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Composite-operator approach for the p-d-mixing model of oxide suyerconductors
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A formulation of the p-d-mixing model of oxide superconductors is presented by introducing compos-
ite operators that describe electronic excitations associated with the Cu-0 covalent bond. A conduction
band developing inside the charge-transfer gap with hole doping can be understood as the band formed
by mixing among p and d electrons and these composite electronic excitations.

I. INTRODUCTION

The high-T, superconductivity of cuprate oxide super-
conductors appears only in an intermediate metallic re-
gion close to the metal-insulator transition. ' The elec-
tronic state realized in this region is one of the central is-
sues to be clarified in order to understand the mechanism
of the high-T, superconductivity. From experimental
analysis of photoemission, electron-energy-loss spec-
troscopy, x-ray absorption spectroscopy, ' and infrared
optical spectroscopy, ' ' a highly correlated p-d-mixing
model is known to be suitable' to describe the electronic
state of these cuprate oxides. There are three important
interactions to determine the electronic state of those sys-
tems, a strong intra-atomic Coulomb interaction at the
Cu site ( U term), a large p-d mixing (t term), and a short
distant Coulomb interaction between p and d electrons ( V
term). The strong intra-atomic Coulomb repul-
sion ' ' U induces the Hubbard splitting in the d
level. The insulator gap is a charge-transfer
gap ' ' ' ' ' between p and the upper Hubbard d
levels. Starting from the p-d-mixing model, there are
many theoretical works' discussing the nature of the
electronic state in oxide superconductors and the effects
of the above-mentioned interactions. It has been argued
that the model may be reduced into a simple Hubbard
model, * a t-J model, or a Heisenberg-Kondo mod-
el. ' It is also argued that the realized normal state
may be a conventional Fermi-liquid state, ' a
resonating-valence-bond state, ' or a marginal Fermi-
liquid state. The nature of the electronic state still
remains as one of the controversial subjects in the oxide
superconductor.

In the previous papers' we investigated the doping
dependence of the electronic state by starting from p and
d electron atomic levels and by including the p-d mixing
and dynamical corrections due to fluctuations. The
analysis indicates that the electron density of states is
transferred from the original p- and d-electron levels to
the Fermi level inside the charge-transfer gap by forming
a highly correlated coherent electron state which is a
bound state of a p electron and fluctuations. However,
the approach presented in Ref. 19 confronted a difficulty
in the appearance of the negative density of states with
increasing carrier doping because of insufficient inclusion
of contributions from the coherent states developed. In

this paper, we propose to deal with this bound state from
a slightly different viewpoint.

The analysis of Ref. 19 indicates that the p-electron ex-
citation near the Fermi level is very much influenced by
charge and spin states of neighboring Cu ions due to
large covalency between p and d electrons. The energy of
a p-electron excitation at an 0 site may largely fluctuate,
depending on states of neighboring Cu ions. In such a
situation, it may be more suitable to introduce electronic
excitations relating to both Cu and 0 ions, instead of
treating only p- and d-electron excitation at each lattice
as primarily independent ones. Then we are led to intro-
duce composite electronic operators constructed from p-
and d-electron operators in order to describe such elec-
tronic excitations associated with Cu-0 bonds. The in-
troduction of these composite operators does not mean
adding operator degrees of freedom in the formalism but
corresponds to a procedure of choosing suitable asymp-
totic fields, in the field-theoretical language, for bound
states which appear in addition to fundamental particle
states. Observed quasiparticles are expressed by linear
combinations of those field operators. One may regard
such electronic operators as to describe excitations from
states constructed by configuration mixing, since they de-
scribe the excitations from the ground state composed of
p-d covalent mixing states and surrounding charge and
spin states.

Once one is allowed to introduce such composite elec-
tronic excitations, we immediately have several p elec-
tronic excitations associated with a Cu-0 bond (or Cu-0
cluster). In addition to the original p-electron excitation,
we have p-electron excitations accompanied by charge
and spin fluctuations of d electrons and those accom-
panied by charge-transfer fluctuations (i.e., p
electron —d-hole pair creations (or vice versa)). That is,
near the p level, several possible excitation levels overlap
and mix each other. We can expect a variety of phenom-
ena due to change of mixing strength of each component
according to physical parameters such as carrier intensi-
ty, temperature and gap energy, etc.

This paper aims at presenting the treatment of the
above-mentioned composite electronic excitations in the
framework of the operator formalism. Since operators
describing composite excitations do not follow a simple
algebra of the creation and annihilation operators, a sim-
ple diagram method based on Wick's theorem cannot be
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applied. We will present a general method to identify the
self-energy of composite excitations. There are several

requirements which the self-energy must satisfy. The
Hermiticity of the real part of electron propagators and
the positive definiteness of the spectral functions are
necessary requirements. If the above conditions are not
satisfied, we have the violation of unitarity and easily
have the negative density of states. The difficulty in im-
proving the Hubbard approximation by higher-order
correction lies in the fact that one may easily confront
the appearance of the negative density of states in the cal-
culation. In our scheme, such a difficulty is handled by
introducing a generalized self-energy. In the subsequent
paper, we will present results of detailed numerical cal-
culation based on the formulation of this paper. We will
see that complicated change of electronic states near the
metal-insulator transition of oxide superconductors is
more easily understood as mutual interactions among p
and d electrons and composite electronic excitations on
Cu-0 bonds. It will be shown that the band at the Fermi
level has, in fact, a large component of composite elec-
tronic excitations.

