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Real-space renormalization study of disordered interacting bosons
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We study a real-space renormalization group for disordered, interacting bosons at zero temperature
in one and two dimensions. In the absence of disorder at commensurate density we flnd a superfluid—
Mott-insulator transition that is unaffected by the addition of weak disorder, i.e. , disorder is weakly
irrelevant at the Mott-superfluid transition. Above a threshold disorder a gapless insulating phas-
the "Bose glass" —intervenes.

I. INTRODUCTION

How does disorder affect the phase transition between
the superfluid and Mott-insulating ground states of in-
teracting bosons in a periodic potential? Debate re-
lated to this question concerns the "Bose glass, " an in-
sulator in which bosons are localized by disorder. The
Mott and Bose-glass states are distingushed by their
zero-temperature excitation spectra: while the incom-
pressible Mott insulator has a gap to charged excitations,
the compressible Bose glass is gapless. (Both insulators
are distinguished from the superfluid phase by their lack
of off-diagonal long-range order. ) The occurrence of a
Bose glass for strong disorder is well established, i but
it has been arguedz that even arbitrarily weak disorder
should stabilize a Bose glass near the Mott-superfluid
phase boundary. The transition from a Mott insulator to
a superfluid would then necessarily proceed through an
(insulating) Bose glass, and the collapse of the Mott gap
would precede the appearance of a condensate [Fig. 5(c)].
This effect should be most dramatic when the density of
bosons is commensurate with a periodic potential. Nu-

merical studiess 4 have found an intervening Bose-glass
phase at incornnMnsurate densities for weak disorder, but
not for commensurate densities. We present here the
phase diagram (Fig. 3) predicted by a simple real-space
renormalization group for interacting bosons at comrnen
surate density on disordered lattices in one and two di-

mensions.
Granular superconductorss " and He adsorbed on

porous medias provide experimental realizations of
disordered interacting Bose systems. Previous theo-
retical approaches to the problem have included scal-

ing arguments, quantum Monte Carlo calculations
on one- and two-dimensional models, 3 and a per-
turbative renormalization-group calculation for the one-
dimensional problem. 3

We present a real-space renormalization-group calcu-
lation for interacting bosons at zero temperature sub-
jected to a random potential. The density is fixed
at an average of one boson per site and we monitor
the Bow of parameters corresponding to the relative
strengths of disorder, interactions, and hopping. Sta-

ble fixed points of the flow correspond to the super-
fluid, Mott-insulator, and Bose-glass phases; unstable
fixed points represent zero-temperature critical points.
The insulator-superfluid transition for the pure system
at commensurate density is known to be in the univer-
sality class of the (d + 1)-dimensional XY model. z Our
real-space renormalization-group calculation (which en-
tails certain approximations detailed below) does not re-
produce the expected Kosterlitz-Thouless behavior in one
dimension, but instead gives an ordinary critical point
with an encouragingly large correlation-length exponent
v 5. In two dimensions, we find v 1.2, in contrast
with the known value of s for the three-dimensional
XY model. When weak disorder is introduced, we find
that the transition still proceeds directly from the Mott
insulator to the superfluid, so that infinitesimally weak
disorder does not stabilize a Bose glass at commensu-
rate density. The Bose glass is found beyond a threshold
disorder. Our renormalization procedure is described in

Sec. II, and the results for the pure and disordered cases
are discussed in Secs. III and IV, respectively. In Sec. V
we put these results in the context of other work on this
problem.

II. REAL-SPACE RENORMALIZATION
SCHEME

Our starting point is the Hubbard Hamiltonian for
spinless interacting bosons,

T) [btb, +b,'b—,]+) [en, +V(n, )],
(2 j) 2

where bt and b,. create and annihilate bosons at site i,
and n, = btb, is the boson number operator at site i;
the first sum is over nearest-neighbor pairs of sites. The
parameters entering the model are the hopping matrix
element T, the on-site energy e, and the on-site repul-
sion V(n). Although it is common to consider the pair
repulsion energy V(n) = Un(n —1)/2, it will be conve-

nient for us to consider instead a simpler model which

assigns an energy cost U to double occupancy of a site
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FIG. 1. Blocking scheme. The chain is divided into
nonoverlapping cells consisting of two sites each. Recursion
relations for the intracell parameters e' and U' are determined
by the energies of the cell states with one, two, and three
bosons [Eqs. (7) and (8)]. The intercell couplings (t') are
determined by calculating the intersite matrix elements (t)
between sites on the edges of two cells.

