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Sum rules for density and particle excitations in Bose superfluids
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Various sum rules for the density and particle operators are derived and discussed. We investigate in

detail the properties of the particle state, the natural counterpart of the Feynman state describing collec-
tive density excitations. An explicit expression for the energy of the particle state is derived in terms of
the interatomic potential, the two-body half-diagonal density, and the momentum distribution. Sum
rules accounting for the coupling between particle and density excitations are also derived and the role
of the Bose-Einstein condensation explicitly pointed out. Finally we discuss the separate contribution to
the various sum rules arising from one-phonon and multiparticle excitations.

I. INTRODUCTION

[P) = a, /0),
n (q)

(1.2}

where a is the particle annihilation operator and n (q) is
the momentum distribution of the system.

Different from the Feynman state —whose properties
have been extensively investigated in the literature—
much less is known, from a microscopic point of view,
about the particle state (1.2), except in the limit of the di-
lute Bose gas (Bogoliubov limit' ), where ~F) and ~P)
coincide with the exact solution of the many-body prob-
lem. The coupling between these states, due to the Bose
Einstein condensation, is at the origin of rather funda-
mental features exhibited by the density and particle
Green's functions" ' that are known to share the same

I

The theoretical investigation of the elementary excita-
tions (phonons, maxons, and rotons) of superfluid He has
been the object of extensive and systematic work follow-
ing the pioneering papers by Landau. ' In most theoreti-
cal approaches the microscopic description of the ele-
mentary modes is given in terms of density excitations
starting from the Bijl-Feynman proposal '
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&XS( )P'

later improved to include back-flow corrections and cou-
pling with two or more density excitation states (see, for
example, Refs. 5 —9). In Eq. (1.1) S(q) is the usual static
form factor ensuring the normalization of the state. At
low momenta the Feynman state (1.1) yields exactly the
energy of the phonon state. Conversely, at higher q it
gives a rather poor description of the maxon-roton states
due to the role of multiparticle excitations that are siz-
ably excited by the density operator p .

A natural alternative to the density picture is provided
by the particle choice

poles corresponding, at low q, to the phonon branch. '

The purpose of this work is to discuss in a systematic
way various sum rules for the density and particle opera-
tors. Some of them permit us to calculate the energy of
the particle state (1.2) as well as its coupling with the
Feynman state (1.1) as a function of q. They consequent-
ly contain useful information on the particle nature of the
elementary excitations in Bose superfluids and can be
used to derive rigorous upper bounds for the energy of
the elementary excitations.

The paper is organized as follows. In Sec. II we pro-
vide a brief summary of sum rules for the density opera-
tor. These results are also used to derive a nontrivial
lower bound for the compressibility sum rule at zero tem-
perature.

In Sec. III we present a detailed study of various sum
rules for the particle operators a and a and provide an
investigation of the energy of the particle state (1.2). In
Sec. IV we investigate crossed sum rules for the density
and particle operators. These sum rules are peculiar of
Bose superfluids and permit us to study the coupling be-
tween density and particle excitations due to the oc-
currence of the Bose condensate. In Sec. V we discuss in
a systematic way the contributions to the different sum
rules arising from one-phonon and multiparticle states in
the 1ow-momentum region.

II. SUM RULES FOR THE DENSITY OPERATOR

Sum rules for the density operator p have been exten-
sively studied in quantum liquids (see for example Refs. 6
and 14—16). In this section we present a short summary
of the main results. The positive-energy-weighted sum
rules will be used at the end of the section to provide a
useful rigorous lower bound for the compressibility sum
rule (inverse-energy-weighted sum rule} at zero tempera-
ture.

Let us consider the density spectral function

(q, co)= Jdt e' " ' '([p (t),p (t')])
l —PEg(e —e
Z

m, n

")t, m ~p' ~n )(n ~p ~m )6(co E„+E ), — (2.1)
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—PE„
where Z =g„e " is the partition function, ln ) and E„
are eigenstates and ei~envalues of the Hamiltonian of the
system, and

pq =deka 1,+&a|, is the usual density operator.
The spectral function is related to the retarded Green's

function through the well-known dispersion relation:

S(q, co)= g I & nlpqlo) I 5(co—co„o),

where co„o=E Eo and hence

m (q)= f nPS(q, co)dco= gaP„ol( nip I0)l
n

(2.9)

(2.10)

G"(q, co)= f (2.2)

A t (q, co)
S(q, co) =

1 —e ~ (2.3)

By using Eq. (2.3) and the completeness relationship

Q„ In ) ( n
I

= 1 one can easily find compact expressions for
the moments

On the other hand the dynamic structure function
S(q, co), measured in inelastic neutron scattering, is relat-
ed to the spectral function through the equation

In principle, the moments m can be determined experi-
mentally by explicit integration of the dynamic structure
function S(q, co), measured via inelastic neutron scatter-
ing. ' In practice, the inaccuracy of experimental data at
high co makes the determination of the high-frequency
moments difficult. Contrariwise, the occurrence of the
collective phonon-maxon-roton branch, typical of
super6uid He, makes the low-frequency region much
easier to control.

