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Model of a two-dimensional Fermi liquid
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In this paper we use a self-consistent scheme proposed by Singwi, Tosi, Land, and Sjolander to study a
two-dimensional Fermi liquid whose particles interact via a repulsive hard-core potential with or
without an attractive tail. We determine the Landau parameters Fo and Fo, the static structure factors,
and we discuss the effect of adding the attractive tail to the hard-core potential.

I. INTRODUCTION

In 1987 Ng and Singwi' presented a detailed micro-
scopic study of a model system of a Fermi liquid whose
particles interact via a repulsive hard-core potential and
an attractive tail. The model is constructed to simulate
He. The study is based on a self-consistent scheme of

Singwi, Tosi, Land, and Sjolander (STLS) that has been
used to study correlations in electron liquids. This same
scheme has been applied to study a fully polarized and a
partially polarized model Fermi liquid. In Ref. 3 they
have compared some of the properties of a polarized sys-
tem with those of an unpolarized model Fermi liquid, and
in Ref. 4 they have investigated the corresponding system
of a partially polarized model Fermi liquid, which is a
subject of experimental interest.

In this paper we extend the same model and the theory
to investigate the two-dimensional (2D) Fermi liquid; it
was motivated by recent experiments involving 2D He
adsorbed on graphite. The theoretical scheme used in
this paper is self-consistent and is dynamic in nature.
The only input, as in 3D, ' is the bare potential.

We introduce the density and spin response functions
in the form of a generalized random-phase approximation
(RPA). We examine the effect of adding an attractive tail
on properties that we studied. We found interesting re-
sults concerning the role of the attractive interaction. for
example, the Landau parameter Fo increases compared
with its values in the hard-core case. The structure fac-
tors for spin fluctuations are quite different compared
with the hard-core case. The microscopic theory that we
use to study the 2D Fermi liquid enables us to study sepa-
rately the effects of the hard-core and attractive part of
the bare potential.

The present paper is organized as follows: In Sec. II
we present a theoretical scheme based on that of STLS.
In Sec. III, we calculate the two most important Landau
parameters, Fo and Fo, for small densities and also the

compressibility ratio K/Ef. In Sec. IV, we discuss the
static structure factors S(k) and S(k). In Sec. V, we in-
clude an attractive tail.

II. THEORETICAL SCHEME

(lb)

where yd and y, are, respectively, the density and spin
response functions, and po is the Lindhard function. Vgff
and V', ff are, respectively, the effective spin-symmetric
and spin-antisymmetric particle-hole interactions, and p~
is the Bohr magneton. The above equations are in the
form of a generalized random-phase approximation
(RPA).

Within the STLS scheme the effective interactions V,ff
and V',ff considered static, are written in terms of pair
distribution functions in the form

and

V'dt(r ) = —J dr g(r)
d V(r)

dr

V;tt(r)= —f "dr g(r)
dV(r)

(2a)

(2b)

where g(r)=g&&(r)+gtt(r) is the pair-correlation func-
tion and g(r)=g&&(r) —gtt(r). V(r) is the bare potential.

In the present case, we consider the bare potential in
the form

In the STLS scheme, the wave vector and frequency-
dependent density and spin response function are written
in the form'

yo(k, co)
yd(k, co) =

1 —V', tr( k, to )yo( k, co )

and
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Vo, r ~ao
V(r) = '

0, r)ao,
S(k)= — f dco imyd(k, co)k' (6a)

2~Vog(ao)ao
V',ff(k) = J, (kao) (4)

and a similar expression for V;ff(k), with g(ao) replaced
by g(ao). In Eq. (4), J, (kao) is the first-order Bessel
function of the first kind.

The numbers g(ao) and g(ao) are obtained through
pair-correlation functions g(r) and g(r), which are given
by the inverse Fourier transform of the structure factor,

g(r)=1+ f dk kJO(kr)[S(k) —1]k' (Sa)

where ao is the hard-core radius and Vo is positive. In
the hard-core limit Vo~ ~. Substituting Eq. (3) into
Eqs. (2a) and (2b), and taking the Fourier transform of
V ff ( r) and V;ff( r ), we obtain

and

S(k)= — f den imp, (k, co) .
2
k' (6b)

At r =ao, we have to solve self-consistently the set of
equations given by Eqs. (1), (4), (5},and (6) for g(ao) and

g(ao).
The expression for the Lindhard function go derived by

Stern' is not convenient to use in Eq. (6). To calculate
the structure factor S(k) and all the other physical quan-
tities mentioned, we follow instead a procedure used by
de Freitas, Ioriatti, and Studart. " They replaced k and co

by variables g and 8 defined by

2kF

k
= cosh( sin8,

and
2m co

Ak
= sinhg cos8, (7b)

g(r) =—f dk kJO(kr)[S(k) 1], —
k' (5b) where 0 & 8 & m /2, 0 & g & ~. With this transformation,

the expression for yo(k, co) assumes the form
where Jo(kao) is the zeroth-order Bessel function of the
first kind.