In the next section, the general framework is presented
for the treatment of composite operators. The p-d-
mixing model is used. A notion of generalized self-
energies and generalized mean fields for composite excita-
tions is introduced. In Sec. III, explicit forms of static
parts of the self-energies (i.e., mean-field parts) are ob-
tained in the p-d-mixing model. Dynamical corrections
for the self-energies are evaluated. In Sec. IV, fluctua-
tions which are necessary in the formula in Sec. IV are
evaluated. In order to satisfy sum rules required from the
operator algebra, the formulation by use of relaxation
functions is developed. Section V is devoted to conclud-
ing remarks. There we shortly discuss what kinds of phe-
nomena are expected from the present formula and clari-
fy why we have to include the processes presented in Sec.
III. The detailed numerical calculation using the present
formalism will be presented in the subsequent paper.
The analysis including the V term will be presented else-
where.

II. COMPOSITE OPERATOR
AND GENERALIZED SELF-ENERGY

intra-atomic Coulomb repulsion. The operator
represents the n& = l~n& =2 restricted d electronic tran-
sition. We neglect the transition to the lower Hubbard
level. The operator p, is an abbreviation,

p, (x) = t( i V—)p (x),
with

t'(k) =4t'y'(k),

y'(k) =1+y)(k),

y, (k) = —
—,'(cosk„o+cosk a ) .

(2.4)

(2.5a)

(2.5b)

(2.5c)

[yi, (x), yt, (y) j
= —2+(cr")„yi, (x)5(x—y),

a
i p( —x)= ep(x)+yi, (x), (2.6)

i —yi(x) s=„rt(x) ,'o "n—„—(x)p,(x) .
a

(2.7)

Here

and

o"=(—l, o ), o„=(l,o ) (2.8)

n„(x)=d (x)o„d(x) . (2.9)

The component with p=0 represents the charge-density
operator of the d electron and that with p = 1,2, 3
represents the spin-density operator. In Eq. (2.7), the
summation with respect to p is understood. In Eqs. (2.6)
and (2.7), the spinor notation is used for electron fields
and cr"p, (x) means, for example,

(o "p,(x)), =g(cr")„p„(x) . .

The equations of motion for p and d electrons are ob-
tained from the Heisenberg equation i (8/Bt )p (x)
=[p (x),H] and i(B/Bt) yt (x)=[g (x),H] by use of the
anticommutation relation,

[p, (x),p,. (y)] =5(x—y)5, ,
and

c.„=a&+U (2.3)

with c& being the energy of the d level and U being the

Let us consider the p-d-mixing model of oxide super-
conductors without the V term. The model is given by
the following Hamiltonian:

H= J dx[ ,'E„g—t(x)yi(x)+E p (x).p(x)

+pt(x) g(x)+yi (x) p (x)] (2.1)

where the electron operators are in the spinor notation,
the operator yi(x) is given by the d electron operator as

g (x)=d (x)d (x)d (x)

with o. being a spin index, and

We introduce a composite operator p„(x) defined by

(2.10)p„(x)=py(x)5n„(x),

where 5n„(x)=n„(x)—(n„(x)) with ( ) being the
thermal average and

py(x)=y( —iV)p(x) . (2.11)

In the previous papers, ' we have shown that repetition
of the p electron and fluctuation loops gives rise to a state
at the Fermi level. We can regard the electronic excita-
tion described by p„(x) as the p electronic excitation ac-

companying charge (p=O) and spin (p=1,2, 3) fiuctua-
tions of neighboring d electrons. We treat, in the follow-

ing, p (x), yt(x), and p„(x) on an equal footing.
Let us introduce the following notation:
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p(x)
r(x)

f„(x)=
( )

po(x)

(R g„(x)j& (y) ) =X&.&(ic} )(R P„(x)P,.(y) ),
(2 12)

we have

S«.(co,k)(c0—X (co,k))c.i=I«(k) .

(2.22)

(2.23)

where

r (x)=&2!n g(x)

with the normalization being determined to satisfy

( [r(x),rt(y}J ) =5(x—y),

(2.13}

(2.14)

The matrix I„&(k) determines the normalization of the
electron propagator. Let us call the matrix I as the nor-
malization matrix. Since the components of f„(x) con-
tain composite operators, I„&(k) is not the identity ma-
trix. Therefore, although X(co,k) and Xt(co, k} satisfy the
relation

Xt(co, k)« = [X(c0',k)i„J', (2.24)

and

p, (x)=crpr(x)n(x) (2.15)

po(x)=pr(x)5n(x) . (2.16)

The operator p, (x) represents the p electron excitation
accompanying the Cu-spin fluctuation and po(x)
represents the p-electron excitation accompanying the
Cu-charge fluctuation. In this section we develop a gen-
eral scheme to obtain the propagator of P„(x). We will
define the self-energy for the operator g„(x).

Let us suppose that we identify electronic excitations
described by f„(x), in which certain composite operators
are included. The choice of g„(x) arises from the physi-
cal consideration of which kinds of components describe
the main distribution of the electron density of states. By
use of the Heisenberg equation, we may have equations of
motion in the following form:

Eq. (2.24) does not guarantee the positivity and hermitici-
ty of the spectral functions. This indicates that, when
one applies successive use of equations of motion to
define certain mean fields and to include dynamical
corrections, one easily violates the positivity of spectral
functions, unless approximations are properly done. Spe-
cially the violation of Hermiticity in the real part of prop-
agators in successive use of equations of motion is the
serious problem.

Instead of calculating the self-energy itself, we consider
more symmetrical functions with respect to field opera-
tors. First notice that, by applying Eq. (2.23} to Eq.
(2.19) of the self-energy, we have

(X(co,k)I(k))«=([j„,g, })+(Rj„5j,), (2.25)

where the notation ( ) indicates the Fourier transform of
the vacuum expectation value for the corresponding
operator product and the variables co and k are omitted.
Here

(2.17)

Let us consider a retarded propagator (Rg„(x)1(&(y)),
where R indicates the retarded time order product and
( ) is the thermal average. The propagator
(R f„(x)g&(y) ) satisfies the equation

i (Rg„(x)ft((y)) =i 5(& —ty)( [g„(x),g((y) J )
c}rx

5j&(y)=j&~(y) X»(i& )Q—J(y) .