By explicitly carrying out the commutators entering
Eqs. (2.5)—(2.8) with the general Hamiltonian (fr= 1),

m (q)= f aPS(q, co)dco (2.4)
H= g p;+ g V(lr; —r, l)

1

l i (j
of S(q, co) that can be consequently calculated, avoiding
the much more difficult problem of evaluating the com-
plete co dependence of the dynamic structure function.
One finds

mo(q)= f p
A t (q, co)dco=(ptgq),

m&(q)= ,' f —coA t (q, co)dco= —,'([pt, [H,pq]]), (2.6)

1
k al,al, + —,

' g V(q)a~+qaz qazal, , (2.11)
2m

where V(q)=(1/V) J dre'q'V(r), one can find explicit
expressions for the moments m . The main results are
here briefly summarized.

The mo moment is proportional to the static structure
function

m2(q)= f A t (q, co)dco—oo 1 —e ~~ P ~P

= ( [pt, H) [H,pq] ),
+ oo

m3(q)= —, co A t (q, co)dco
QO P ~P

([l.[p»]»] [»p ]]) .

Note that at T =0 one can write

(2.7)

(2.8)

ma
= (pgq) =NS (q), (2.12)

p'g (

Iran

—
r21 ) =p"'(ri, r2,'ri, r2),

through the equation

S(q) —1=f [g(r) —1]e ' 'dr .

The two-body density of Eq. (2.14) is defined by

(2.13)

(2.14)

which is related to the pair-correlation function g (r),

p' '(r, , rz, r', , r2)=N(N —1)f+'(r, , rz, r3, . . . )%(r', , rz, r3, . . . )dr3 dr& . (2.15)

The comparison between theory and experiments has been extensively carried out at the level of the sum rule (2.12)
(see for example Ref. 18 and references therein). In fact, on the one hand, neutron and x-ray scattering experiments
provide a good determination of S(q). On the other hand, the pair-correlation functions g (r) is available with high ac-
curacy starting from microscopic calculations of the ground-state wave function. '

The energy-weighted moment is fixed by the model independent f-sum rule:

2

m, (q)= —,'([p, [H p ]])=N (2.16)

(2.17)

Result (2.16) simply follows from the velocity independence of the interatomic potential (2.11), which commutes with
the density operator [ V,pq] =0.

The m2 moment is given by the sum rule '
2 2

m2(q)=([pq, H][H p ])=N [2—S(q)]+ D(q)

where

1D(q)= — dr, drzcos[q(z, —zz)]VfV2p' '(r„rz, r'„rz)l
1 1~2 2

(2.18)
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+ q, (E, )
m

is the kinetic structure function. Here and in the follow-
ing the wave vector q will be taken along the z direction.
Differently from the static structure function S(q), the
determination of D(q) requires the knowledge of off-
diagonal components of the two-body density (2.15). Few
microscopic calculations ' are at present available for
the function D (q).

The cubic moment I3 can also be easily calculated in
terms of commutators. One finds the following result:

m (q)=-,'((Hp,'Hl H] IH p, jj&

2
3

q
2m

m, (q) [K ]

0.10—

0.05—

I

2
q [A']

+p fds(1 —cosqz)g(s)V,'V(s)
2m

(2.19)

FIG. 1. Polarizability sum rule m
&

as a function of q. The
solid line gives the experimental results from Ref. 17. The
dashed line gives the Feynman lower bound (2.27).

where ( E~ ) is the kinetic energy of the system. This
sum rule has been extensively employed to investigate the
role of multiparticle excitations in superAuid He and
has also been used in the study of Fermi liquids [electrons
(Refs. 24 and 25) and He (Refs. 26 and 27)j.

We point out that equations (2.12)—{2.19) rigorously
hold for any value of q and that their determination re-
quires only the knowledge of the two-body density matrix
relative to the ground state. In particular only the struc-
ture functions S(q) and D(q) (in addition to the kinetic
energy (Ez ) ) are needed for their explicit evaluation.

In the last part of the section we use the sum rules mo,
m „m2, and m3 in order to get a rigorous constraint on
the inverse-energy-weighted moment

Qom, (q) =f —S(q, co)dc@
0 CO

(2.20)

at zero temperature. As previously anticipated the oc-
currence of a discretized collective branch in Bose sys-
tems makes the experimental determination of this mo-
ment, through the explicit integration of the dynamic
structure function, considerably more precise than that of
any positive moment due to the 1/co factor that
supp resses the contributions arising from the high-
frequency region. The experimental analysis of m &(q)
in superAuid He was discussed by Cowley and Woods'
who pointed out the oceurrenee of an important struc-
ture in the roton region (see Fig. 1). The m

&
sum rule is

also known as the compressibility sum rule and in the
long-wavelength limit reduces to

1V
lim m, (q)=
q~O 2m'

(2.21)

where c is the usual sound velocity. The interest in a
better knowledge of m, (q) is also related to its crucial
role in the density-functional theory of inhomogeneous
quantum systems (see, for example, Ref. 28 and refer-
ences therein).