Using the fluctuation-dissipation theorem, we can
write the static structure factor and the magnetic struc-
ture factor S(k) in terms of the density and spin response
functions gd and y„respectively, through

yo(8)= —(m/rrh )(1—cos8) .

Using Eqs. (1) and (8) in Eq. (6) and writing k in units of
the Fermi wave vector kF, the structure factor S(k) be-

comes

t8S(k)= f d8 +I —(k /4)sin 8+
7T 0 +I—(k /4) sin 8

(1—cos8)
1+V',ff(k)(m/M )(1—cos8)

where

m. /2, k &2

sin '(2/k), k ) 2 . (10)

F(x)=x/Vo .

In the hard-core limit (Vo~ ~ ), we expect g(ao}~0.
The effective interaction V,ff(k;x) is determined by

F(x)=0 . (1 lb}

In the case of the spin response, we write y = Vog(ao)
in units of the Fermi energy; and for the spin-
antisymmetric effective interaction, we have to solve an

The expression for S(k) is similar, replacing V,ff(k) with

V;ff(k).
Writing x = Vog(ao) in units of the Fermi energy, we

have from Eq. (5),

F(x)=1+f dk kJo(kao)[S(k, x)—1], (lla)
0

where

c(apkF)

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.41

n/np

0.405
0.500
0.605
0.720
0.845
0.980
1.0

Vpg (ap)

8.01
5.5
4.67
4.35
4.27
5.11
6.82

14.72
28.53
45.05
67.22
60.17
46.64
35.99
34.83

—Vpg(ap)

7.91
5.46
4.45
3.75
3.28
4.40
2.59
2.35
2.12
1.84
1 ~ 59
1.40
1.23
1.09
1.07

TABLE I. Solution of the STLS equation for various densi-
ties for a pure hard-core potential with Vpg(ap) and —Vpg(ap)
in units of the Fermi energy.
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equation of the form

y /Vo =G(y),

where we can see that

G(y)=F(y) —1 .

(12a)

(12b)

We solved numerically Eqs. (11) and (12a) in the hard-
core limit for various densities, below the critical value

Doke 1.41. Beyond this value the self-consistent solu-
tion does not exist and the system may solidify. Solutions
for g(ao) and g(az) so obtained are given in Table I for
various densities.

].2

1.0

0.8

~ 0.6

04

0.2-

III. LANDAU PARAMETERS '0 0.2 Q.4 0.8 &.0
In the region of density aok~ & 1, we calculate the Lan-

dau parameters Fo =N(0) V',z(k =0) and Fo
=N(0)V;s(k =0), where N(0) is the density of states
N (0)=m /M . Our results are shown in Fig. 1 in terms
of c=aokz. In the limit of c~0, the spin and density
Landau parameters reach the same absolute value. Due
to the Pauli exclusion principle, the effective interaction
between particles of the same spin vanishes. The
compressibility ratio E/Ef, where Ef is the free particle
compressibility, is given by

E 1

1+F0
(13)

since m /m =1. This ratio is shown in Fig. 2 as a func-
tion of c, and we can see that the curve is smooth as in
3D, but our values of E/Ef are much smaller than those
in 3D. The pair-correlation functions g(r) and g(r) for
low densities are nonzero inside the hard core, although
g(a)=g(ao)=0. This is a defect of this theory for large
values of k. This behavior, as in 3D, may not be percepti-
ble in a plot of S(k) and S(k), but can lead to unphysical
behavior of the pair-correlation functions for small values
of r.

FIG. 2. Compressibility ratio E/Kf vs c.

IV. THE STATIC STRUCTURE FACTORS

The high-density region c ) 1, as in 3D, is very in-
teresting since the liquid He in a first approximation can
be considered a Fermi liquid interacting via a hard-core
potential. Taking ao=2. 56A and k~=0. 55A ', corre-
sponding to the normal liquid He density, one finds
that c =1.41. However, the real liquid He interacts via
softer potential with an attractive tail (6-12 Lennard-
Jones potential), and we shall see that the appropriate
value of c for 2D He is c =0.9—1.1.

The static structure factor S(k) for densities c =1.0,
1.1, and 1.2 is shown in Fig. 3. It can be seen that the
peak positions for different concentrations all occur at
around kao =4.75, and the peak value increases with the
increase in density. In the 3D case, similar results have

2.0 2.0

&.5-

&.0-

0.5

-F
0

p' S
0

I
I
I
I
I
I
I

I
I

I
III//

c =1.0
---c= ),t

----- c =12

'0 0.5 1.0 0
2.0 4.0 6.0 8.0

I

10.0 )2.0

FIG. 1. Landau parameters Fp and —Fo vs c for small densi-
ties.

ao

FIG. 3. Static structure factor S(k) vs kao for densities
c = 1.0, 1.1, and 1.2 for a pure hard-core potential.
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2.0

c =1.1

TABLE II. Solution of the STLS equation for various densi-
ties for a pure hard core plus an attractive potential, expressed
in units of the Fermi energy.