[i.e., V(2) = U] but comp/eteiy forbids triple or higher
occupancy; i.e., V(n)—:oo for n & 3. [There is of course
no interaction energy associated with empty or singly oc-
cupied sites, so V(0) = V(1) = 0.] The Hilbert space for
a single site is then spanned by the three states ]0), ~1),
and ~2), which are labeled by occupation number. This
restriction to zero, one, or two bosons per site makes
the calculation tractable. The universality classes of the
various transitions of interest, however, should not be
afFected since our model still has only local interactions.

To study (1), we use a real-space renormalization
scheme similar to that developed by Hirschi4 and Mais
in their studies of interacting fermions. The blocking
procedure is illustrated in Fig. 1.

Consider first a one-dimensional chain, which we divide
into nonoverlapping cells containing two sites each. The
normalized basis states for the two-site cell are written
~nL, nR), indicating nl, bosons on the left and nR bosons
on the right. (The adjoint of ]nL, nR) will be denoted
(nl, nR~, so that sites will always be ordered from left
to right in both bras and kets. ) An isolated two-site cell
has a total of nine energy eigenstates, each with a definite
total particle number ranging from zero to four. As in
the real-space schemes of Refs. 14 and 15 we select three
of these cell states to be our "block" states ~0'), ~l'), and
~2'). Since we are interested in systems with an average
density of one boson per site, we choose the block state
~l') to be the lowest energy state with unit density, i.e.,
with two particles on the two-site cell. The block state
~0') is the lowest energy state with one boson per cell,
corresponding to a deficit of one particle, while ~2') is the
lowest energy state with three particles per cell, an excess
of one particle.

The excited states with one, two, or three bosons per
cell are not considered further. These cell states cannot
contribute to the ground state of the chain because the
ground state must be nodeless (since T is positive), while
the excited states have nodes. A more serious truncation
of the Hilbert space comes from the unjustified neglect of
the two states with larger density fiuctuations, i.e. , those
with zero or four bosons per cell.

If we restrict the state of each cell to be ~0'), ~1'), or
~2'), then we can construct a renormalized Hamiltonian
'8' whose matrix elements between the states of this trun-
cated Hilbert space are the same as those of the original
Hamiltonian. The renormalized Hamiltonian is roughly

of the same form as (1), and the procedure can be it-
erated. By repeated blockings we construct a hierarchi-
cal, truncated Hilbert space within which the Hamilto-
nian (1) is diagonalized exactly. Our calculation there-
fore provides a variational bound on the ground-state
energy. After N blockings, the truncated Hilbert space
is spanned by three states that correspond to a fixed
number of bosons on a chain 2+ sites long. The state
~l(+)) always has an average density corresponding to
one boson per site, and therefore contains 2N bosons.
The other two states, ~0(N) ) and ~2(+)), have 2+ —1 and
2N+1 bosons, respectively. Thus our procedure seriously
curtails particle-number fiuctuations by limiting them to
+1 boson on a region of size L~, rather than L(" i)~z

as expected for a condensate. Since our calculation only
permits very small density fiuctuations, our approxima-
tions are evidently best for large Hubbard U and low
dimensionality.

