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Statistical variations of the elementary flux-pinning force and their effect on the shape
of the bulk-pinning-force curve of high-field superconductors
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It is a common procedure to infer the flux-pinning mechanism from the shape of the bulk-pinning-

force curve [F„(b)].In this paper, we investigate the effects of having a distribution of elementary pin-

ning forces (f ) on F (b) within the framework of fluxon core pinning and full summation. It is seen that
the shape of F~(b) can be significantly changed when the pins are strong and their f~ distribution broad,
whereas traditional ideas accept that its shape remains constant. A shift of the peak of F~(b) to lower

field and an increase in the curvature of the high-field portion of F~(b) is seen. We find confirmation of
the model in optimized high-J, Nb-Ti composites, which have a broad distribution of a-Ti precipitate
thicknesses.

I. INTRODUCTION

The bulk pinning force F (N/m ) is a very important
characteristic of a type-II superconductor. The higher
F is, the larger the current-carrying capacity of a super-
conductor is, and the more useful it is technologically. In
theory, F is separable into three terms that are functions
only of the microstructure, temperature, and reduced
field b —=B/B,~, respectively, '

F (M, T, b) =g (M)B, ( T)b~(1 b)—
In principle one can obtain an expression for each term
based on knowledge of the microstructure, hypotheses
concerning the pinning mechanism(s) operating for that
rnicrostructure, and the way in which the elementary
pinning forces f (M, T, b) are summed to create the bulk

pinning force. ' ' It is also common to undertake the
inverse procedure, namely to measure the field and/or
temperature dependence of F and then to deduce the
pinning mechanism(s) that might be in operation. '4 ' A
consistent picture sometimes emerges when the micro-
structure contains a dominant pinning defect, for exam-

ple grain boundaries in Nb, Sn (Ref. 9) or core pinning by
titanium precipitates in Nb-Ti composites, ' ' although
deviations from the predicted scaling function may also
be observed. ' ' However, several species of defects can
frequently be identified in the microstructure, and the de-
velopment of a consistent picture of the flux-pinning
mechanisms is in general quite complicated. This is par-
ticularly the case for single crystal YBa2Cu307 &, where
the dominant flux-pinning mechanisms have variously
been proposed as oxygen vacancies in the CuOz planes,
ordered oxygen vacancies in the CuO chains, ' modula-
tions of the shear modulus of the flux lattice, twin
planes and stacking faults, and "intrinsic" pinning by
weakly superconducting non-Cu02 layers.

A deviation in the field dependence of F from its pre-
dicted functional form is, therefore, often interpreted as
an indication of a change in the elementary pinning

mechanism (see, for example, Refs. 17 and 25). However,
sometimes such a conclusion is not reconcilable with the
microstructural data and our understanding of the types
of pinning mechanisms that are associated with various
defects. A good example is found in optimized Nb 44—62
wt. % Ti alloys' ' ' where, despite the clear domination
of a single microstructural defect (Ti precipitates), as well
as convincing evidence for both the operation of a strong,
core-pinning interaction and for direct summation, the
expected b(1 b) scali—ng function is not observed at all
temperatures. The shape of the F~(b) curve is consistent
with the prediction at low temperatures, but changes at
T/T, 0.6 produce a pinning function having its peak at
a progressively lower field and developing more curvature
in the high-field region. We have paid particular atten-
tion to the details of flux pinning in the Nb-Ti system be-
cause it is, in principle, possible to make both a detailed
microstructural analysis and a complete electromagnetic
analysis. ' ' The apparent failure of temperature scaling
in this system is thus valuable to the discussion of the va-
lidity of flux-pinning models.

In this paper, we address this potential problem by
proposing that changes in the field dependence of F can
occur, even though a single pinning mechanism remains
operative. Our model proposes that the filling of a distri-
bution of pinning forces occurs preferentially. This
occurs because a given fluxon samples a larger effective
volume when the field is low, than when the field is high.
The fluxon may then be able to occupy an especially
strong subset of pins at low field, whereas it is forced to
settle for a more random sampling of pins at high field.
We consider here only a pin density that is high enough
so that direct (full) summation holds, allowing us to apply
this single-fiuxon model for f to the bulk pinning force.
This results in an extra field dependence of F (b) that is

connected to this filling of the pin distribution, in addi-
tion to the particular field dependences of the pinning
mechanism and of the summation scheme. We develop
our description first in a general fashion, later connecting
it directly to the specifics of pinning in the Nb-Ti system,
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where we have developed an extensive knowledge base
over a wide range of compositions and pin densi-
ties. ' ' ' We note that the concept of a pin distribu-
tion with a preferential hierarchy has been considered by
several authors, although none has been applied to
the bulk pinning force. This paper extends our earlier
work on its application to the field dependence of Fp.