&.0-
im

———c =1.4 c(aokF)

0.90
0.94
1.00
1.10
1.20
1.30
1.40
1.41

Vog (ao)

29.173
30.884
43.495
65.660
50.056
44.723
35.067
33.935

cg(a, )

0.972
1.000
0.995
0.734
0.627
0.610
0.602
0.597

—Vg(a )

1.240
1.291
1.210
1.291
1.050
1.087

—cg(a, )

0.324
0.186
0.131
0.135
0.081
0.089

C0 2.0
}

4.0

Q0

6.0 8.0
=F,(x„x2), (16a}

FIG. 4. Magnetic structure factor S(k) vs kao for densities
c = 1. 1 and 1.4, for a pure hard-core potential.

X =F2(x„x2),

where

(16b)

been found.
The static magnetic structure factor S(k) for densities

c =1.1 and 1.4 is shown in Fig. 4. We can see the pres-
ence of a sharp spike for c =1.4. At this density, we
have ferromagnetic instability since Fo & —1, and this is
the reason for the appearance of this behavior in S(k).

F ]( x„xz ) =g(a o' x]xz )

F2(x„x2)=g(a, ;x„xz),

V+
= ](» y2}Vo+ c.

(17)

(18a)

V. INCLUSION OF AN ATTRACTIVE TAIL

The attractive tail has an important role in determin-
ing the properties of liquid He. In real liquid He, the
interatomic potential is of the Lennard-Jones type, which
has an attractive tail.

The model interaction has the form

Vo ( Vo~ 00 ), r &ao

V + G2(yl y2)
Vo+ E

where

G](y] y2)=g(aoiy] y2)

G2(y] y2) g( ] yl y2)

In the hard-core limit (Vo~ ~ ), we have

(18b)

V(r)= —e, ao &r &a, ,

0, a&, (r .

(14)

50.0
This potential includes a repulsive hard core at short

distances and a short-ranged attractive tail.
The parameter a& and c. of the attractive tail are fixed

in Ref. 1, to be a, =2.05ao and c, =0.46@., where 4c. is the
strength of the Lennard-Jones potential for He.

Using Eqs. (2) and (14) and taking the Fourier trans-
form of V',]r(r) and V;z(r) we obtain

V', ]r(k) =(27rlk)[( Vo+e)g(ao)J](kao)
—Ea]g(a, )J,(ka, }j,

S
0

40.0-

30,0-

20.0-

10.0—
and a similar expression for V;]r(k) replacing g(ao) with

g(ao }.
Therefore, we have a new set of self-consistent equa-

tions for the variables x, =(Vo+E)g(ao}, x2= —Eg(a, )

and y] =(Vo+E)g(ao), y2= —eg(a]) in units of Fermi
energy. We now have to solve numerically two coupled
nonlinear equations of two variables. Using the same
procedure as in Sec. II, we can write

'0 0.5

nin,
1.0 1.5

FIG. 5. Landau parameter Fo vs n/no. Curve A is for a
hard-core potential and curve B is for a hard-core plus an at-
tractive tail potential.
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0.2

0.2 0.4
n/np
0.6 0.8 1.0

-0.2

a
-06

-0.8

-1.0

-1.2

F, ( xi, x~)=0,

F2(x „x2)—x2/e=p,
(20)

and a similar set of equations for the spin response.
The solutions of the above set of equations are given in

Table II for differents densities c.

FIG. 6. Landau parameter Fo vs n/no. Curve A is for a
hard-core potential and curve B is for a hard core plus an at-
tractive tail potential.

c ) 1. Near the critical point c =1.41, Fo decreases. As
in 3D, the present theory may not be valid when the sys-
tem is close to its solidification point.

The inclusion of an attractive tail in Fo has a large
effect, as can be seen in Fig. 6. We also solved the self-
consistent equations for two or more choices of the pa-
rameter c and a, for the density c =1.1. Note in Table
III that the values of the effective spin-symmetric interac-
tion V',s(k) are very close for different values of
a

&
in all ranges of k. The Landau parameters

Fo[N(0) Vez(k =0)] for three different choices of a, and
c. are very close. This situation is not the same for the
effective spin-antisymmetric interaction V,z(k) (Fig. 7).
The Landau parameter Fo[X(0)V;N(k =0)] depends on
the shape of the potential. For three different choices of
a& and c, Fo changes from —0.237 to —0.391. There-
fore, the effective spin-antisymmetric interaction V,z(k)
is sensitive to the shape of the attractive part of the bare
potential.

