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Critical exponents for the Ising model between one and two dimensions
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Critical exponents are presented for the ferromagnetic Ising model in dimensions between one and
two. The exponents are calculated by applying finite-size-scaling methods to numerical transfer-
matrix data. The transfer matrix, which is translationally invariant, is written in such a fashion that
interpolation to noninteger dimensions is possible. Results are also obtained for the first derivatives
evaluated at d=2 for the critical exponents y~ and yH as a function of dimension. All results are
compared with series-expansion results in 1 & d & 2.

I. INTRODUCTION

Our current understanding of critical behavior, par-
ticularly critical exponents, associated with classical
statistical-mechanical models has benefited significantly
from the use of the concept of variable dimensions. Vari-
ous theoretical methods of performing expansions in the
dimension, d, have been devised. These include series
expansions for high-dimensional systems, i s the Wilson-
Fisher expansion in d = 4 —e dimensions, expan-
sions in d = 1 + e for the near-planar interfacem iz

and for the dropletis models, the Kadanoff varia-
tional renormalization-group (RG) method, i4 is and the
Migdal-KadanoK bond-shifting technique. is is

Similar techniques for continuous values of d have been
instrumental in understanding a wide variety of systems,
including the critical behavior of disordered systems, is ze

the O(n) Heisenberg model, 2 the q-state Potts model, is

self-avoiding walks, zz random resistor networks zs and
fiuctuations of solid membranes. z4

The Migdal-Kadanoff ir is bond-shifting technique,
which provides approximate results on Bravais lattices,
has been shown to be the exact solution of hierarchi-
cal models. zs zs It had been suggested that hierarchi-
cal lattices and other fractal latticesz7zs could lead to
critical exponents which would interpolate the results
on regular lattices to noninteger dimensions. For exam-
ple, the critical exponent v associated with the diver-
gence of the correlation length at the critical tempera-
ture should have some functional dependence on only the
dimension, v=v(d). Consequently model Hamiltonians,
such as the Ising-model Hamiltonian, have been stud-
ied using real-space renormalization-group methods,
Monte Carlo methods, 3 3 and series expansions. 5 36 It
has been shown that these systems belong to universal-
ity classes which are governed not only by the Haus-
dorK (fractal) dimension, d, but also by other param-
eters, such as ramification, connectivity, and lacunarity.
Although Ising spin systems on fractals with infinite ram-
ification have a nonzero critical temperature, even for
these fractal lattices the universality class depends on
other parameters. ' ' ' 7 Only in the limit where
translational invariance is recovered, the limit where the

lacunarity approaches zero, is it now believed that Ising
systems on fractal lattices may interpolate hypercubic-
lattice results. szssi s4ss Unfortunately, this is a limit
where nonperturbative numerical calculations are diffi-
cult to perform. si Since critical exponents such as v for
the short-ranged ferromagnetic Ising model should be
only a function of the dimension d, one should seek an
alternative to studies on fractal lattices to test series-
expansion results in d.

In this paper an alternative method is presented that
interpolates continuously between integer dimensions,
and that preserves translational symmetry. This interpo-
lation method is extremely compatible with the numer-
ical transfer-matrix method, and this method of study
is used in the present paper. Although the interpolation
method should be applicable to any classical statistical-
mechanical lattice model, only results for the ferromag-
netic Ising model on hypercubic lattices will be pre-
sented here. Preliminary results for this interpolation
scheme have previously been published. 4i 44 The inter-
polation scheme is also related to a method of study-
ing the Ising model in high dimensions using numerical
transfer-matrix results. 4s 4"

Once the interpolation scheme is introduced, it is as-
sumed that finite-size scaling of transfer-matrix data still
holds for the interpolated transfer matrix. This assump-
tion then gives finite-size estimates for the dimension
of the system and the critical exponents for the sys-
tern. The interpolation method presented here is only
one possible method of obtaining critical exponents and
has many weaknesses. As will be seen in Sec. III, crit-
ical exponents are obtained which agree extremely well
with results from series expansions. However, nonuni-
versal quantities, such as the critical temperature, ob-
tained with this method suffer from pathologies related
to whether or not the thermodynamic limit exists in the
interpolation scheme. Part of the question regarding the
existence of the thermodynamic limit of the interpolation
scheme comes from using finite-size scaling to obtain the
dimension as a function of the interpolation parameter.

Section II presents the model, a compilation of pre-
vious results by other techniques, the interpolation
method, and the finite-size-scaling method used on the
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numerical data. Section III contains the data and com-
parisons with other results. Section IV contains the re-
sults and conclusions.

the first (one-loop) or the third (three-loop) term.
A further extension of this model, the droplet model, s

gives the critical exponent

II. MODEL AND METHOD

The Ising model has a Hamiltonian given by

'8= —J) s,s, —H) s„
(i j)

where the spins s; = kl, and the summation is over
nearest-neighbor sites on a lattice. Here H is the mag-
netic field and J is the two-body coupling constant.

For 1 & d the Ising model has a phase transition at
a finite critical temperature, T, . At T, the largest ther-
mal exponent is y~=l/v and the largest magnetic expo-
nent is yH. Other critical exponents can be determined
from scaling and hyperscaling formulas as demonstrated
in Sec. III. The critical exponents for translationally in-

variant, ferromagnetic, short-range interactions depend
only on the dimension of the lattice.