II. DESCRIPTION OF THE MODEL

In order to achieve a high current density or bulk pin-
ning force, one attempts to create a microstructure that
can pin every fluxon effectively. The strongest elementa-
ry pinning force arises from core pinning, ' where

f ~1 b. T—his means that the wavelength of micro-
structural variations must be comparable to the coher-
ence length g and the mean separation between fluxons

ao = 1.07($0/B)'~ =2.69//V'b

This implies that long-range variations in the microstruc-
ture (on the order of the magnetic penetration depth, A, )

are of lesser importance. In the optimum case, the pins
are so densely arranged that the response of the fluxon
lattice to the pinning distortions is highly nonlocal.
As pointed out by Brandt, the magnetic-field lines can-
not then follow the trajectory of the vortex cores. Several
consequences ensue.

(1) The elastic energy increase accompanying an abrupt
deviation (a few g in length) of a fluxon core onto a pin is
smaller than that of a gradual deviation (nearly A, in
length) by a factor of order I/a. . Given that high-field
superconductors have tt values of order 20 (A15 com-
pounds), 45 (Nb 47 wt. % Ti), or even higher for high-
temperature superconductors, this reduction factor can
be very large. Thus, in a high-~ superconductor with a
high density of strong pins, abrupt deviations will occur
often. A high-sc superconductor with weaker or more
widely spaced pins (but such that direct summation still
holds) will be accompanied by more gradual deviations.

(2} Abrupt distortions of the core contribute energy
only by lengthening the fluxon core; the magnetic energy
does not change, because the field lines are not influenced
by the distortions. This energy is e& =41n(a)Ep per unit of
length increase caused by the distortion, where
co=p~, n g . This energy change is independent of field.

(3) The energy of a gradual distortion is dominated by
the magnetic interaction with other fluxons, contributing
an energy -(1+ ted b)eo per unit length of the distortion.

(4) The field at which a crossover from the nonlocal re-
gime in (2} to the more local regime in (3) occurs is
difficult to determine. However, it will in general be
higher as the pins are made stronger.

Based on these ideas, we can make several generaliza-
tions about the ffuxon-pin interactions in strongly pin-
ning superconductors at low field.

(1) Substantial lateral deviations of fluxon cores per-
pendicular to the field vector will occur in order to occu-
py a pin.

(2) Pinning interactions are not correlated with each
other along the length of the ffuxon.

(3} The pinning interactions of a given fluxon are in-

dependent of those of its neighbors.
(4) The wavelength of pinning interactions along the

length of a fluxon may approach the average spacing of
pins in the microstructure.

(5) As the field increases, the wavelength of a given de-
viation increases in order to offset the decreasing pin
strength.

Since the real microstructure of a superconductor is
not perfectly uniform, variations in pin size, spacing,
composition, and concentration are expected, and should
be described in terms of distribution functions. The ele-
mentary pinning force can also then be described by a
distribution function, N [fz(b)], for given b In .a super-
conductor with a high density of pins, a fluxon will be
able to choose which of several pins to occupy at low
field, because the pin spacing is much smaller than the
mean fluxon spacing. For example, in Nb 48 wt. % Ti
the pin spacing is -2.2(, =11 nm at 4.2 K for 20 vol%
of pins, a level that is readily attainable, ' while ao 49
nm at 1 T, =0.1B,2. It follows that the strongest pins
are occupied with highest probability. Several schemes
for the filling of the pin distribution as the number of
fluxons increases can thus be envisioned, as sketched in
Fig. 1. In general, the stronger the pins are, the more the
distribution of occupied pins (the shaded regions in Fig.
1) changes from a random distribution to one with a pref-
erential hierarchy. An alternate way to think of this is to
imagine the occupied pins as fermions, since there is an
effective exclusion principle governing the occupation of
pins, so that the distribution of f (b) for the occupied
pins is approximately the product of N[f (b)] and a
Fermi-like probability function,

N [f~(b)]„,

=N[f (b)] 1—
I+exp[[f (b) —

f~ (b)]/T]

(2)

where fz (b) is analogous to the chemical potential of
the fluxons. The parameter T is the "temperature" of the
pins: since strong pins are not expected to have an appre-
ciable "excitation spectrum, " they have a lower "temper-
ature" than weak pins.