To proceed further it is convenient to write the kinetic
energy for hopping between two adjacent sites in the ex-
panded form

'Mg = —ta(iol)(101+ i10)(ale)

o 11 20 + 11 02 + 20 11 + 02 ll
21 12 + 12 21 (2)

which displays the three distinct hopping processes.
These have simple physical interpretations if we take as
a reference state the ideal Mott insulator with precisely
one particle per site. Then tg and t„specify the hopping
amplitude for a hole and an added particle, respectively;
t, gives the amplitude for the creation or annihilation of
a particle-hole pair. For the Hubbard Hamiltonian (1),
we have tg = t,/+2 = t~/2 = T. The Bose-Hubbard
model (1) therefore does not possess particle-hole sym-
metry; tg and t~ difFer due to factors analogous to those
appearing in stimulated absorption and emission. Such
differences are also expected in granular superconduc-
tors, due to factors of the square root of the number
of Cooper pairs in a given grain. Nevertheless, we will
see that particle-hole symmetry is restored by blocking so
that for long-wavelength, low-energy phenomena we need
only consider the particle-hole symmetric case tg = t„.

For a system with no disorder, the normalized block
states with one, two, and three particles per cell can be
simply written down by symmetry:

I0') = ~24I01)+ I»))
/1') = cos8/11) + ~ sin8(/20) + /02)), (g)
12') = ~i2(112) + 121))

with energies

EpI = 6 —tg,
Eii ——2e —~2t, sin 28 + U sin 8,
Eg~ ——3e —tp+ U)

respectively. The parameter 8 is determined by solving
the problem of a pair of bosons on a single cell, which
yields
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2 to
tan28 = (5)

The renormalized Hamiltonian 'H' acts on the (primed)
states of a chain of cells, and contains both diagonal (in-
tracell) and off-diagonal (intercell) contributions. The
intracell part of the Hamiltonian can be simply written

'Hp„—) Ep + n';(Ei —Ep )

ln', (n,' —1)
(Ez + Ep —2Ei ), (6)

2 r
from which we deduce the renormalized potential and
interaction energies

s':—Ei —Ep = e + th, + U sin 8, (7)
U' =—Eg + Ep —2Ei = U sec 28 —t„—th. (8)

[We have used (5) in determining the expression for U'.
The overall added constant Ep in (6) is unimportant. ]

The intereell couplings arise from hopping matrix ele-
ments between adjacent cells, and are given by

t'„=(0'I—'~»;„j1'0'),
—t'. = (I'I'(»io)2'0') = (1'I'l»ml0'2') (9)
t'„=(2'1'—)'Hk;o)1'2'),

where 'Hi,;„is the hopping operator (2) between the right-
most site of the left cell and the leftmost site of the right

ell (Fig. 1).

III. PURE SYSTEM

For (n) = 1, in both one and two dimensions, we find
that as long as t, is initially nonzero the flows (7)—(9)
always head toward the plane th, = t„,so that all inter-
esting fixed points for the pure system possess particle-
hole symmetry. (There are also pathological fixed points
of our recursion relations with t, = 0.) Indeed, we find
that in one dimension the difFerences between hopping
parameters disappear, so that we may study the flows

along the line th, = t, = t„—= t The clean s.ystem is thus
a one-parameter problem whose behavior is determined
entirely by the flow of t/U, or equivalently, 8. The recur-
sion relations (7)—(9) then collapse to the single equation

I 1 + cos2 8 + csin 28 )
tan28' =

i

4 csc 28 —2~2

(The uniform site potential e is of course physically unim-

portant. )
The two stable fixed points of (10) correspond to a

Mott insulator (t/U = 0) and a superfluid (t/U
0.5165). An unstable fixed point appears at (t/U), =
0.3309, corresponding to the second-order transition be-
tween the two zero temperature phases. This trans-
lates to the critical point (T/U), = 0.215 of the Hub-
bard model (1) which matches the value of (T/U), =
0.215+0.01 obtained by Batrouni et al. via Monte Carlo
simulations. 2 Note that as t/U becomes larger, our trun-

cation becomes a worse approximation. As a consequence
of our approximations, the superfluid fixed point occurs
at a finite t/U

The universality class of the Mott-superfluid tran-
sition at commensurate density is that of the (I+1)-
dimensional XY model. ~ ii For a two-dimensional XY
model the correlation length diverges as

econst/i/(t/U) —(t/U),
)

which corresponds to an infinite correlation length ex-
ponent v. We can determine v for our (ordinary) crit-
ical point by linearizing the recursion relation (1) near
(t/U):

where 5 is the scaling factor (here b=2) and v is the corre-
lation length exponent. We find v = 4.87. This uncom-
monly large value of v suggests that our calculation is
close to capturing the correct Kosterlitz-Thouless behav-
ior. (In contrast, mean-field theory gives a mere v = 2.)