The m
&

moment is related to the static response to an
external field coupled to the system through the density
operator:

H(A, )=H+Ap~ . (2.22)

The density fluctuations induced by the external field A,

then provide the static polarizability and hence the I
moment:

lim —( A,
~ p, ~

A, &
= —2m, {q),

1

A~O k
(2.23)

where ~A, ) is the ground state of K(A, ). Any restricted
variational determination of the state ~A, ) starting from
Hamiltonian (2.22) then provides a tower bound for the
moment m, . The simplest basis to carry out such a cal-
culation is given by the choice

i) &=io&+up, io& (2.24)

accounting for the coupling between the ground state and
the Feynman state

p, l0& .
&NS (q)

The variational calculation yields the result'

m, (q) ~ m, (q)

with the Feynman lower bound given by

mo{q) 2mm, (q)= =NS(q)
m, (q) q'

(2.25)

(2.26)

(2.27)

This calculation is equivalent to assuming that the
strength of the density operator is concentrated in a sin-

gle collective mode exhausting the sum rules m &, mo,
and m &. It is exact only in the low-q limit where
S (q) ~q /2mc, and one finds

m, (q =0)=m, (q =0)=N 1

2mc
(2.28)

As discussed in Ref. 14, the Feynman approximation
significantly underestimates the experimental value of
m, in the maxon-roton region (see Fig. 1), since it does



46 SUM RULES FOR DENSITY AND PARTICLE EXCITATIONS. . . 2977

not provide any decoupling between its collective and
multiparticle components. For the same reason the ener-

gy of the Feynman state (2.25),

where

&blHlb&
&bib&

m&
CF=

mo 2mS(q)
(2.29) m3 +

mo

2
m2—2
mo

provides only a poor estimate of the energy of the collec-
tive state except in the low-q limit.

A natural improvement of the Feynman ansatz is given
by the choice

IX &
= lo &+ap&10&+P(l [H,pq]

—sFpq) IO &, (2.30)

where a and P are parameters to be fixed in the variation-
al calculation of the static polarizability. The combina-
tion of the operators entering the term in P ensures its
orthogonality to the Feynman state p&IO&. With respect
to the Feynman ansatz (2.25), choice (2.30) enlarges the
basis of the variational calculation and consequently
yields a higher lower bound for m

&
(a similar ansatz

was employed in Ref. 6 to lower the Feynman upper
bound for the excitation energy}. A straightforward cal-
culation yields

m2 m&
(2.32)

m& mo

is the energy of the state Ib & =([H,pz]
—eppz)IO& and

the (positive) variance b, (q) is defined by

m2(q) m, (q}
b, (q) =

m &(q) mo(q)
(2.33)

III. SUM RULES FOR THE PARTICLE OPERATOR

The explicit evaluation of the new lower bound re-
quires the knowledge of the sum rules mo, m&, m2, and
m3. At small q the ratio b, (q)/eb(q) behaves like q and
the lower bound (2.31}approaches the exact q =0 result
(2.28). At higher momenta one expects a significant im-
provement with respect to the Feynman lower bound.

m &(q)

1 —b, (q)/s&(q)
(2.31) The particle spectral function is defined, analogously to

the density spectral function (2.1), by the equation

A t (q, co)= fdt e'"" ''&[az(t), az(t')]&

g (e —e ")&mla In &&nla Im &5(co E„+E ), —
m, n

where E,E„are eigenvalues of the grand canonical Hamiltonian

H'=H —pN .

(3.1)

(3.2)

(3.4)

The spectral function (3.1) is related to the particle Green's function through the general relation (2.2).
Several sum rules can be derived for the particle spectral function. Using the completeness relation for the eigen-

states of the Hamiltonian one finds the following results for a system of interacting bosons:

A y q, co dc@= a, aq = —1, (3.3)

f &
A t (qco)dc@=&a&a &=n( )q,

+ 00f cod t (q, to)dco=&[a~, [H', a ]]= p+NV(0)+ g—n(lp q+l) (pV),
P

(3.5)

d~ —aq H
2m

n (q) —g n(q, p) V(p) .
P

(3.6)

In the above equations V(p) is the Fourier transform of the interaction potential [see Eq. (2.11)],n (q) =
& a&a & is the

momentum distribution of the system and

n(q, p)= &pat paq & n(q)— (3.7)

is the two-body momentum distribution recently investigated in Ref. 29. In terms of the off-diagonal two-body density
(2.15) one can write

1 / (2) t
—iq-(rl r1) ip. (rl r2)

n (q, p) =— dr, dr2dr', p (r„r2,r'„r2)e ' ' e (3.8)

Results (3.3)—(3.5) are well known in the literature (see for example Ref. 30). In particular result (3.3) follows from the
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Bose commutation rule, while result (3.4) defines the momentum distribution of the system. Result (3.5) was first dis-
cussed by Wagner. ' Conversely result (3.6) has never been discussed, to our knowledge, in the context of Bose
superfluids.