At a given field, the pinning force per fluxon,
=($0/B)F~, is the sum of the elementary pinning forces
along the length of the fluxon. In the dense-pinning lim-
it, it is proportional to the mean value of f~ for the occu-
pied pins (f (b))„,. However, because of preferential
filling of the pin distribution, (f )„,may be significantly
larger than the mean value of the entire distribution
(fz(b) ) =fzo(1 b), where fzo

—is the average elementary
pinning force at zero field. This is indicated in Fig. 1.
When the filling is optimum, that is, when the strongest
available pins are always occupied first, the highest value
of (f~)„,is obtained, (f (b}), , We can predict two
trends. First, as f 0 is increased, the diff'erence between
(fz )„,and (f ) increases because the filling of the f
distribution is more preferential. This is depicted in plots
(a), (b), and (c) of Fig. 1. Second, as the f distribution
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FIG. 1. Schematic representation of various ways in which a distribution of pin strengths can be filled. N( f~ ) is the distribution of
the elementary pinning force f~. Representative values of (f~ ) and (f~ )„,are indicated. (a) Optimum filling lhatched region) of a

broad distribution, in which the strongest remaining unoccupied pins are always occupied first. (b) A possible filling scheme of a
broad distribution of strong pins. (c) Possible filling scheme of a broad distribution of weak pins. (d) Filling of a narrow distribution
of strong pins.

gets broader, the differences between (f ), , and (f ),„.,
and between (f~ ),~, and (f ) increase. Further, for any
distribution and any filling scheme, (f ),„(f~ )„„and
(f~) must all be equal as b~l. Therefore, the field

dependence of the real pinning force on a Auxon, being
proportional to (f )„„mustbe more strongly decreasing
than that of the pinning mechanism, being proportional
to (f, ).

When a link between F and a pinning mechanism is

sought, generally the field and temperature dependences
of f that are obtained from various fiux-pinning theories
are assembled and compared to the observed properties,
using Eq. (1). However, unless a great effort is taken to
account for variations in the microstructure, these calcu-
lations use average values for the microstructural param-
eters, i.e., the calculated f = (f ). Since the observed
properties of F are in reality dependent on (f )„,and
not (f ), it follows that the field dependences of F and

(f ) are not alike. This leaves open the possibility that
an observable variation in the shape of the F (b} curve
may occur even though a single pinning mechanism is
operative, as well as the possibility that the pinning mech-
anism may be misidentified.

The purpose of this paper is to estimate the low-field

difference between (f )„,and (f ) and the extra field

dependence of F, which subsequently results. We calcu-
late (f )„,using a numerical simulation. The extra field

dependence is expressed in the function P(,b) by subtract-
ing the values of (f ), which are based on a core-pinning
model [recall that (f ) =f~o(, 1 —b)], from the calculated
values of (f )„,for a range of fields b =0. 1 —0.9. This
gives

i3)

As the results will show, Plb) =1 for all b when the mi-
crostructure is very uniform and the pins are weak, but
P(b) becomes a stronger function, —(1—b), when the
microstructure has large variations and the pins are
strong. When P(,b) =1 for a large range of b, the field

dependence of (f )„,is very close to the calculated field

dependence, as would be expected. On the other hand,
when P (,b) is strongly field dependent, (f )„,becomes
more strongly field dependent than (f . Using our
core-pinning example, we have (f (b) ) ~(1 b) and if—
P(b)=1 b, then (f )„,~l—l —b) . The field depen-
dence of F is then given by
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F (b)= b(fp(b))„,~b(1 —&)P(b) . 0.1I,

This gives F ~ b (1 b—) for the above example, in com-
parison to the expected b(1 b—) function. This distinc-
tion is not at all trivial, since F o- (1 b)—represents the
general behavior expected from fluxon lattice shear, as in
the A15 compounds, while F 0-(1 b)—represents the
conceptually quite different individual fluxon depinning
normally observed in optimized Nb- Ti alloys. The
finding that both functions could operate in optimized
Nb-Ti alloys in different temperature ranges' ' was a
major surprise.

0.5 $

III. DESCRIPTION OF THE CALCULATIONS

P(b) is simulated numerically by placing a model
fluxon parallel to a two-dimensional array of pins and
iteratively displacing a portion of its length perpendicular
to its path. Only the two-dimensional array has been
tested; the three-dimensional case is currently under in-
vestigation. The perturbations were applied at a random
location along the fluxon's length and occurred randomly
in one direction or the other. The progression of fluxon
configurations was determined by accepting perturba-
tions that minimized the effective energy of the fluxon,

E=L —U, (5)

where L is the line energy added by the perturbation and
U is the pinning energy if a local pinning interaction
occurs, until a configuration of lowest energy was ob-
tained. This configuration was then used to calculate the
quantities of interest in the experiment, as will be de-
scribed shortly.