At the transition the characteristic energies (e.g. , the
Mott gap of the insulator or the inverse compressibility
of the superfluid) disappear like

U
I U'g- z

where z is the dynamical exponent. We find z = 0.4985,
in contrast to scaling arguments which predict z = 1
for a system at commensurate filling in any dimension.
This discrepancy is not surprising since in our approxi-
mation we only allow the cell occupation to vary by one
"bare" particle, thus artificiall constraining density fluc-
tuations. (This deficiency of our scheme cannot be cor-
rected by retaining more states per site in any simple
way, because such an approach would still only permit
a finite number fluctuation on each block. A better cal-
culation would permit density fluctuations with proper
scaling behavior. )

In two dimensions we use a square lattice and block
into four-site (two-by-two) cells. The procedure for deter-
mining the recursion relations for the various parameters
is the same as described for the one-dimensional problem.
We again fix the average density at (n) = 1, so that after
N blockings the block states ~0(+)), ~1(+)), and ~2( ))
contain 4 —1, 4, and 4 +1 bosons, respectively, on a
4~ site cell. Within the accuracy of our calculation, we

again 6nd that Bows tend to the line th ——t, = t„=t;
again, we have a one-parameter problem. The two stable
fixed points are t/U = 0 (Mott) and t/U = 1.794 (su-
perfluid). The transition between the two phases takes
place at (t/U), = 0.0830 and the critical exponents are
v = 1.2 and z = 0.51. Putting our result in terms of
the Hubbard model (1) gives (T/U), = 0.0M4 which is
within 5% of the critical value 0.059 obtained by Krauth
et al. using path-integral Monte Carlo simulations on a
two-dimensional lattice. 4 Once again, we expect z = 1
for commensurate densities, and for a three-dimensional
XY' model v 3. Real-space renormalization is notori-
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ously worse in higher dimensions and our calculation is
no exception.

IV. DISORDERED SYSTEM

We introduce disorder as a site dependent, uniformly
distributed, on-site potential, —6 ( e(i) ( 6,. Although
we begin with a uniform hopping strength [ti, (i)
t, (i) = t&(i)—:t] and repulsion U(i) = U, these quan-
tities immediately develop distributions since the recur-
sion relations couple all parameters. Thus for the blocked
disordered system all parameters in the Hamiltonian be-
come site dependent and we follow the evolution of their
distributions.

We begin with a chain of 1000 sites with e(i) chosen
from a uniform distribution of width 2b, centered at zero.
This chain is then blocked into a 500-cell chain, and the
intracell Hamiltonians (for each cell) are diagonalized to
find e'(i) and U'(i). The hopping parameters t'h(i), t', (i),
and t„'(i)between cells are determined as previously de-
scribed for the pure case. Although the three hopping
parameters are no longer equal on any given site, their
distributions are similar. For simplicity, we merge the
distributions of t'h, t'„and t„' into a single distribution

with mean t and standard deviation o (t'). We also cal-
culate the averages e' and U, and define the half-widths
of these distributions:
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FIG. 2. First renormalization-group iteration for the
particle-hole symmetric Bose-Hubbard model (th = t, = t„
= t) with site disorder b„,projected onto the bt = 6U = 0
plane. Results for the pure system are illustrated on the ver-
tical axis. Since the "flows" are discrete and are projected
onto a plane, the arrows can cross even though the blocking
procedure is well defined.

Then a new 1000-site chain is generated with parameters
e(i) and U(i) chosen from uniform distributions of half-

widths 6' and 6U' centered at e' and U, respectively.
The new hopping parameters tp, (i), t, (i), and t„(i)are all
selected from the same uniform distribution of half width
bt' centered at t . We ignore any induced correlations
between e, U, and t on a given cell, which we confirmed to
be a good approximation for small disorder. Also, since
we only keep track of the mean and standard deviation
of the distributions, our calculation is insensitive to any
effects of rare but large fluctuations in the parameters.