Similarly to Eq. (2.25), we have

(I(k)X (co, k)}„,=([p„,j, j)+(R5j „j,),
where

5j„(x)=j„(x)—X„„( Q„)g„—( x).

(2.26)

(2.27)

(2.28)

+(RJ„(x)gf(y)) .

Define a generalized self-energy by

(Rj„(x)P~(y) ) =X„„( i &„)( RP„( x)PJ(y) ) —.

(2.18)

(2.19) =coI«+([p„,j& J )+(RJ„J'& ), (2.29b)

By applying the time derivative from the left- and right-
hand sides of the propagator (R g„(x)g&(y) ), we have

coS«(co, k)co=coI (+( [J 4() )+(Rjj, ) (2.29a)

(co —X(co,k)}„„S„((co,k)=I„((k) . (2.20)

Here the summation over n' is understood. By denoting
the Fourier transform of the propagator as S«(co,k) and
that of ( [Eg„(x),P&(y) J ) by I„&(k), we have

([j.@i))=([4.A')) [=—(mo).il. (2.30)

where Eq. (2.29a} is obtained by applying the right-hand-
side time derivative first and Eq. (2.29b) vice versa.
Therefore we have

Similarly, by use of the equation of motion for g&,

. a
ty

+(Rg„( )j&(y)), (2.21)

Further, since

(Rj„5j& )=(R5j„5j~t)=(R5j„jt),
we have, from Eqs. (2.25}, (2.27), and (2.30),

X(co,k)I(k) =I(k)Xt(co,k) [ =m (co, k}) .

(2.31)

(2.32)

together with the definition Now we have a set of functions which satisfy Hermiticity



3012 H. MATSUMOTO, M. SASAKI, S. ISHIHARA, AND M. TACHIKI 46

requirements,

(I (k))k( =(I(k))tk,

(ma(k})kl (mo(k))lk

(m(co, k) )kt =(m(co', k))tk .

Since the propagator is given in a form

(2.33a)

(2.33b)

(2.33c)

. a
i—p, (x)= s p, (x)+ t„(h, (x)—g, (x)+q&, (x)),at '

and

i p—o(x) =cppo(x)+ t„(2 n)—r (x)

+ tk ( h 0 (x ) go (x ) +Ipo(x ) )

(3.1c)

(3.1(l)

S„i(a),k) = I (k) I(k)1

a)I k —m(co, k)
(2 34)

where

t„=2tov'n /2,

h, (x)=err ~(x)5n(x), ho(x)=r ~(x)5n(x),
Y~ Y]

g, (x)=op (x)5n+(x), fo(x) =pr(x)5n+(x),

nl

and

the propagator satisfies the symmetric requirement.
Since I„& is the positive definite matrix from its construc-
tion, the hermiticity of the real part and the positive
definiteness of the spectral function is guaranteed from
that of the dynamical part of m (co,k), i.e.,

(3.2)

(3.3a)

(3.3b)

5m(co, k)„(=(R5J„5Jt') . '
(2.35) y, (x)=crp (x)5n (x), cpa(x)=pr(x)5n (x) (3.3c}

Summarizing, the propagator of electron operators in-
cluding composite operators is obtained from the normal-
ization matrix I(k)„t given by

(2.36a)

with

5n+„(x)=pt (x)o„r(x)—(pr(x)o„r(x) ),
5n „(x)=r (x)o~r(x) (r (x)o—gr(x)) .

(3.4)

the generalized mean field mo given by

(mo«». i=([J. 4t])=([0.Jt'])

and the dynamical correction

(5m (co,k) )„t= (R 5J„5J& )

as

(2.36b)

(2.36c) r r, = —1+( )
1 1

(n) (n) (3.5a)

It should be noted that, to obtain Eq. (3.1), any operator
product of d-electron operators at the equal site must be
reduced to independent freedom by use of the algebraic
relations,

coI(k) —[ma(k)+ 5m (co,k) ]

(2.37)

rr =2 1 —
( )+( )5n

r r, =r r, =0,

(3.5b)

(3.5c)

In the following sections, we evaluate the matrices I(k),
mo(k), and 5m (e,k) in the p-d-mixing model of oxide su-

perconductors. In the Appendix, we present an exactly
solvable example in the framework of this section.

III. NORMALIZATION MATRIX, MEAN FIELDS,
AND DYNAMICAL CORRECTION

Let us identify electron operators of electronic excita-
tions in the Cu-0 cluster as p (x ), r (x )[=&2/n 7)(x ) ],
p, (x) [ =crp (x)n(x) ], and po(x) [ =pr (x)5n (x) ]. Here
the spinor notation is used for electron fields and o'pr(x),
for example, indicates

(crpr(x)}, =g (o )„pr, (x) .

5nr =(1—(n))r, r 5n=r (2—(n)),
nr = —or, r n;=0,
r 5n =r (1—(n ) ), 5nr =(2—(n ) )r

r n; = —r,.o.;, n;r =0,
n =n+2n&n~,2=

nn; =n;,
and

n, nj =5;~n+ieip, nk =26,~n )ng .