The simulated pins were square, being one coherence
length on a side. The average separation s of the pins was
determined by the volume fraction of pins used; we re-
port here the results for 20% of pins. The positions of
the pins were then slightly adjusted at random in order to
model the variability that exists in a real microstructure.
A pinning energy was assigned to each pin using a Gauss-
ian distribution with specified values of the mean and the
coefficient of variation (COV). Values of the mean were
chosen to be in the range 0.1 —1.0, in units of eo (J/m).
The value of f o was then determined by dividing the
mean pinning energy by g; the values of f o were thus
0.1 —1.0, in units of eo/g (N/m). The range of COV
values was 0.1 —0.50. The field-dependent strength of
each pin was chosen to be ~ (1—b), in accordance with a
core-pinning model, for the range b =0. 1 —0.9.

A straight, 10K,-long model fluxon was placed in the
center of the array at the start of each run. The fluxon
cross section was modeled as a vee, the strength of a pin-
ning intersection being maximum for the center coordi-
nate and falling off linearly to zero over a distance g from
the center. The free energy was calculated by applying
Eq. (5) for each fluxon-pin intersection along the length
of the fluxon, where the interactions were considered in-
dividually. The line energy was calculated by multiplying
the change in the length of the fluxon by e&, using ~=40.

The perturbations were generated iteratively in two

FIG. 2. Schematic of the triangular perturbations applied to
the model fluxon.

passes, each using a triangular displacement of the fluxon
applied at a random location along its length. For the
first pass, the perturbation extended for a distance 0.5l
(the wave number k =mr/l) in either direction along the
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FIG. 3. The initial and final position of the center of the
model fluxon illustrated by the straight and crooked lines, re-
spectively. The shaded rectangles represent the pins, where the
stronger pins have a darker shading. The dashed lines at the
bottom of the figure indicate the diameter of the fluxon core.
The vertical axis has been compressed by a factor of 3.3 (the
pins are actually square), so that a region of approximately ao
by A. (6.5 by 40 g) is shown. The simulation shown here is for
f 0= 1.0, b =0.2, and a coefficient of variation of 0.5.
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fluxon and had an amplitude at the center of the pertur-
bation of 0.11 as Fig. 2 shows. The value of l was deter-
mined either by setting the dispersive factor in the tilt
modulus of the flux lattice, kl. l( I b—)' equal to
10, giving a field-dependent value of l =4.5 —9g for the
fields tested, or by setting 1 =2s =6(. The results did not
appear to depend on the choice of perturbation wave-
length. If the free energy of the perturbed fluxon was
lower than that of the unperturbed fluxon, the perturba-
tion was made permanent for subsequent iterations. Con-
vergence to a stable configuration occurred when none of
the grid positions assigned to the fluxon could be further
displaced and still reduce the free energy. No restriction
was placed on the ultimate local displacements which the
fluxon core could make from its starting position, howev-
er the maximum deviation that was observed was 0.32ao.

In the second pass, l was reduced to one coherence
length, starting from the stable configuration obtained
upon the completion of the first pass. The displacement
amplitude was reduced to O. lg. Finally, (f )„,was cal-
culated by dividing the free energy of the final
configuration by g. Then, P(b) was obtained by analyz-
ing the initial and final configurations and comparing the
corresponding values of (f )„„.We observed that the
initial value of (f )„,(i.e., a random sampling of the
pins) was always within IWo of the theoretical starting
value f~o. Figure 3 shows the starting and final

configurations for the center coordinate of the model
fluxon for b =0.2, f~o = 1.0, and a COV of 0.5.

IV. RESULTS

The results of the calculations of ( f~ )„,for weak

pins, f o=0. 1, are shown in Fig. 4 as a function of b with
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FIG. 5. Calculated values of (f~(b))„,using strong pins
( f~o= 2.0), for increasing coefficients of variation. The data has
been normalized to the value of f~o. The coefficients of varia-
tion are 0.01 ( ), 0.1 (6), and 0.5 (I31). The value of (f )„,at
b =0 is extrapolated from the higher-field points. The dashed
line indicates the field dependence of ( f~(b) ) that would be ex-

pected from core pinning alone ( ~ 1 —b).