Figure 2 shows the first renormalization-group itera-
tion projected onto the plane 6't = bU = 0. (Since the
"flow" is discrete and is projected onto a plane, the ar-
rows can cross even though the blocking procedure is
well defined. ) The Mott and superfluid fixed points both
lie in this plane, as does the fixed point corresponding
to the Mott-superfIuid transition; all other fixed points
have nonzero bt and/or bU. With no disorder (6 = 0),
the flow of t/U is indicated on the vertical axis, showing
the transition at (t/U), = 0.3309. The phase diagram of
the Hubbard model with site disorder and particle-hole
symmetric hopping th = t = t& = t is shown in Fig. 3, as
determined by the basins of attraction of the three stable
fixed points. Note that while the initial flows for 6/U
between 0.2 and 0.3 are toward smaller site ran-
domness (Fig. 2), the system eventually ends up at the
Bose-glass fixed point (Fig. 3). This is due to the gen-

0.6
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0.2

M

0.0

Mott

0.2

Bose
Glass

0.4 0.6

FIG. 3. Basins of attraction for the stable superfluid,
Mott insulator, and Bose-glass fixed points in the bk = bU = 0
plane.

eration of disorder bU by the renormalization procedure,
which moves successive systems out of the plane shown
in Fig. 2. Figure 3 indicates that the insulator-superfluid
transition occurs directly from the Mott insulator below
a threshold disorder b, /U ~ 0.1.

As seen in Fig. 3, disorder helps delocalize bosons near
the Mott phase. The phase boundary between the Mott
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insulator and the superfluid curves downward, i.e. , at
nonzero 6, the system is superfluid at values of t/U
which were Mott insulating without disorder. The same
effect has been noted in Monte Carlo simulations in one
and two dimensions. s s The phase boundary curves down-
ward because the Mott gap is reduced by disorder, thus
requiring a smaller critical value of the hopping parame-
ter t to overcome the gap and delocalize the bosons. (For
t = 0 the Mott gap is reduced linearly as EG = U —2A. )

Within our approximations, disorder is weakly irrel-
evant at the Mott-superfluid transition, as can be seen
by linearizing the flows in the four-parameter space
(t/U, A/U, 6t/U, 6U/U) around the fixed point of the
pure system (0.3309,0,0,0). (This is done numerically
by least-squares fitting a linear function to the flows in
the vicinity of the pure-system fixed point for many real-
izations of disorder. ) The direction (1,0,0,0) is evidently
relevant, since changing t/U tunes through the transition
in the absence of disorder. The other three directions are
all irrelevant, with the largest eigenvalue of the linearized
recursion relations equal to 0.95 6 0.01. Thus the scaling
field corresponding to disorder, D (a linear combination
of 6, 6t, and 6U), scales as

0.8" It
'p

I

'Itsy

ll I' +~lh t

V

X(

0.0 0.2 0.4

FIG. 4. Flow diagram in the t = bt = 0 plane. An approx-
imate boundary is sketched between the Mott and Bose-glass
phases.

D' D
~f
U

(15)

where x = —0.07 (since 2* = 0.95). If x were posi-
tive, disorder would be relevant; if x were zero, disorder
would be marginal. We find that disorder is irrelevant
(x is negative), but only weakly so. Due to the inher-
ently uncontrolled nature of real-space renormalization,
this result should not be regarded as conclusive. It does,
however, agree with the path integral Monte Carlo study
of Krauth et aL, 4 who found that no Bose glass intervenes
at (n) = 1 in two dimensions for weak disorder. (Similar
calculations in one dimension are not available, presum-
ably because of complications related to the Kosterlitz-
Thouless transition in the pure system. ) An intriguing
possibility which reconciles our approximate calculation
with the arguments of Fisher et aL is that weak disor-
der could be marginally irrelevant at the Mott-superfluid
transition. In that case the superfluid —Bose-glass and
Bose-glass —Mott phase boundaries would meet at 6 = 0
and would be tangent to one another there, with the
Bose-glass phase appearing as a thin sliver extending all
the way to the 6 = 0 axis in Fig. 3.