We have an additional restriction

n&n&=n —1

(3.6a)

(3.6b)

(3.6c)

(3.6cl)

(3.7a)

(3.7b)

(3.7c)

(3.&)

They satisfy the equation of motion obtained from the
Hamiltonian (2.1),

~ a
i p( )=xpe(x)—+t r (x),

Bt n y
(3.1a)

~ a t„
i r(x)=t p (x)+e'er(x) (p (x) po(x)} (3 ~ lb)

in the present approximation, i.e., in the restriction on
n =1++2 transition [(n —1)(n —2) =0].

As for the components of the electronic operator g„,
we have identified the operators in Eqs. (3.3a)—(3.3c). In-
clusion of more composite operators means enlargement
of the would-be quasitable excitations in the cluster under
consideration. In the case to solve a finite-size cluster ex-

actly, it is necessary to include all possible independent



COMPOSITE-OPERATOR APPROACH FOR THE p-d-MIXING. . . 3013

A. Normalization matrix I
Once the electronic operator 1(„ is identified, it is

straightforward to obtain the matrix I given by
( [g„,gl ] ). In this calculation, the algebraic relations
(3.5)—(3.8) must be fully taken into account. We have

1 0 0 0
0 1 3b b

0 3b 4a, +3(y, +y,'y, (k)) 0

0 b Xo+Xoy |«)
(3.9)

where

b =&prrt&=(rptr &,

a, =(p,pt&=(prpt),

y, = ( 5n; 5n, )= ( 2 . n), —

go=(5n5n ) =(2 n)(n —1—),
y,'= —((yf5 )n5 )n,

and

y'= —((y25n)5n ) .

Here we have used the fact that

y2[x —y]= f d ky (k)e
0

(2n )

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

electronic composite operators which mix in equations of
motion. Since operators describe transitions among
states, the number of operators is larger than that of
states. Then the exact diagonalization with respect to
state vectors may be more economical. However, when
the lattice case is considered and intersite interactions be-
come important, the present description may be more
powerful, since concerned excitations can be traced lat-
tice by lattice. It is suitable to describe competition be-
tween locality and itinerancy of electrons. In the present
approximation, we assume that the units up to Cu, 0,
and Cu-0 bond play main roles to determine the elec-
tronic state and assume that a unit O-Cu-O, for example,
is expressed by a combination of them. In the case that
the local nature is strong, one needs to introduce more
composite operators in the present scheme.

for the correct ground state. In fact, when we evaluate
mo by the anticommutator ( [j„,$1 ] ), we have for
(m, ) t,

(m ) t=3e„b ——"[4a,+3(y, +y,'y', (k))]
Vs

and for (mo)

(3.16)

(mo) t=3s~b t„—3a+ —ao+ —a, +3a„'+—y,'y, (k)
S

(3.17)

where

a =(p p, ),.„'=—
& (y',.)"&,

(3.18)

(3.19)

and

a, =&p,p,'&=&p,p', & . (3.20)

This fact may be one of the reasons why the inclusion of
higher-order corrections is diScult in a straightforward
decoupling method in successive use of equations of
motion. In the course of solving the equations, there is
no guarantee for mp to be Hermitian, when one uses
straightforwardly the expression of mp obtained from the
equations of motion. When one deals with a non-
Hermitian matrix, one easily has a nonunitary transfor-
mation in the procedure of diagonalization and the uni-
tarity is violated. In order to avoid this situation, we use
the hermiticity of mp positively as the requirement. For
example, since (mo) t and (mo) t should be complex

1'p p

conjugate to each other for the correct solution, we use
only the expression for (mo) t. The rule of the approxi-

fp

mation is as follows. By successive use of equations of
motion, there appear composite operators and its source
term j„composed of higher-order operator products.
The evaluation of the mean field becomes less accurate
due to an approximation introduced to evaluate such
higher-order operator products. By using the Hermitici-
ty relation, the mean field mp is evaluated from source
terms with lower-order operator products. For any
operator product of d-electron operators at the equal site,
the algebraic relations (3.5)—(3.8) are considered. Then
we have

with

y &
(k) = —

—,
' (cosk„a +cosk )

is nonvanishing only at the nearest neighbor.

B. Mean Seld

The mean field mo is calculated from ([j„,g&] ). Al-
though mp should be a Hermitian matrix, an expression
of the vacuum expectation value does not obviously satis-
fy this condition. This is because the Hermiticity of )alp
is satisfied only after taking the vacuum expectation value

(mo)
pp

(mo) t= t„y(k),

(mo) t=3t„by(k),

(mo) t =t„by(k),
pp0

tn
(mo) t=E„—2b—

(mo ) t=3c.„b——[3(y, +y,'y f(k) )+4a, ],
S

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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t„
(mo) t =c b+ —(yo+yoyf(k)),

fPp

(mo ) ~
= E [3(y, +y,'y, (k) }+4a,j

Psps

(3.27)

(3.29)

+t„(4b,'+6b (a —1)——3(y'+o, —y' o, )@~i(k)),
(3.28)

(mo) t =t„( 6ab—+(2—n)3b —
—,'(y'+o, +go p)}'i(k)),

Psp p

appears from the nearest-neighbor spin and charge fluc-
tuations. This may be understood as the process in which
a Cu-0 covalent electronic state rearranges into that of
the nearest-neighbor Cu-0 bond, leaving spin and charge
fluctuations. One may regard this process as a covalent
electronic excitation hopping around the crystal.

C. Dynamical correction

The dynamical correction is obtained from

(3.34)

and

(mo) t =c. (go+goy|(k))
PpP p

+t„[y,b +b (2a n)—

where

(3.30)

(3.31)

In the present scheme, we have assumed that the quasi-
stable electronic excitations are composed of p, r, and p„
and that they produce the main peak structures in the in-
tensity distribution of the density of states. The dynami-
cal correction is given by decay processes of those elec-
tronic excitations. Here we evaluate it by the one-loop
contributions composed of electronic excitations under
consideration and fluctuations. Since 5m contains no re-
ducible P„ lines, it has only cotnponents for p, and po.
Loops of the dynamical correction are composed from
the source in Eq. (3.1),

and

X'+0„= &r—'15n+„5n, )

y' o„=—(l,5n „5n„) .

