. However, in the pres-
ence of quantum fluctuations it is an open problem
whether the ground state is inhomogeneous or not, in the
sense of being a superposition of wave functions of the
form of Eq. (2) centered at each point in space. Even in
the homogeneous case, the true ground-state wave func-
tion is likely to contain correlations between the extra
particle and the condensate of the form derived, for
gRg.-

For the remainder of this section we will continue the
discussion of the role of the identity of the self-trapped
particle. We concluded that there would be no weak-
trapping solution for the case of an identical particle.
However, would the system support a strongly localized
state at lower densities? We will confine the discussion in
this paper to the implications of the continuum equations
(25). (This question will be addressed in a lattice model in
future publications.)

Suppose that the coupling constant g is much larger
than unity so that a tightly bound state is formed in the
corresponding impurity problem. We can now estimate
how the overlap terms in (25) may alter such a solution.
The most dangerous term to the self-trapping mechanism
seems to be —S¢ in the first equation which acts as a
source for the condensate wave function wherever the
special state is localized.

A crude estimate of the quantities involved can be ob-
tained from the length scales, L 9 and L, which are the
sizes of the condensate distortion and the localized state,
respectively. L, is expected to be of the order of the
healing length. Let @ be the average of the condensate
wave function @ over this region. For a tightly bound
state, the distortion in the condensate should be large so
we should expect § << 1. The wave-function overlap can
be estimated as S ~@L 4 since ¢~ 1/L, in d =2. Look-
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ing at the coupled equations (25) in the region of the dis-
tortions, one can see that these two scales should be
roughly balanced according to the equations

1/2L2 —25/pLy+(PL4)/Ly=0,
1/2L3+2¢"/L ,—2$L4)/LL=¢"/Ly .

The last terms on the left-hand side originate from the
overlap terms. The dangerous term mentioned above
turns out to be small when the coupling constant is large.
Therefore, it is not unreasonable to expect a strongly lo-
calized state to exist when the repulsion among the parti-
cles becomes sufficiently strong.

It is difficult to extract further information on the
strong-coupling limit where the spatial variation of the
wave functions occur on the scale of the healing length.
This limit corresponds to the case where there are few
particles in a healing area. Since our variational ap-
proach is essentially a mean-field theory that does not
consider zero-point fluctuations, it is only expected to be
reliable when the distortions in the wave functions occur
over length scales much larger than the healing length
(i.e. weak-trapping case). Therefore, it is not supposed to
be reliable in the strong-coupling limit. We will simply
conclude this discussion by speculating the existence of a
single-particle instability in the Bose system. This insta-
bility should give an absolute limit on the stability of the
condensed phase to a Mott transition.

Finally, we should note that the result with the identi-
cal particle has an implication in the presence of a ran-
dom potential. It implies that there will be no “large” lo-
calized states coexisting with a condensed Bose system,
there will be only rather strongly localized Lifshitz tail

states.

To conclude, the main results of this paper concern the
self-trapping of particles coupled to a Bose condensate
and the influence of statistics on those results. In particu-
lar, the relation of decondensation of the pure Bose sys-
tem to the self-trapping.

We showed that, for a foreign particle, the wave func-
tion obeyed a nonlinear Schrédinger equation which was
nonlocal on the scale of the healing length of the conden-
sate. We found that this nonlocality prevented the col-
lapse of the self-trapped state that occurs above a critical
coupling constant in the local case. *He in *He and ions
in *He are on the non-self-trapped and self-trapped sides
of this transition. It may be possible to tune films of *He
in “He through the transition by varying the *He cover-
age.

We found that if the foreign particle was replaced by a
boson identical with those in the condensate, there were
no weakly self-trapped solutions and we were led outside
the validity of our approximations. The overlap between
the putatively self-trapped boson and the condensate, S,
played a crucial role showing the influence of Bose statis-
tics as commented upon by Anderson.!” Finally, we not-
ed that this work predicts the lack of large Anderson lo-
calized states coexisting with a condensate.
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