If the bosons do not hop (t = 0), they occupy the sites
with the most-favorable energy conditions (low on-site
potential, low interaction energy). In the pure system,
minimizing the interaction energy leads to a Mott insu-
lator with one particle per site. At strong disorder, we ex-
pect the bosons to be localized by the random potential,
forming a Bose glass. For t = 0, as long as —6+U )6 it
is impossible to have a site with a low enough potential to
warrant its occupation by two bosons. The Mott gap is
therefore U —2A, which collapses at 6/U = 0.5—an ex-
act result. We find a critical point in the t = bU = bt = 0
plane at 6/U = 0.27 6 0.01, with critical exponents
v = 3.5 + 0.1 and z = 0.31 + 0.01. This is in keeping
with the linear collapse of the Mott gap EG = U —2A

at the transition, which implies zv = 1. For initial dis-
order in the Bose-glass region of Fig. 3, the flows tend
to larger disorder (Fig. 4). Since our recursion relations
are untrustworthy when 6/U and 6U/U become of order
unity, at this point we stop and consider the system to be
a Bose glass. [In addition to the stable fixed point on the
t = 0 axis at 6/U = 6U/U = 0 (the Mott phase), we also
find one at 4/U = 1.97+0.06, 6U/U = 1.59+0.06, which
is way beyond the range of validity of our assumptions. ]

The most complicated point is the multicritical point,
which is unstable in all directions. At this point it is

no longer a good approximation to lump all of the hop-
ping parameters into one distribution. This results in an
unwieldy recursion relation involving eight parameters,
which is subject to significant noise. We therefore can-
not characterize this point with any reasonable accuracy.

In the two-dimensional disordered system, the intro-
duction of infinitesimal disorder causes 6U to grow until
eventually bU & U. Thus our calculation does not ex-
hibit a stable Mott fixed point for the disordered system.
The Mott phase should be stable in two dimensions, how-

ever, since as long as 6 and t are small compared with
the Mott gap perturbation theory should converge.

V. DISCUSSION

The nature of the superfluid-Mott transition in the
pure case depends on how the Mott phase is approached2

[Fig. 5(a)]. If the interaction strength U/t is held fixed
and the number density is tuned to a commensurate
value (path A), then the transition is described by mean-

field theory. If, on the other hand, the boson density
is held fixed at a commensurate value and the interac-
tion strength is tuned through its critical value (path B),



46 REAL-SPACE RENORMALIZATION STUDY OF DISORDERED. . . 3007

t/U

0.0

(b)

t/U

0.0

t/U

0.0

A

1.0
cn&

SF

1.0
&no

SF

BG BG
1.0cn&

SF

—MOTT

MOTT

MOTT

the transition is in the universality class of the (d+ 1)-
dimensional XY' model. The Mott phase is characterized
by a coherence length (M which measures the spatial ex-
tent of density fluctuations or, conversely, the range of
local superfluid correlations in the insulating state. This
length diverges at (U/t), .

In our real-space renormalization-group treatment of
interacting bosons in one and two dimensions, we focused
on the behavior at commensurate density as a function
of interaction strength and disorder. For the pure sys-
tem, we obtained ordinary critical points with correla-
tion length exponents vq~ = 4.8 and vz~ = 1.2. Given
the uncontrolled nature of real-space methods, we find
the strikingly large value in one dimension (where the
behavior is known to be in the Kosterlitz-Thouless uni-
versality class) encouraging.

At incommensurate densities (n) = N + b'n where N
is an integer, the ground state can be either a superfluid
or a Bose glass, but not a Mott insulator (if we consider
only nearest-neighbor interactions). For small bn we can
describe the system as a collection of "excess" bosons
of density bn moving in the presence of a fluctuating
Mott background of integer density N. One can identifyz
two regimes depending on whether the separation a
(6n) ~~" between the excess bosons is longer or shorter
than (M.