(3.32)

(3.33)

and

j:,(x):= t„:h,(x)—t(, (x)+y, (x):

j:o(x):=t„:ho(x) go(x)+q&o(x): ~

(3.35a)

(3.35b)

The other half of the components in the matrix mo are
given by the Hermiticity relations in Eq. (2.33b). It
should be noted that the k dependence of the mean fields

where the normal product indicates the irreducible com-
ponents. These interactions describe decays to continu-
ums of electronic excitations and fluctuations. We have

5m„„(x y)=t„I—(R:h„(x)::h (y):)—(R:h„(x)::g,(y):)+(R:h„( ):x:qr,(y):)
—(R:g„( ):x:h,(y): ) + ( R:P„(x}::g,(y ):) —(R:P„( ):x:q&,(y): )

(R:y„( ):x:ht(y):)—(R:p„(x)::g,(y):)+(R:y„(x)::q&,(y):) I . (3.36)

~e neglect the interface among different decay processes (i.e., only diagonal processes are taken) and use the one-loop
approximation. By use of the notation

R((A&(x)B&(y)) (A„(x)B„(y)))—=B(t„—t )(A&(x)B&(y)) (A„(x)B„(y))

+B(t t„)(B,(y) A, (x—) ) (B„(y)A„(x)), (3.37)

with + for a bosonic A& A„and —for a fermionic A& A„, the contributions from (R:h„(x)::h,(y):),
(R:1{„(x)::g,(y):), and (R:y„(x)::y,(y):) are evaluated as

(R:h„(x)::h,(y):)=R((r, (x)r, (y))(5n„(x)5n (y)) ), (3.38}

(R:g„(x)::g(y):) = R((p (r x)p r(y))( 5n „(x)5n+ (y)))+R((p ( )xr (t)y)cr, ( n5(x)p (y)pt(y))),

and

(3.39)

(R:q&„(x)::q&„(y):)=R((pz(x)pr(y) ) (5n+„(x)5n (y) ) ) ——,'R((p (x)pt (y) )o„o~(5n+„(x)5n z(y) ) )

—
—,'R((p, (x)p, (y))(5n+, (x)5n .(y)) }o,cr„

+ —,

'R((pr(x)pr(y))ohio„cr„oq

(5n q(x)5n+~. (y)) )

+R ( (pr(x)p r(y) ) (p (x)p (y) ) ( r(y)r (x) ) }(25„,—o cr„), (3.40)
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where the last term in Eq. (3.40) arises to adjust double
counting of a p-p-r three-body Fermion loop. We have

—i—5n „(x)=(e„—c, )5n „(x)+c„5n„(x)+5j „(x). a
at

5m„=o;5m; o.

5m, o= cr,-5m,-o

(3.41a)

(3.41b) where

—=j „(x), (4.3c)

and 5moo given by 5m„„with JM
=v=0.

In the next section, the fluctuations (R5n&(x)5n (y })
that appear in Eqs. (3.38)—(3.40) will be evaluated.

IV. FLUCTUATIONS

c„=—2—(5„0(1+a)+ 5„,(1—a )),
with

a =(prp, ),

(4.4)

(4.5)

5n„(x)
5ni (x)= 5n+ (x)P

5n „(x)
(4.1)

where l =0, + and

5n+„(x)=p
&
(x)o„r(x) (ptz (x)cr„r—(x) )

and

In the formulas presented in the previous sections, we
have correlation functions of fluctuation

and

1
5j+ (x) t„: Pr(x)o'gr(x) Pr(x)o' o' Pr(x)5n2(x)

—r t2(x)o„r (x)
Y&

(4.6a)

5j „(x)=(5j+„(x)) (4.6b)

with the normal product indicating the subtraction of ob-
vious paired vacuum expectation values.

5n „( )= ( ) g ( )
—( ( ) g ( )) . (4.2)

A. Intersite correlations

i 5n —(x)=t„(5n „(x) 5n+„(x—)):jo„(x)—,a
at

(4.3a)

In this section, we derive the formula to obtain those flu-
ctuation.

The equations of motion for 5nI (x) are given by

(4 7)

In the mean fields, there appear correlations with the
nearest-neighbor fluctuations 5n„(x}. We approximate
those intersite correlations by a one-loop fermion loop.
For example, y„' in Eqs. (3.14) and (3.15),

y„'= (5n„(x')5n„(x)),

and

—=j+„(x), (4.3b)

~ ai 5n+—„(x)=(E„—E~ )5n+„(x)+c„5n„(x)+5j+„(x)at

are evaluated as

Im(R jo„(x)jo„(x'))
1X„'=fd

with (Rjo„(x)jo„(x')) being approximated as

(4.8)

(Rjo„(x)jot„(x'))=2t„[R((p (x)p (x'))(r (x)r(x'))) R((p (x)r (x'))(—r (x)p (x')))
—R ( ( r (x)p tr (x') ) (p r (x)r(x') ) )+R ( ( r (x)r (x') ) (p r (x )pr (x') & ) ] . (4.9)

Note that

(Rp (x)p'(x') &= d~el 0
Y 2 (2~)2

X f d ky (k)S~ (co, k) .