The sum rules (3.4) and (3.6) have a particularly clear interpretation in the T =0 limit where the left-hand side can be
written in the following way

f'" ', A t (q, ~)d~= f'"A t (q, ~)d~=yl&nla qlo&l', (3.9)

f A t (q, co)de= f aiA z (q, co)dc@= +co„ol &n la l0) l

n

(3.10)

gl &n la, lo) l'
(3.11)

provides the energy e~= &PlH'lP) l&PlP) of the parti-
cle state [see Eq. (1.2)]

lP)= a, o) . (3.12)
n (q)

We refer to lP ) as to the particle state to distinguish it
from the density state lF ) given by the Feynman ansatz
(2.25). It is obtained by removing a particle with momen-
tum —q from the ground state l0). It is worth noting
that, in general, neither lP ) nor lF ) are exact eigenstates
of the system.

Using Eqs. (3.4), (3.6), and (3.11), one finds the follow-
ing expression for the energy of the particle state:

Ep(q)=p- q IV (q)
2m n (q)

where

8'(q) = g n (q, p ) V(p)

(3.13)

I= fdr, dr', p' '(r„0;r'„0)e ' ' V(r, ) (3.14)

and p' '(r„r2;r'„r2) is defined in Eq. (3.8). It is interest-
ing to compare the energies cF and c~. In fact„ in a Bose
superfluid, due to the occurrence of the Bose condensate,
the states

l
F ) and

l
P ) are not orthogonal and are both

expected to have a significant overlap with the exact ex-
cited state of the system. The two states coincide with
the exact solution only in the case of a weakly interacting
Bose gas (Bogoliubov limit' ). In a strongly interacting
Bose liquid both Eqs. (2.29) and (3.13) provide rigorous
upper bounds for the energy of the phonon-maxon-roton
state. The interest in the comparison between c.F and c~
is also motivated by the recent debate ' about the mi-
croscopic nature of the roton excitation following the
availability of accurate experimental data from inelastic
neutron scattering. In fact, according to the sugges-
tions of Ref. 33, the physical picture of the roton should
be more particlelike than densitylike, the two descrip-

Equations (3.9) and (3.10) have a structure similar to
the moments of the dynamic structure function [see Eq.
(2.9)] with the particle operator a

q replacing the density
operator p . In particular, the ratio

+co„,l&nla, lo&l'-

q

g n(q)
(3.15)

This average is sensitive to the values of E~(q) in the in-
terval of momenta, where the quantity q n(q) has a
significant weight. This corresponds to the range
q =1—3 A ' including the maxon and roton region. The
average (3.15) can be explicitly calculated using the exact
relations

g n(q)=N,
q

gn(q, p)V(p)=2& V),
pq

or, equivalently, the operator identity

—pa [H, a )=Ex+2V,
P

(3.16)

(3.17)

where Ek and V are the kinetic- and potential-energy
operators respectively. One finds

E, =p, —&E &
—2& V&, (3.18)

where & Ex ) and & V) are the kinetic energy and the po-
tential energy per particle relative to the ground state of
the system. Result (3.18) was applied in a similar form by
Koltun to the study of nuclear knock-out reactions. At
zero pressure, where p= &E~)+ & V), Eq. (3.18) yields
Ep= —

& V) =21—22 K in superfiuid He. It is instruc-
tive to compare the above value with the corresponding

tions being, however, coupled due to the presence of the
Bose condensate. One then might expect cz to be smaller
than cz in the roton region.

Differently from the Feynman energy (whose evalua-
tion requires only the knowledge of the static structure
function) the explicit calculation of the particle energy is
more difficult and requires the knowledge of the two-
body off-diagonal density entering the integral of Eq.
(3.14). First microscopic results for this density are now
becoming available.

A useful comparison between the Feynman and parti-
cle energies nevertheless can be made avoiding the expli-
cit calculation of p' '. To this purpose it is convenient to
define the average particle energy in momentum space ac-
cording to

g n (q)EP(q)
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Feynman average energy:

y n (q)eF(q)
q

F (3.19)
g n(q)

Using microscopic estimates for S(q) and n (q) we find

K~ =24—25 K a value slightly higher than F~.
A more direct comparison between the Feynman and

particle states can be made in the low-q limit, where the
Feynman energy (2.29) is known to reproduce rigorously
the correct phonon dispersion law co=cq. Contrariwise,
the low-q limit of Eq. (3.13) is less trivial. In Sec. V we
discuss in a systematic way the phonon and multiparticle
contributions to the various sum rules in the q ~0 limit.
The main results concerning the sum rules (3.9) and (3.10)
are as follows.