(1) If a ) (M, then the Mott background has
little effect on the additional particles added
to it. These excess bosons behave like a di-
lute, weakly interacting Bose gas.

(2) If a & (M, then the local coherence of the
Mott background will enhance the superfluid
order in the fluid of excess particles.

To estimate the phase boundary between the super-
fluid and the Bose-glass states away from commensurate
density, we must also consider the competition between
the localizing effects of disorder and the delocalizing ef-
fect of interactions which tend to knock particles out of
their nominally localized single-particle states. To es-
timate this effect it is useful to introduce a "localiza-
tion length" which gives the spatial extent of these one-
particle states (obtained, for example, by a mean-field
approach ). We may then identify two regimes, depend-
ing on whether or not the interparticle spacing (of excess
particles) is large or small compared with this localiza-
tion length, Q, :

(3) If a ) Q„then each excess boson can
occupy its own individual localized state.

(4) If a & Q„then several bosons will occupy
each localized state. Interactions between the
bosons will delocalize the particles and can
lead to condensation.

FIG. 5. Schematic phase diagram for (a) the pure Bose-
Hubbard model, (b) the Bose-Hubbard model with disorder,
(c) the scenario put forth by Fisher et o/. for the disordered
Bose-Hubbard model.

From these considerations, we see that only when both
conditions (1) and (3) are simultaneously satisfied do
we expect to find a Bose glass with Anderson-localized
bosons. If either of these conditions is not satisfied, we
expect a superfluid ground state, stabilized by either the
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coherent fluctuations of the background Mott state (2),
or by interactions (4). The estimated phase boundary
is shown schematically in Fig. 5(b). Note that for fixed
disorder the Mott coherence length (M can always be
made larger than the (fixed) localization length by mov-

ing closer to (U/t)„so our heuristic arguments suggest
that the behavior near the tip of the phase boundary is
independent of the strength of the disorder.

For the disordered system at commensurate density,
our real-space renormalization group suggests that the
insulator-superfluid transition still takes place directly
from the Mott phase. At this critical point disorder is
a weakly irrelevant parameter. Our result agrees with
numerical studies, which find no evidence for an inter-
vening Bose glass for weak disorder in either one or two
dimensions, s 4 but contradicts the heuristic arguments of
Fisher et at. They note that near the Mott transition the
system can be viewed as a dilute collection of particle-
hole pairs above the Mott background, whose density is
of order (M". It is then argued that these excitations
should be localized by arbitrarily weak disorder. The
phase boundary for this scenario is shown in Fig. 5(c).
Since the length scale (M also specifies the typical dis-
tance between particle and hole, it is not obvious that one
may ignore the screening of disorder by these excitations.

An intriguing possibility is that disorder could be
marginally relevant, which would lead to a thin sliver
of Bose glass between the Mott and superfluid states in

Fig. 3, extending all the way to the 6 = 0 axis. This
would explain the inability to resolve a Bose-glass phase
in Monte Carlo studies, while remaining consistent with

the arguments of Fisher et at.2 We find that disorder
is only slightly irrelevant, with a scaling dimension of
—0.07. (A marginal field would have scaling dimension
zero. )

The phase diagram in one dimension exhibits a local-
ized Bose-glass phase at strong disorder. For weak disor-
der the Mott phase is destabilized, and the phase bound-
ary curves downward, so that the disordered system is
superfluid at interaction strengths which were Mott in-

sulating in the pure case. Unfortunately, our method
is too crude to allow investigation of the multicritical
point. (According to our calculation, the Mott phase is
unstable to the addition of infinitesimal disorder in two
dimensions. )

We also tried to investigate systems with incommensu-
rate densities using a real-space technique, but found no
straightforward blocking scheme which holds the occupa-
tion at a constant (fractional) density but does not show
a Mott insulating fixed point. Incommensurate systems
of hard-core bosons have recently been studied by Zhang
and Mais using a real-space method.
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