(4.10)

B. Intrasite fluctuations

As for fluctuations appearing in calculations of dynam-
ical corrections 5m(co, k), intensity distributions in the
energy variable are more important, since composite elec-
tronic excitations are always with fluctuations and their
energies are affected by those of fluctuations. In this pa-

f A = f dAA(t+iA), . ,
0

(4.11)

A relaxation function for arbitrary operators A and 8 is

per, we approximate dynamical corrections by decays of
local excitations, since primary effects to composite exci-
tations are expected to be local. For local fluctuations,
the spin and charge at a single site correlate strongly
themselves. This is because there are constraints from
the local algebra which restrict whole weights of fluctua-
tions in forms of sum rules. In order to obtain dynamical
behaviors under such restrictions of sum rules, it is con-
venient to use the relaxation function rather than the
response function. For an operator A, let us use a nota-
tion f A, defined by
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given by

(
x(t) f()t(t ) =e(t —t')(A(t) fB t(t')) .

e
(4.12)

By use of the spectral functions pzz(co) of the local
response function (,R A (t)B (t') ), we have

A(t) fB (t') = f dcoe
g 2'

Applying the equations of motion (4.20) to the relaxation
function of 5NI (x), we have

i—SN, (t)f 6Nt (t ) '=is(t —t') 6N, f 6Nt
)

~ a
Bt e P P

+~, J, t 5Nk t'
P e

(4.22}

Xfd '"' '
K

1

co K+15

(4.13)

Define the decay rate X"(co)tk as

el JI t 5Nk t'

It should be noted that we have for t = t '

and

8~*= 8

w f()t) (())=f a

W' )Q.
Also the spectral function p„z(co) is given by

f defoe
' " ''p„~(co)=([A(t),Bt(t')]),

and it satisfies the relation

P~a(~) =Pa~(~) Ptttgt( ~) P„est(

(4.14a)

(4.14b)

(4.14c)

(4.15)

(5NI f 5Nk )= FP
co —X"(co)

(4.24)

with Ft'k being given by

F/'„= (6N, f 6Nt (4.25)

The spectral relation (4.13) together with the relation
(4.16) leads to the matrix structure of F" as

Q

—= FF(ia, )„.(sN, , (t) f 6NJ (t') . (6.66)
e

Then we have the Fourier transform (5Nt f 5Nk ) of

(5N, (t)f 5Nkt (t'))o as

(4.16)

which gives similar relations among relaxation functions
through Eq (4.13). Define operators 5Nt (x) (l =0,+ ) as

FI' = Q FP FI'

Q F"* F"
(4.26)

5NI (x)=5nt (x)—a~i5n„(x),

where ao=Q and a~+=a„are determined by

5n+„5n„=a„5n„5n„
With this definition, we have

5N„5N+„= 5N 5N =Q .

(4.17)

(4.18}

(4.19)

Similarly, defining

5N( t Jk t' ek

we have

(5N, f 5N„' )= F~

(4.27)
P e

(4.28)

Let us write the equations of motion of 5Nt (x) in the

form
From Eqs. (4.23) and (4.27), we have

i 5N, (x}=e—,J, (x},. a

with e, = 1 (for l =0, + ) and —1 (for 1 = —), where

(4.20) (6"( )F") t=t( ttftstNJ, 't+t't(Jt f sit )Et,

(4.29a)

and

J()„(x)= t„(5N „(x) 5N+„(x)), —

J+„(x)=(c„+(E—E )a„)5N„(x)

+ ( e —c. +t„a„)5N+„(x )

t„a„5N „(x)+5j—+„(x)

(4.21a)

(4.21b)

(F"X"(co)),„= 5Nt Jk ek+eI(5Jt Jk )ei,

(4.29b)

where

(4.30a)

J „(x)=[J+„(x)]t. (4.21c) e 5J (t}=eJ, (t) —&"( d, )tt 5N, (t} (4.30b)
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In Eq. (4.30), X" and X" operate from outside of relaxa-
tion functions. By use of the commutativity of the time
derivatives, we can show, following a similar procedure
used in Sec. II,

In order to determine F" and M~o, we use the equal-
time expectation values (5N, 5N» ) and e((J( f 5N» ).
In fact, from the spectral representation similar to Eq.
(4.13},we have

E((J( f 5N» )=(5N( f Jk )Ek

which defines the mean fields as

(Mo }lk ~((J(„5Nk„) ~

satisfying

(Mo )lk ((Mo )kl )

(4.31)

(4.32)

(4.33)

(5N( 5N»t ) =fde ——Im
1 FP

CO
—X"(to)

and

Xto(1+ft((to)) . (4.38a)

e(( J( 5N» ) =f dco ——Im X"(0()1 1 FIJ
P 0(—X"(0()

According to the spectral representation (4.13) and by us-
ing (iBIBt)5N( (x)=e(J( (x), we have the matrix struc-

ture of Moik as

X to(1+f(((co)) .

From Eq. (4.38) and the relation

X"( to ) = ( M~() +5M "(to ) }F"

(4.38b)

(4.39)

(Mo )0+ (Mo )0+

Mo = (Mo )0+ (Mo )++ 0 (4.34)

F",u„, and Mlo are self-consistently obtained.
Let us define

—(M(0 )0+ 0 —(M(0 )++

and

(4.40a)

The dynamical correction of the mean field, 5M"(0()(k, is

given by Y/'k=e((J(5N„) . (4.40b)

5M"(0()(»=6((5J( f5J» )6k,
P P

which satisfies the relation

(4.35) From the definition of 5N( in Eq. (4.17), we have

xtk xtk I x ok xI0 k + I x ooak (4.41a)

5M"(to)(k = (5M"(0(' )k( }' . (4 36) and

Ytk =ytk —a(y 0» yto ak—+a(y 00 a» (4.41b)
Since 5J& should

ponents, we have

0

not contain any reducible 5N, com-I'