(i) The non-energy-weighted sum rule (3.9) entering the
denominator of Eq. (3.11) is dominated by the phonon
contribution and diverges' ' as 1/q,

nome
(3.20)

2q

(ii) The energy-weighted sum rule (3.10) approaches a
constant value and takes a contribution both from one-
phonon and multiparticle excitations. Two important
consequences follow from the above results.

(a) At q =0 the energy st, of the particle state must
vanish. This implies [see Eq. (3.13)] the nontrivial rela-
tionship for the chemical potential

n(q)=

~(q)p= lim
q o n(q)

(3.21)

By introducing the function F, characterizing the long-
range order of the two-body half-diagonal density (3.8)
through the relation

lim p' '(r„rz', r'~, rz)=nop [I++ i(l ri—r~l)l
p') ~00

(3.22)

where no=(1/N)(aoao) is the condensate fraction, re-
suit (3.21) can be rewritten in the following way:

p=p r1+F, r Vr (3.23)

Equation (3.23) represents a nontrivial result holding for
any Bose system exhibiting Bose-Einstein condensation
and interacting with central potentials. It is instructive
to point out an analogy between Eq. (3.23) and the
Hugenholtz and Pines' relation for the chemical poten-
tial. Both results turn out in fact to be connected with
the absence of a gap in the excitation spectrum.

(b) A second important consequence of the above dis-
cussion is that the dispersion of c~ is linear in q, with a
slope larger than the velocity of sound c, due to the con-
tribution arising from multiparticle excitations in the
energy-weighted sum rule (3.10). An explicit result for

I

—pp'"(r i )[1+F,(r, )]]V(ri )

from which one gets

2qbo=
nomC

(3.24)

(3.25)

with 2b/nome &c. Clearly the occurrence in sr of a
slope larger than the sound velocity, together with the
fact that the average value of the particle energy Fz is
smaller than F~, is compatible with a particle energy c~
significantly lower than cF in the roton region.

To conclude this section we note that, in contrast with
what happens in a dilute Bose gas where the operators a
and az (as well as the density operator p ) have an
equivalent role in generating the elementary excitations
of the system, because higher-energy excitations have a
minor importance, in a strongly interacting system the
role of such operators is highly asymmetric. In particu-
lar the state a l0) provides a much worse description of
the elementary mode compared to the state a l0), since
adding a particle with momentum q to the system yields
a violation of the core condition imposed by the repulsive
component of the interatomic potential on the two-body
density matrix. This is responsible for the occurrence of
important high-energy components in the state a& l0) as
results from the explicit calculation of its average energy

(a Ha ) ([a,[H, a ]])—(a [H, a ])
(3.26)

(a at) 1+n(q)

The quantities at the numerator of Eq. (3.26) correspond
to the energy weighted sum rules (3.5) and (3.6). Howev-
er, while the second term, characterizing the energy of
the state a&l0), is also well behaved in strongly interact-
ing systems, the first term [see Eq. (3.5)] is dramatically
affected by the short-range components of the potential.
This indicates that in liquid He the Wagner sum rule
(3.5) is not particularly useful in the study of the elemen-
tary excitations being dominated by multiparticle effects.

IV. SUM RULES FOR THE PARTICLE-DENSITY
SPECTRAL FUNCTION

As anticipated in Sec. III, particle and density excita-
tions are not decoupled in superfluid He due to the ex-
istence of the Bose condensate. This property is explicit-
ly revealed by the fact that the particle-density spectral
function

the slope can be obtained exploiting the low-q behavior of
Eq. (3.6). Using result (3.21) for the chemical potential
we find

lim (a~[H, a ])=b

with

b = —fdr, dr', [p' '(r„0;r'„0)

A, (q, co) =f dt e' " "([pz(t), a (t')] &

j —pE=—g(e —ez ")(mlpqln )(nla~lm )5(co E„+E )— (4.1)
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(4.3)

does not vanish in Bose superfluids. Many important properties of this function have already been investigated in the
framework of the dielectric formalism (see, for example, Ref. 41). Similarly to the density and particle case (Secs. II and
III, respectively) also for this spectral function one can derive useful sum rules:

f A, (q, pi)d pi=([pq, a~]) = —QNnp(T), (4.2)