In Fig. 8, we have N(0) V;tr(k) for a pure hard-core po-
tential (curve A) and for a hard core plus an attractive
tail for density c=1.l (curve B). For kao)2. 25 the
values for N(0)V;fr(k) are very close, but in the small-k
region the attractive tail changes the shape of the
effective potential. The Landau parameter Fo increases
by a factor of approximately 1.5 from its hard-core value.

In Fig. 9, we have the effective spin-symmetric dimen-

A. Landau parameters

0.2

0 &.0
I

3.0
kao

7.0

p -02
o

-04

Og =1.90p--- a, =2.05ap
eaaemm 0~ ~ 2 '2 Qp

-O.S

FIG. 7. Spin-antisymmetric dimensionless effective interac-
tion N(0) V;&(k) vs kao for three different choices of the param-
eter a

&
(and c,) for the attractive tail, for density c =1.1.

The Landau parameters Fo and Fo vs n/no are shown
in Figs. 5 and 6, respectively. Curve A is for a pure
hard-core potential and curve B is for a hard core plus an
attractive tail. Comparing the values of Fo in curve A at
n/no=0. 25 and n/no=0. 50, they differ by a factor of
19, whereas Fo changes by 41.8%. Comparing curve A
in Figs. 5 and 6, the Landau parameter Fo changes more
rapidly with density than Fo in the region of high density,

kao

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

a) =1.9ao

38.121
37.856
37.066
35.766
33.980
31.744
29.108
26.133
22.896
19.483
15.988
12.513
9.157
6.014
3.167
0.685

—1.382
—3.008
—4.184
—4.924
—5.260
—5.237
—4.910
—4.343
—3.599

N(0) V',8.(k)
a& =2.05ao

37.858
37.609
36.864
35.629
33.917
31.752
29.172
26.231
23.000
19.570
16.040
12.521
9.123
5.949
3.089
0.613

—1.433
—3.026
—4.168
—4.879
—5.199
—5.174
—4.861
—4.318
—3.602

a& =2.2ao

37.575
37.346
36.655
35.499
33.874
31.787
29.262
26.344
23.105
19.639
16.060
12.491
9.056
5 ~ 866
3.013
0.563

—1.444
—2.999
—4.111
—4.810
—5.136
—5.135
—4.854
—4.344
—3.653

TABLE III. Spin-symmetric dimensionless effective interac-
tion N(0) V',z(k) vs kao for density c =1.1, for three different
choices of the parameter a &.
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0.5 1.5

0 &.0
Q0

3.0 ~~ 55
I I

o~e
& -0S
o

-1.0
0.5 c =1.1--- c= 1.4

-&.5

FIG. 8. Spin-antisymmetric dimensionless effective interac-
tion N(0) V;~(k) vs kao for c =1.1. Curve A is for a hard-core
potential, and curve B for a hard-core plus an attractive tail po-
tential.

50.0

0
2.0 4.0

a0

I

6.0 8.0

FIG. 11. Magnetic structure factor S(k) vs kao for densities
c = 1. 1 and 1.4, for a hard-core plus an attractive tail.

40.0

30.0

20.0
C)

10.0

sionless interaction N(0) V', ff(k) for density c = l. l.
Curve A is for a hard-core potential and curve B is for a
hard core plus an attractive tail. Note that for small k,
when we include an attractive tail, the effective potential
decreases. But for ka o )2.25, the values of the
N(0) V ff(k} are very close.

-10.0

I

30 50 7.0
kao

2.0-

I ~

I
I 1

/
,/

c =1.Q
———c =1.1
------ c = 1 2

1.0

FIG. 9. Spin-symmetric dimensionless effective interaction
N(0) V',z(k) vs kao for c =1.1. Curve A is for a pure hard-core
potential and curve B is for a hard-core plus an attractive tail
potential.

B. The static structure factor

The static structure factors S ( k ) for densities c = l.0,
1.1, and 1.2 are shown in Fig. 10. Compared with the
curves for S(k) for a hard-core potential (Fig. 3), we can
see that the peak position is the same and that the peak
height increases with the density. This behavior has the
same shape as in the 3D work of Ng and Singwi. '

The static magnetic structure factor S(k) for densities
c =1.1 and 1.4 are shown in Fig. 11. The shape of these
curves is very different from the pure hard-core potential
at the same densities. This is a consequence of the
different behavior of the effective spin-antisymmetric in-
teraction in the region of small k. Note that when the
density increases, the peak of S(k} weakens and in this
situation the effect of the hard core becomes dominant.

The present study has provided us with some insight
into the nature of the 2D liquid He . We also intend to
determine the zero sound dispersion and the effective
mass on the Fermi surface, although the former has a
complicated analytical structure that is difficult to solve.

0
0 2.0 4.0 6.0 8.0 10.0 12.0
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