1.0

the coefficients of variation being 0.01, 0.1, and 0.5. The
corresponding plot for strong pins, flu=2. 0, is shown in

Fig. 5. The values of (f~)„,at b =0 are extrapolated
from the higher-field points in order to provide a compar-
ison with the input values of f o. The runs for a COV of
0.01 were undertaken in order to estimate the increased
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FIG. 4. Calculated values of (fp(b))„,using weak pins

(f O=0. 1), for increasing coefficients of variation. The data has
been normalized to the value of f 0 The coefficients of varia-.
tion are 0.01 ( ), 0.1 (6), and 0.5 ( ). The value of ( f~ )„,at
b =0 is extrapolated from the higher-field points. The dashed
line indicates the field dependence of (f (b) ) that would be ex-

pected from core pinning alone ( cc 1—b).

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Normalized F~ ( b) curves generated from the

(f~(b) )„,data for f~o and the coefficient of variation values of
0.1, 0.1 ( ); 0.1, 0.5, (() ); 2.0, 0.1 (6 ); and 2.0, 0.5 (0), respec-

tively.
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TABLE I. Summary of the extrapolated values of (f~(0) )„,. 1.0

COV

0.1

0.2
0.5

0.1

1.00
1.00
1.09

0.2

1.06
1.12
1.35

pO

0.5

1.26
1.31
1.72

1.0

1.42
1.47
1.76

2.0

1.52
1.45
1.88

0.8

0.6

pinning that occurs when the center of the fluxon core
occupies the pin instead of the core's edge, while the
higher coefficients were thought to be reasonable values
for the types of distributions that might actually be en-
countered. The enhancement of ( f~ )„,at low fields is
clearly seen both for weak and strong pins when the COV
is large. For strong pins (Fig. 5), the enhancetnent is seen
even for a COV of 0.01, and it becomes more pronounced
as the COV increases. Comparing the figures, it is also
clear that the enhancement of (f )„,occurs as the value
of f~o gets larger.

F curves were generated from the (fz ),«data by us-

ing the relation in Eq. (4). The four curves corresponding
to the combinations of f~o =0. 1 and 2.0, and the
coefficients of variation of 0.1 and 0.5, are summarized in
Fig. 6. It is clear that the peak of the F (b) curves shifts
to lower fields, and that more curvature develops in the
high-field regions, as f o and the COV are increased. A
summary of the extrapolated values of (f~ )„,is shown
in Table I, and a summary of the field corresponding to
the peak in the calculated F (b) curves is shown in Table
II, for the range of values of f~o and the COV that were
used. Again, the data in these tables show the noted
trends.

The pinning enhancement function P(b) is plotted in
Fig. 7. The data are derived from the data in Figs. 4 and
5, excluding the data for a COV of 0.01. It is clear that
the field dependence of the enhancement becomes much
stronger as either f o or the COV increase; the most
strongly field-dependent curve occurs when both parame-
ters have a high value.

In Fig. 8, the results for the coefficients of variation
0.01 and 0.50 are compared as a function of f~o. Since
there can hardly be any preference toward the occupation
of one pin over another when the COV is 0.01, the
enhancement of the pinning force must be due to the
model fluxon being pulled into the center of the pin,
where the deepest part of the vee is figured into the pin-
ning energy. This centering effect appears to increase
rapidly at low pinning strengths, and then saturates when

&(b)/P(o)
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FIG. 7. The pinning enhancement function P(b) plotted for
different values of f~o and the coefficient of variation, normal-

ized to the respective values of P(0). The values of P(0) were
determined by the ratio (f~(0) )„,/f~o. Here, f~o and the
coefficient of variation are 0.1, 0.1 ( ); 0.1, 0.5 (0); 2.0, 0.1 (6 );
and 2.0, 0.5 (0), respectively.

0.0 0.5 1.0 1.5 2.0

COV 0.1 0.2
po

0.5 1.0 2.0

0.1

0.2
0.5

0.50
0.50
0.45

0.46
0.44
0.40

0.39
0.40
0.35

0.36
0.39
0.35

0.36
0.37
0.31

TABLE II. Summary of the fields corresponding to the peak
in the calculated F (b) curves, b,„.The value of b,

„

for
Fp(b) o- b(1 —b) is 0.5.

fpo

FIG. 8. Variation in the ratio (f (0))„,/f o as a function of
pin strength for a narrow pin strength distribution (the
coefficient of variation is 0.01, ) and a broad pin distribution
(the coefficient of variation is 0.5, 0). The curve for the narrow
distribution data indicates the magnitude of the enhancement of
(f~ )„,caused by the centering effect, while the difference be-
tween the upper and lower curve is the enhancement caused by
preferential occupation of the strong pins for the broad distribu-
tion.
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f O=0. 5. This will be discussed in the next section. The
additional enhancement that occurs when the COV is 0.5
can be estimated from the difference between the two
curves. This rises from about 10% at f o=0. 1 to 35% at
f O=1.0.