0 0

with

xtk=(5n( 5n„) (4.42a)

5M"(to) = 0 5M(++ (to+ i 5) 5M+ (0(+i 5 )

0 5M+' (to+i5) 5M++( 0(+i5—)

and

ytk ~l (J(„5n»„& (4.42b)

(4.37) The explicit form of xtk is given by

2b (2—n)—(n —1)(2—n)

xi»= 2b(2 —n} 2 — (1—a)+ —(a +a ) 2b—2 7l 1

n 0 s

2b (1 n)— —

—4b (4.43)

2b (1 n}—— —4b
n —1 14. a+ —ao —b

n n '
and

+1k

2 ll

2 Pl 1
2 (1—a)+ —(a —a )

n
0 s (4.44)

2b
n —1 14. a+ —ao

n n
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where a=(p pz), b =(pzr ), ao=(prpo), and
a, = (p p, ). Similarly, ytk is given by

n(x —k X+k }

and fermion loops are formed from all possible combina-
tions composed of p (x), p, (x), pp(x), and r(x) with sub-
traction of double counting.

ytk = (eg Ep )X +k +CpX ok +5ypk (4.45) V. CONCLUDING REMARKS

with

—(s —s )x" —c x"
p —k p Ok

5y~++ =—[4(1 a)b——2(2 —n)b'

5„p—(bo+b,') 5„;—(ho ,'b,')—j—, (4.46a)

5y~+ =t„—2ab +2ab — 5„0+$„,
4 —n

n
—2ba„'

and

(4.46b)

t„
5y" = ——[8ab+4(n —1)b' —2bo ),

n
(4.46c)

where

f dtopL(tp)e ' " "=&[5ni (t), 5nk (t')]) (4.47)

is obtained as

pik(co) =Rt'k(to)+ai ok(to)+Rt'o(to)a~a+aiR~oo(co)aik

.=&p,p', ), .„=—&. ,"), b =&p,"),
b'= —(p„r 2), bp=(ppr 2), and b,'=(p, r, ). The

Vl

spectral function of fluctuations pL(cp) defined by

—3 (for a singlet),
1 (for a triplet) .CT Il = (5.1)

In this paper, we present a formulation to treat highly
correlated electron systems by introducing the notion of
composite electronic excitations. The method to define
the self-energies for such composite excitation is
developed. Equations of motion and the retarded formu-
lation is fully used. The mean-field approximation gives
an approximate spectral intensity distribution. Several
peak structures may be obtained as the result of the ener-

gy shift and mixing among p and d levels and composite
electronic excitation levels. In the first approximation
there are p, po, and p, electronic excitations at c. and the
upper Hubbard level r at c„. The shifts of their energies
and mixing strengths are given by mean fields which con-
tain effects from different lattice points. There are mean
fields given by a (=(pr r )), b (=&prr )),
( = (p ptp ) ), and a, ( = (p p, ) ). One may say that "2a"
relates to the p-hole density in a Cu02 cluster and "b"
does to the mixing between p and r. Since 2a

&

[=2(pzpr(2 n) )—] indicates the p-hole density with the
Cu +(n =1) state and 2az [=2(p pz(n —1))] the p-
hole density with the Cu+ (n =2) state, ap relates to the
ratio of them. When a p~ electron and Cu spin in a Cu02
cluster form a singlet or triplet state, one has

with Rt (k)cbeing given by

RPj, (co)= ——Im F"CO 1 F"
cd" Mip —5M"(co—)

(4.48)
Therefore the expectation value p up n may be given as

(ptop n)= —3C, +C, , (5.2)

where C, and C, are the p-hole densities coupled with a
Cu spin in singlet and triplet states, respectively, in a
Cu02 cluster. Note also that

(4.49)
C, +C, =(p p (2—p p }(2 n}) . — (5.3)

Im5Mt'k(to) = Im(ei 5ji —. .5jk ek. ), .
1

Q) P P
(4.50)

where:5j+„(x): indicates the contribution from fermion
loops. The source:5j+„(x): is treated as

:5j +„(x):= t„:pt (x)o~ (x)

pr (x)cr„(p—,(x) pp(x) )—1

r2(x)cr„r (x):—
Vi

(4.S1)

The explicit form of the dynamical correction 5M/z(to)
is obtained from Eq. (4.35). Since 5' should not contain

reducible 5N, , lines, the correction 5Mtk(co} arises from

loop corrections formed by 5j+„given in Eq. (4.6). We
approximate this contribution by fermion loops. By use
of the spectral relation (4.13), we can evaluate the contri-
butions of such fermion loops to the relaxation function
from the retarded function,

From Eqs. (5.2) and (5.3), C, and C, are evaluated. The
mean field a, relates to the difference between p-hole den-
sities occupying singlet and triplet states. Roughly
speaking, a quasiparticle state is constructed from a
linear combination of p and r which is the covalent elec-
tronic state. By adding composite operators po and p„
the correct quasielectron excitation g is expressed as

1/)
=

C&P +Ci r +CpP p +C&P& + (5.4)

The components po and p, describe the situation where
the p electronic excitation is strongly influenced by states
of neighboring Cu ions. One may regard this procedure
as the configuration mixing. The mixing with such states
is induced due to the nature of the Hubbard split d level.
Hopping of po and p, electronic excitations to neighbor-
ing lattices is strongly controlled by the states of the Cu
ions. This can be seen in the mean-field level in the fact
that the intersite contribution is mostly controlled by in-
tersite fluctuations.
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Dynamical corrections have the spectral weights
around the energies s„and 2c, —c„. These contributions
push down or push up the energy levels ofpo and p, exci-
tations. In addition, there occurs redistribution of the
electron density of states through decay processes to p, r,
po, and p, electronic excitations and fluctuations.
Through decay processes the spectral intensity may be
transferred to a lower energy region, and the peak struc-
tures of the mean-field result may be broadened to have a
tendency of accumulating their intensity to the Fermi lev-

el (FL). In the subsequent paper, we will see in fact that
such phenomena are observed and especially that the ac-
cumulation of spectral intensity at the FL is induced with
hole doping. We will also see that low-energy excitations
of spin and charge fluctuations play important roles for
such transfer of spectral intensities.