1A, (q, pi)d pi=(p a ) = n(q, q),
QNnp( T)

f pi A, (q, pi)de = ( [[p,H'], a ] ) =QNn p( T) (4.4)

f A, (q, co)dao=([p, H']a ) =-
—-1—e ~ g (k'+-,'q')n(k, q, q),

m Nnp( T)
(4.5)

where np(T)=Np/N is the condensate fraction. In the
above equations n (q, p) and n(k, p, q) are the generalized
momentum distribution functions defined by Eq. (3.7) and

two states coincide in the q~o limit. Result (4.3) has
also recently been used to provide an estimate of the resi-
due

n(k, p, q)=(ak+ ai, a a ) n(p—), (4.6) Z t (q)= I &qla qlo) I (4.9)

and we have used the Bogoliubov prescription
aplo) =aplo) =QNnplo). Result (4.2) was employed
by Hohenberg to demonstrate that Bose-Einstein con-
densation cannot occur in one and two-dimensional sys-
tems at finite temperature and more recently by Pi-
taevskii and Stringari to demonstrate the same result in
one-dimensional systems at zero temperature. Results
(4.3) and (4.5) depend explicitly on the two-body momen-
tum distribution (3.8). In particular, the relevant matrix
element of Eq. (4.3) can be written in the form (for q@0)

n(q, q) =NnpFi(q), (4.7)

& pea
&NS (q)n (q)

1/2
no

S(q)n (q)
Fi(q) . (4.8)

It is worth noting that the overlap is complete when
q ~0 [in fact, in this limit one has S(q) =q/2mc,
n(q)=npmc/2q, and Fi(0)= —

—,']. This shows that the

where F, (q) =p fdr e'q'F, (r) is the Fourier transform of
the function F, (r) defined in Eq. (3.23) (see also Ref. 29).
In the macroscopic limit q~0 the function F, (q) ap-
proaches the value —

—,'. Result (4.4), which together
with result (4.2) is implicitly contained in the high-
frequency limit of the particle-density Green's function, '

has recently been discussed in Ref. 44. Its validity is en-
sured by the velocity independence of the interaction po-
tential, which commutes with the density operator p .
The same property yields the most famous f-sum rule
(2.16).

Let us now discuss some interesting consequences of
these particle-density sum rules. Result (4.3} permits us
to calculate the overlap between the Feynman and the
particle states discussed in Secs. II and III. In fact, using
the definition of such states [Eqs. (2.25) and (3.12)] one
can write

of the particle-particle Green s function in the collective
(phonon-maxon-roton) branch of superfluid He. In fact,
assuming that the sum rule (4.3) is exhausted by the col-
lective state, hereafter called Iq) (Feynman-type ansatz),
one finds the following result:

' 1/2

&qlatqlo) =

(qla, lo) =
S q

and hence

Fi(q)'
Z t (q)=npa, a S(q)

[1+F,(q)],
1/2 (4.10)

(4.11)

In deriving Eqs. (4.10) and (4.11) we have assumed the
density matrix element (qlpqlo) to be real and positive.
Estimate (4.11) for the residue Z t (q) becomes rigorous

in the q~O limit, where it reproduces the Gavoret-
Nozieres result'

mcZ y (q~o)=npa, a 2q
(4.12)

Furthermore (see Sec. 5), the next correction to the ex-
pansion (4.12) [term constant in q in Z t (q)] is also

correctly given by Eq. (4.11). Even if at higher momenta
result (4.11}is not rigorous because of the non-negligible
role of multiparticle excitations, it can serve as a first
description for the spectral function in the maxon-roton
region. In particular, the bump predicted by Eq. (4.11)
(see Fig. 2) in the roton region provides a suggestive ex-
planation of the shoulder recently found in microscopic
calculations of the momentum distribution in the same
range of momenta (see Fig. 2 and Refs. 45—47). At T =0
the momentum distribution can, in fact, be written as
n (q)=Q„ I(n Ia qlo) I, and hence the residue (4.9) cor-
responds to the "collective" contribution to n (q).

Let us conclude our discussion of the sum rules
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chosen in order to have real and positive density matrix
elements

1/2

0.2 (pq) 0 (pq)0 = Xq
2mc

[1+O(q )] . (5.1)

0.1

(b) The particle matrix elements relative to the phonon
state have been parametrized in the following way:

(a )„=(a ) „

O.O 1.0 3.0

nQmc

2q

(aq )„o=(aq )o„

' 1/2

1/2

1+ q+O(q )
mc

(5.2)

FIG. 2. Residue Z y (q) of the particle-particle Green's

function in the collective branch of superfluid He. The residue
was calculated using the estimate (4.11) with the values of Fl (q)
and S(q) taken from Ref. 29.

(4.2) —(4.5} by noting that Eq. (4.5) plays a crucial role in
the study of the coupling between the Feynman and par-
ticle states (2.25) and (3.12). In fact, if one optimizes the
wave function for the excited state looking for a linear
combination of the form

one explicitly needs the crossed term

(4.13)

&[pq, H']aq& .
NS (q)n (q)

(4.14)

The determination of the matrix element (4.14) requires,
as shown by Eq. (4.5) the knowledge of the two-body off-
diagonal density.