V. DISCUSSION

A. The centering effect

The calculated data for the extremely narrow pin dis-
tributions (a COV of 0.01) indicate that a substantial
enhancement, up to -35%, can be attributed to the ten-
dency of the model fluxon to move toward the center of a
strong pin. Since our model pins were one-coherence-
length thick, only half of the model fluxon can occupy
the pin for any given position, and there will be a 25% in-
crease in the pinning energy when the coordinate of the
model fluxon core changes from the edge of the pin to its
center. The optimum pinning will occur in this case
when the fluxon core sits exactly in the center of every
pin that it occupies. This requires a lateral displacement
of about 0.5$ to occur over approximately two pin spac-
ings ( =6(). The corresponding line tension is overcome
when (f (b) ) exceeds 0.6, however lower values of ( f~ )
may suffice because of geometric variations in the relative
positions of the fluxon core, the pin, and the adjacent seg-
ments of the fluxons. This may explain the plateau seen
for f o~ 0.5 in Fig. 8.

A perfect alignment of the fluxons with the pins cannot
always occur, because ao changes with field. Thus, there
is an inherent breadth to the distribution of pinning
forces, even if the COV is low. For weak pins, which
cannot overcome the line tension, f~ is greater for the
pins in which the fluxon is centered. For strong pins, the
pins that are not in alignment stretch the fluxon, and
their f is reduced by the line tension. This means that
the actual f~ distribution always has a finite width, de-

pending on field and microstructural geometry, even if
the pins are themselves all alike (e.g. , atomic vacancies or
idealized pinning structures). It is not clear what the
shape of the f distribution would be in the low-COV
limit. However, our results indicate that the centering
effect can shift the maximum of the core-pinning F~(b)
curve to less than b =0.4.

B. The effect of P (b) on the field dependence of F~

The results indicate that the enhancement of (f )„,at
low fields becomes more prevalent as either the COV or
f o is increased. The effect of either parameter on F (b)
appears to be independent of that of the other, which is
supported by the additive nature of the data in Tables I
and II. This is in agreement with the model: the COV
only affects the shape of the f distribution, whereas the
value of f o determines the actual way in which the f
distribution is filled. If we again consider Eq. (2), then
the COV determines the value of f (b), whereas the
value of f o affects T These results sugges. t that the larg-
est change in the field dependence of F should be seen
for a microstructure that has large values for both the

COV and the elementary pinning force. For example,
this is true for the microstructure Nb-Ti composites.
This microstructure has a rather broad distribution in the
thickness (r) of the fiux-pinning a-Ti precipitates, where

f ~ t, ' ' as well as regions in which the precipitates are
arranged in clusters. ' We will explore this further in a
moment.

For the entire range of parameters tested, P(b) resem-
bles the function (1—b)" and F (b) the function
b(1 b)—'+". The value of x is between 0 and 1 for our
data. However, closer examination of Fig. 7 reveals that
the slope of P(b) does not always vanish as b~0 and
seems to remain finite as b~1. F is, then, not simply
proportional to b (1 b)'+—', and it would be incorrect to
infer the field dependence of the pinning mechanism by
simply dividing the F data by b(1 b)" —Unfo. rtunately,
such a procedure is commonly undertaken. For example,
the higher-power tail in the field dependence of F that is
sometimes observed near b = 1 can be attributed to varia-
tions in 8,2 or to the saturation of the pinning forces. ' ' '

However the tail may also be due to the presence of a
field dependent F which is more complicated than a
power of (1 b) A—ddit. ionally, our results suggest that a
fit of experimental F data over a limited range of b may
give a different function than that for 0 b 1, which
would not be the case if F were proportional to
b(1 b)'+' for—all b An .alternative analysis is to note
that the (f )„,data in Figs. 4 and 5 appear to be the
function (I+x) b, whic—h is the Taylor expansion to
linear accuracy of (1 b)'+". Fo—r example, a much more
satisfactory fit of the experimental F~ data in Ref. 42 is
obtained with b(1.5 b) than wi—th the scaling function
that was reported, b ( 1 b)"—