Finally, we comment shortly on our approximation
scheme in comparison with the Hubbard approxima-
tion. Expression (2.20) or (2.37) is most general and is
independent of the approximation. The approximation
comes in the evaluation ofl(k), mo(k), and 5m(co, k). In
the Hubbard approximation, X(to, k) is directly evaluated

by use of the equation of motion (2.17) combined with the
point splitting method and certain decomposition rule
such as the random-phase approximation. Since I(k) is
not the identity matrix, it is hard to see whether or not
the obtained X(co,k) satisfies the necessary requirements
for the total propagators such as Hermiticity and posi-
tivity. In our scheme, this point of calculation is sys-
tematized by considering the mean field mo(k) and the
dynamical correction 5m (co,k). We have evaluated
5m(co, k) from the one-loop contributions of fermion and
bosonic fluctuations, following the loop expansion in
terms of renormalized excitations. Although 5m con-
tains only one loop, the full propagators contain infinite
order of repetition of many loops through the mixing
scheme induced by l(k) and mo(k) and the self-

consistency among mean fields.
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excitation spectrum. The model (Al} is exactly solvable
and gives the result for the p-electron Green function,

1 1 3 1S i(co)=- +—
4 co —(e +—'J) 4 co —(e ——'J)

P 2 P 2

where

S t(t„t,—)=&Rp(t„)p (t„))

(A2)

Jdtoe " ' S t(~) .
2% PP

(A3)

i p(t—) =e~p (t)+Jop (t)S( t) .~ a
(A4)

Let us introduce a composite operator

p, (t) = =trp (t)S(t),

and identify a generalized electronic field g(t) as

Qi(t)
f(t) = p(t)

p, (t)

(A5)

(A6)

The equation of motion for f is expressed as

i—g(t) =j(t),a
(A7)

where

ji(t)
j (t)= . (t)Jz

(A8)

The result (A2} is obtained by identifying the eigenvec-
tors of the Hamiltonian H and by taking the zero-
temperature limit from the thermal average. The p elec-
tronic excitation is strongly renormalized and splits into
two excitation levels around co=@&. The first and second
terms correspond to excitations to the spin singlet and
triplet final states of the p hole and the Cu spin, respec-
tively.

Now we apply to this model the method developed in
Sec. II. The equation of motion for the p electron is
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and

j,(t) =e p(t)+ Jp, (t),

j 2(t) =3cJp(t)+( ~s+J)p, (t)

+Jo,p(t)ie, kp (t)tr p(t)Sk"(t)

(A9)

(A 10)

APPENDIX: EXACTLY SOLVABLE MODEL

In order to demonstrate the validity of the formulation
presented in Sec. II, a simple example is presented in this
appendix. Let us consider the single-site Kondo model
where a d-electron freedom is restricted to its spin free-
dom and the d spin couples with a p-electron spin antifer-
romagnetically.

The Hamiltonian is given by

H=c. p p+Jp crpS, (A 1}

with e =S; =
—,'. Then one gets the equation for the

Green function S t(t„t~) [:—&Rg(t—„)g (t~))],

where

(A12a)

where cr is the Pauli matrix. We take an insulating vacu-
um where there is no p hole and consider one p-electron

with

~, =&pp, ) . (A12b}
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The generalized self-energy X(co) is defined by Eq.
(2.25),

X=&Si 2p cre ,p-cr~crp& . (A17b}

X(ic), )i5(t t, )—I=i5(t t,—)m, +5m(t t,—),
X

(A13)

The component (mo)2t should be equal to (mo), z accord-
ing to the Hermiticity requirement. In the case of the
ground state with no p hole, a =0, a, =g=0. Then

where

mo=( lJ 0 I &

and

5m(t„t,—) =(R5j (t, )j (t, ) &

(A14a)
and

1 0
0 3c

cp 3cJ

3cJ 3c (e~+J)

(Alga)

(A18b)

—(R5j (t, )g (tr) &X ( id—, ) .
V

(A14b) By substituting Eqs. (A17) into Eq. (2.34), one finds

Note that 5j&(t)=0 and S~~t(co) =
(co —s )(co —

E~
—J)—3cJ

5j2(t)=Jcr,p(t)iE; kp (t}cr p(t)Sk(t),

and therefore
X

co Ep J 3cJ

3c(co—E )
(A19)

which reproduces the exact result of Eq. (A2).
In this approach, we can reinterpret the splitting of the

p-electron excitations into the singlet and triplet states as

the consequence of the mixing between p and p, . In fact,
Eq. (A2) can be reexpressed as

0 0
5m(t, t, )

=— (A15)

1S t(co) =
co —e —X (co)II

(A20)
(mo)ii=E,

(mo)&2=3J(c + —,'a, ),
(mo)22=(E +J)3(c +—,'a, )+3J(—2ca +4y),

where

(A16a)

(A16b) where

3t."J(A16c) (A21)

After straightforward calculations, we get the expression
for mo,

and

a =~pp" & (A17a)
The function X~(co) is the p-electron self-energy, and it is

also a one-p-electron irreducible component of S y(co).
&sS's

The energy (E +J) is the shifted excitation energy ofp, .
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