V. PHONON AND MULTIPARTICLE CONTRIBUTIONS
AT LOW MOMENTUM

Because of the discretization of the collective phonon-
maxon roton branch, it is interesting to distinguish be-
tween the contribution to the different sum rules dis-
cussed in this work arising from the collective and mul-
tiparticle states. This separation becomes explicit in the
calculation of the sum rules at 1ow q and zero tempera-
ture. Similar analysis have already been carried out for
the density response of superfluid He (Ref. 16) as well as
for the density and spin-density response of normal He
(Refs. 16, 26, 27, and 48). The main results are listed in
Table I, where we report the leading contributions to the
matrix elements

(p )„—:&nip lo&,

(a )„=—&nla lo&,

(at }„,—:&n lat lo&,

coming from one-phonon and multiparticle excitations.
Some comment are in order here.

(a) The phase of the phonon states have been always

nQmc

2q
1 — q+O(q )

mc

—A p q, co = aqnQ + aq nQ nQ
n

(5.3)

is dominated, at low q, by the phonon contribution and
exhibits the well known 1/q divergent behavior predict-
ed by the Bogoliubov's inequality (see also Ref. 31).

It is worth noting that the multiparticle contribution to
this sum rule is not constant, as one would naively con-
clude by looking at the q dependence of the matrix ele-
ments and energies reported on the table. In fact, one
can show that the energy integration of such contribu-
tions, limited at low co by the phonon dispersion co=cq,
gives rise to a divergent logarithmic contribution,
arising from two-phonon excitations.

(c) The momentum distribution sum rule (3.9)

n(q)= g l(a )„ol' (5.4)

is dominated by the 1/q phonon contribution [see Eq.
(3.20)]. In the table we have explicitly also taken into ac-
count the constant term proportional to a arising from
the phonon contribution. This term can be determined
through the study of another sum rule [see Eq. (5.9)
below and Ref. 40].

(d) The Bose commutation sum rule (3.3)

The opposite signs in the leading terms in 1/v q of Eq.
(5.2) are essential in order to satisfy the sum rule (4.2) [see
also Eq. (5.11) below]. For the same reason the next
corrections in Eqs. (5.2) have the same sign in order to
ensure the exact cancellation of the term linear in q in the
same sum rule (note that multiparticle states contribute
to this sum rule only with terms in q ).

The following conclusions can be drawn on the basis of
the results of Table I.

(a) Regarding density-density sum rules, as already dis-

cussed in the literature, ' the moments m &, mQ, m &, and

m2 are dominated, at low q, by the phonon contribution.
On the other hand, the m3 moment is affected, to the
leading order in q, also by multiparticle effects.

(b} Regarding particle-particle sum rules, the polariza-
bility sum rule
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(5.5)

receives a contribution from both the phonon and mul-
tiparticle states. As we shall see, the multiparticle contri-
bution plays a crucial rule in exhausting this sum rule.

(e) The energy-weighted sum rules (3.5), (3.6),

([aq, [H', a ]])=+[I(aq)„pl +I(aq)„pl ]ca„p, (5.6)

and

(a [H', a ] ) =pl(a )„pl ca„p (5.7)
n

receive a contribution from both phonon and multiparti-
cle excitations. In particular, the multiparticle contribu-
tion to the sum rule (5.6) is expected to be very large in

the presence of strongly repulsive potentials (see discus-
sion at the end of Sec. III and Ref. 31).

(I) Regarding particle-density sum rules, in addition to
the various sum rules discussed in Sec. IV it is interesting
to discuss the static polarizability

f —A, (q, ca)dca= g [(pq)„p(aq)„p
n

+(aq)„p(pq)„p]/ca„p . (5.8)

At low q this sum rule gives the Auctuations of the parti-

As emerges from the table the sum rule (5.8) is dom-
inated by the phonon contribution at low q. However,
the divergent terms characterizing the particle matrix
elements on the phonon state [see Eqs. (5.2)] cancel out in

this sum rule which then turns out to be proportional to
the next term in a. Comparison with Eq. (5.9) yields

1 B(npP)

2n p c)p
(5.10)

(g) The Bogoliubov-Wagner-Hohenberg sum rule (4.2)

( [p,a ] ) = g [(p )„(a )„—(a )„(p )„]

llano

(5.11)

plays a crucial role in establishing the divergent behavior
of the particle matrix elements (5.2) and fix, in particular,
their relative signs. At low q it is exhausted by the pho-
non contribution.

cle number in the condensate induced by changes of the
total number of particles and can be consequently written
in the following way:

B(npp)
lim f —A, (q, co)dca=+1Vn p
q Q — co ' 2mnoc ~p

(5.9)

TABLE I ~ Matrix elements, excitation energies and sum rule contributions from one-phonon and

multiparticle excitations at T=O.