C. An example: The field dependence of E~
for an optimized Nb-Ti composite

In a previous paper, we have applied these ideas to
the nonscaling of F observed in a recent study of a Nb
48 wt. % Ti composite superconductor conducted by
Meingast, Lee, and Larbalestier. ' ' We wish to under-
take a more thorough study here. In the microstructure
of that Nb-Ti composite, ribbonlike precipitates of nearly
pure titanium are the dominant feature, as seen by
transmission electron microscopy. Figure 9 shows an ex-
ample of the microstructure seen. Here, the precipitates
(the lighter phase) have an average thickness of about 2
nm and an average separation of about 10 nm; the com-
posite contains about 18 vol% of precipitate. However,
the distribution of precipitate thickness and separation is
broad: thin (1—2-nm thick) precipitates appear in clus-
ters that are 20 nm or so in size, within which the precip-
itate separation is 1 —4 nm, while thick (3—6-nm thick-
ness) precipitates are separated by 5 —20 nm from their
nearest neighbors. There are several regions where no
precipitate is seen within about a 10 nm radius.

Meingast and Larbalestier presented convincing evi-
dence that the core-pinning (6H, ) mechanism operated
for T /T, =0.23 —0.95. They achieved agreement (to
within a factor of 2) between the experimental Aux-
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FIG. 9. Transmission electron microscopy micrograph of a
Nb 48 wt. % Ti (Nb 64 at. % Ti) composite cross section. The
lighter regions are nearly pure titanium precipitates, while the
dark gray phase is the superconducting Nb-Ti matrix. The
nearly black regions are strongly di5'racting Nb-Ti grains. (Pho-
to courtesy of P. Lee).

pinning measurements and their calculations, based on
the 5H, mechanism in a slab geometry, at all b for
T/T, =0.95 and for low b at T/T, =0.46. They were
able to obtain the predicted linear dependence on precipi-
tate thickness when t &g, as well as the correct tempera-
ture scaling exponent, I' O-8, 2(T) . Evidence was also
presented to support direct summation, where the agree-
ment between the experiment and the mode1 was good,
especially at the high temperature. In the following dis-
cussion, we will review their thinking, commenting at
times within the framework of our model.

The expected pinning mechanism for the precipitates is
the core-pinning mechanism, ' ' ' f~ being proportional
to both t and the relative variation in the critical field

(5H, /H, ) between the (normal) precipitate and the sur-
rounding (superconducting) matrix. However, since the
scaling length for the proximity effect is g (about 5.3 nm
at 4.2 K for this composite), all the precipitates should be
proximity coupled to some degree. The Aux pinning is
then determined within these coupled, g-thick regions,
which may not correspond to the boundaries of the pre-
cipitates. ' The magnitude of f is determined by the
difference between the H, values of the superconducting
matrix, and within the pinning regions. We note that the
value of H, in these coupled regions may be significantly
greater than zero. A small enhancement of the pinning
occurs because of the proximity effect '

( ~20%, as cal-
culated in the latter reference), which will be ignored.

Assuming that the precipitates are proximity coupled,
then the corresponding value of 6H, can be estimated us-

ing the average composition within, and next to, the pins.
Since titanium is removed from the Nb-Ti matrix during
the precipitation process, the matrix phase actually has a
composition of about Nb 39 wt. % Ti for 18 vol %% of pre-
cipitate. This is in contrast to the effective composition
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H (48wt. ZTi)
matri
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0.0 '
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(
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'1.0 d ppt.
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FIG. 10. Normalized (to the value of Nb 48 wt. % Ti) plots
of H, at T!T,=0.46 (a) and 0.95 (b) as a function of composi-
tion. The dashed vertical lines and hatched regions represent
the compositions of the matrix and pinning center in each case.
The dot-dashed lines represent the corresponding H, values
when the fluxon is within the matrix and when it occupies the
pin. The data were taken from Refs. 17, 26, and 27. The abbre-
viation "ppt." is used for "precipitate. "

averaged over precipitates and matrix within a radius g.
At 4.2 K, i.e., T/T, =0.46, this effective composition is

Nb 65 wt. % Ti if the average thickness and separation of
the precipitates is used. Figure 10(a) shows that the H,
values of the matrix and pinning center are about 1.03
and 0.48 of the value for Nb 48 wt. Wo Ti, respectively,
therefore making oH, /H, about 0.55.

If we reexamine the microstructure at higher tempera-
ture, (e.g. , T/T, =0.95 ), a rather different picture
emerges. This situation is addressed in Fig. 10(b). Since

g is now about 18 nm, entire clusters of precipitates may
become coupled, in addition to the coupling of the isolat-
ed precipitates. The clusters are composed of 30—50%
precipitate, giving them average compositions in the
range Nb 55 —63 wt. % Ti. By comparison, the isolated-
precipitate regions would have a composition of about
Nb 42—44 wt. % Ti and the precipitate-free matrix re-
gions Nb 39 wt. % Ti. This would lead to two charac-
teristic values of 5H, /H„about 1.5 for the clusters and
about 0.2 for the isolated precipitates. The pinning by
the precipitate clusters should then dominate because the
clusters occur with roughly equal number density as the
isolated precipitates.

Since there is a strong 5H, interaction at both temper-

atures, it is reasonable to expect its characteristic field
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dependence, ~b(1 —b), to be found in the F (b) curves.
Unfortunately, this is not the case. Figure 11 shows the
data that were actually observed. ' ' A shift in the peak
of these normalized F (b) curves to lower fields is clearly
indicated as T~T„starting near the expected value of
0.5 at low temperatures and moving to near 0.3 at
T/T, =0.95.

In terms of our model, the value of f o appropriate to
low temperatures would be about 0.1, since
oK, /K, =0.55 and the precipitate thickness is about
0.2(. For high temperatures, a value of 2.0 for f o is
reasonable. It is not clear what the COV should be at ei-
ther temperature; however, it is reasonable to hy-
pothesize that the COV is larger at higher temperatures
due to the variation in cluster size and the small contribu-
tion of isolated precipitates (Fig. 10). The results of the
model prediction are shown in Fig. 12. We have chosen
the COV to be 0.1 for low temperatures and 0.5 at
T/T, =0.95. An intermediate curve for f o=0. 5 has
been added to estimate the T/T, =0.65 curve. The
agreement between the curves in this figure and those in
Fig. 11 is remarkable, especially since the pinning mecha-
nism has not been changed.

In summary, we believe that the preferential pin occu-
pation scheme described here provides a physically
reasonable basis for explaining the lack of temperature
scaling in the important case of the strongly pinning Nb-
Ti system. This system is important because of its practi-
cal importance and because extensive microstructural
descriptions of the optimized pinning state have been
provided. Excellent support for an elementary core pin-
ning interaction came from full-summation calculations,
from the temperature scaling exponent, and from the
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FIG. 12. Reduced F~ curves derived from the P(b) calcula-
tions for 20 vol% of pins and the values of f~o and the
coefficient of variation equal to 0.1, 0.1 ( ); 0.5, 0.1 (0); and
2.0, 0.5 (6 ), respectively.

thickness dependence of the elementary pinning interac-
tion. However, all of this has been cast into doubt, be-
cause it was precisely in the high-temperature limit,
where the core-pinning calculations were most accurate,
that the F (b) curve deviated most strongly from the ex-
pected b(1 b) depende—nce. This point is fundamental:
the easiest of all Aux-pinning measurements is that of the
F (b) curve, and it is entirely understandable that con-
clusions, albeit wrong ones, will be drawn from the shape
of this curve. We have here analyzed these issues for
Nb-Ti alloys; it may be that similar effects occur in other
superconductor systems.

0.6
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0.4
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0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. The reduced F~ data measured for a Nb 48 wt. % Ti
composite containing about 18 vol% of precipitate, as a func-
tion of b, at T/T, =0.23 (S), 0.46 ( ), 0.65 ((&), and 0.95 (6).
Note that the 0 and 0 curves coincide. The data was taken
from Refs. 17 and 27.

VI. CONCLUSIONS

We have proposed that statistical variations in the ele-
mentary pinning force can lead to filling of the f~ distri-
bution with a preferential hierarchy. This may lead to a
difference between the average strength of the occupied
pins and the average of the f distribution. The
difference between these two values vanishes as the field

approaches B,z, when the f distribution is almost full.
Consequently, the average strength of the occupied pins
decreases more rapidly with increasing field than would
be expected from a calculation based on the operating
pinning mechanism. This result is crucial, because the
experimentally determined bulk pinning force is propor-
tional to the average strength of the occupied pins. Fz(b)
can then appear to be a more strongly field-dependent
function than its elementary pinning mechanism would

suggest. Our results suggest that the peak of the bulk-
pinning-force curve moves to lower field and that its
shape has more curvature at high fields. This effect may
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lead one to attribute variations in F (,b) to a change in
the pinning mechanism when, in fact, no change has oc-
curred. Finally, we wish to emphasize that our model
may hold regardless of the pinning mechanism when the
pinning is in the single-fluxon limit, that is, when the pin-
ning interactions are uncorrelated and when their length
scale is small enough so as not to compete with the mag-
netic forces between vortices.
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