(Pp)„p=(Pq)„p
(aq)„p
(aqt )„p
~np

Phonon

&Nq /2mc
+nome—/2q (1+aq/mc)

+ +nome/2q (1—aq/mc)
cq

Multiparticle

const
const
const

g l(pq)„ol'/to„o
n

gl(p, )„.l'
n

(pq)nol ~no
n

g l(p, )„o 'co'„o
n

g l(pq)nol cono

N/2mc 2

Nq /2mc

Nq /2m

Nq 'c /2m

Nq c /2m

4

q4

4

q4

g [l(a, ).ol'+ (a', ).ol']/~. o
n

g l(a, )„,l'

n

g [l(a ) ol +(a ) ol ]co o
n

) ol~o

npm /q

n pmc/2q + npa

n p20.'

npmc 2

n()mc /2

lnq

const

const

const

const

g [(p,').o(a, ).o+ (a,' ).o(p, ).o]/~. o

n

g [(pq))„o(aq)„o—(aq)„o(pq)„o]
n

g (pq)„o(aq)„o
n

g [(pq)„o(aq)„o+ (a q )„o(pq)„o]co„o
n

g (pq)„,(aq)„oui)„o

—QNnoa/mc

—QNno

'+Nn o ( 1+aq /mc—)

—QNnoaq /m

,
' QNnocq—

q

q'

q

q

q
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(h) The sum rule (4.3},(4.7),

&pq q &
= X [(pq).o«q }.o]=&&noFi(q}, (5.12)

is exhausted, up to terms linear in q, by the phonon con-
tribution. This result permits to relate the low-q behavior
of F, (q) to the parameter a. One finds for q ~0,

F, (q)+ —= —
q .1 cx

2 2' C
(5.13}

Results (5.9) and (5.13) are interesting because they link
the slope of the function F&(q) at small q with the ther-
modynamic quantity B(nop)/t)p:

~(nop)
lim —[F,( q) +—,

' ]=q~o q 4nomc Bp
(5.14)

Note the analogy between result (5.12) and the relation-
ship between the slope in the static structure function
S(q) and the velocity of sound. The slope (5.12) is ex-
pected to be negative in superfluid He because of the
rather strong dependence of the condensate fraction no
on the density. A rough estimate based on theoreti-
cal ' and experimental5~ results yields B(nop)leap= —0.3—0.2 at low pressure. The negativity of the slope
is clearly confirmed by recent microscopic calculations of
F&(q). The fact that the slope is negative, and hence the
coefficient a is positive, makes liquid He very different
from a weakly interacting Bose gas where no=1 and
hence a= —

—,'. In particular, in a weakly interacting gas
the sum rule (5.5) is entirely dominated by the phonon
state. On the other hand, in liquid He the phonon con-
tribution to this model-independent sum rule (see the
table) is of opposite sign, revealing the crucial role played
by multiparticle excitations in exhausting the Bose com-
mutation sum rule.

The results for the sum rule (5.11), compared with the
expansion given in the table, permits us to write the ex-
pansion

VI. CONCLUSIONS

In this paper we have investigated in a systematic way
different sum rules for the density and particle operators
in Bose superfluids. Some of the new results are summa-
rized here.

(1) An exact lower bound [Eq. (2.31)] for the compres-
sibility sum rule has been derived improving the Feyn-
man lower bound (2.27). The explicit determination of
the improved lower bound requires the knowledge of the
sum rules mo, m &, m2, and m3.

(2) In Sec. III we have introduced the particle state
[Eq. (3.12)] and derived an expression for its energy T.he
comparison between this energy and the energy of the
density state given by the Feynman ansatz (2.25) is ex-
pected to provide interesting insight on the particle and
density nature of the elementary excitations of superfluid
He especially in the roton region. An explicit formula

for the average of the particle energy in momentum space
has been obtained in terms of the chemical potential and
kinetic and potential energy. We have, furthermore, in-
vestigated the energy of the particle state in the low-q re-
gion and shown that the absence of the gap at q =0 im-
plies a nontrivial relationship for the chemical potential.

(3) In Sec. IV we have calculated the overlap between
the particle and Feynman states in terms of the function
I

&
characterizing the long-range order in the two-body

off diagonal density.
(4) In Sec. V we have provided a systematic investiga-

tion of the q dependence of the relevant sum rules dis-
cussed in the work by explicitly distinguishing between
one-phonon and multiparticle contributions.

Many of the formulas given in this work could become
the starting point for a quantitative and systematic
description of the dynamics of superfluid He based on
the sum-rule approach. In particular, the required mi-
croscopic ingredients are limited to the two-body density
(diagonal and nondiagonal terms) of the ground state.
Accurate and systematic calculations of this quantity are
consequently expected to be quite useful for a more mi-
croscopic understanding of the density and particle nature
of the elementary excitations in Bose superfluids.

mc 1 t)(noP)
Z t (q)=no —— +0(q)

2q 2 Qp
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