A. Previous results for 1 & d & 2

1 1 6 76v= ———+ —— +O(t )
2 2 8

(2)

This asymptotic series happens to go through the exact
value v = 1 at d = 2 if the series is truncated after either

Since it will be necessary to compare the numerical
results obtained below with other results for the Ising
model in 1 & d & 2, this section collects the relevant
results. Table I summarizes results for the critical ex-
ponents yz and yH from Wilson-Fisher expansions in

d = 4 —~ which were resummed to include the exact
result at d = 2.s This is condensed from Table III of
Ref. 9, with g = d+ 2 —2yH. The exact values for d = 2
are shown in the appropriate columns. Table I also in-

cludes recent results from a variational method derived
from high-temperature series expansions. 4s The results
are from Table II of Ref. 48. The error bounds for yH
are chosen to include all of the published results.

We will also compare our numerical results with ex-
pansions in d = 1+ e for the near-planar interface model
of Wallace and Zia. The result for y~ = 1/v is given by
the asymptotic expansion in e = d —1 as

d—yH
—4& & ( + )/ exp —]+2 + 2 &

' $+

(3)

where C = 0.577. is Euler's constant. Whether or not
these models correspond to the Ising model in arbitrary
dimension has been questioned. In particular, the near-
planar interface model ignores bubbles and overhangs,
which are relevant operators near T, .4s Nevertheless, it
has been shownis M that such corrections vanish as an
essential singularity for d -+ 1, and that the isotropic
fixed point is stable to a wide class of perturbations, si

so the d = 1+ e expansion of the near-planar interface
model may be formally correct.

B. Transfer-matrix method for 1 & d & 2

Consider a nearest-neighbor Ising model on a d-
dimensional hypercubic lattice. Let the system be com-
posed of N Ising spins in each (d —1)-dimensional layer,
with M identical layers. Number the layers so layer i
interacts only with layers i —1 and i + 1. The partition
function then can be written ass2 ss

Z = Tr[(DH ~D i A) ].

The matrix ~D i contains all interactions between the
spins within a (d —1)-dimensional layer. Hence, all of the
information about the dimension is contained in the 2+ x
2+ matrix ~D i, which can be chosen to be a diagonal
matrix. The matrix A is a direct (Kronecker) product of
N identical 2 x 2 matrices

/' eK e—K$
a = I,-z,z

where K = J/k~T with J the nearest-neighbor inter-
action constant, k~ Boltzmann's constant, and T the
temperature. The matrix A connects each layer with
the subsequent layer, and is independent of the interac-
tions within a (d —1)-dimensional layer, and is given by
A = a Ca a a where 3 denotes the Kronecker ma-
trix product and there are N a matrices in the product.
The diagonal matrix DH contains interactions between

TABLE I. The thermal and magnetic critical exponents from series expansions are shown. See

the text for a full description.

Prom Ref. 9 From Ref. 48

d
2.0
1.875
1.75
1.65
1.5
1.375
1.25

yT
1.0

0.9009-0.9174
0.7937-0.8333
0.6944-0.7692
0.5405-0.6897
0.3846-0.6250
0.2222-0.6667

yB
1.875

1.7765-1.8025
1.6750—1.7250
1.5750—1.6750
1.4250—1.5750
1.2875-1.5375
1.1250—1.4750

yT
0.9862-1.0091
0.8850-0.9009
0.7937-0.8475
0.7246-0.7874
0.5435—0.6711
0.3448-0.6250
0.2941-0.5882

yH
1.8735—1.8765
1.7725-1.7815
1.6625—1.6770
1.5715-1.6000
1.4345-1.4665
1.3480—1.3700
1.2100—1.2460
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f eH/ic~T 0
0 e H—/kg( T )i (6)

Now assume helical boundary conditions in the (d —1)-
dimensional hypercubes. Then a form for the diagonal
matrix which can interpolate continuously between one
and two dimensions can be written as41

the spins and an external magnetic field, and is given by
the Kronecker product of N matrices

value pA, . The eigenvalues of P are the N roots of
unity, p1, = exp(i/A, ). The eigenvectors ~k) can be
formed from the eigenvectors of the matrix A. These
are Kronecker products of the two orthonormal eigenvec-
tors ~u+) and ~u ) associated with the eigenvalues r~ =
exp(K) +exp( —K) of the matrix a in Eq. (5). A normal-

ized eigenvector ~k) of A with eigenvalue 4g = r+ r
with 0 & m & N and eigenvalue pg of P is then con-
structed by

D„=Io (P-A). (7)

Here Q stands for Hadamard (element by element) ma-
trix multiplication, and I is the 2N x 2N identity ma
trix. The permutation matrix P is the matrix such that
P A P permutes the 2 x 2 matrices a of Eq. (5) within
the Kronecker product in a cyclic fashion, 1 -+ 2 -+ ~ ~

41'55'56 Thus

(ol o2 R 3 oN —1 oN)—

oN o1 Sn2 3''' SAN-2 oN 1' (8)-
Equation (7) gives the diagonal matrix by simply taking
the diagonal elements of the matrix A multiplied by the
permutation matrix P raised to the power v. If v is an
integer, the diagonal elements in Eq. (7) simply give the
interaction between spins at lattice site i and i + v (with
periodic boundary conditions), and hence describe the
connectivity of the lattice.

When v = 1, the diagonal matrix D„ is identical to
the diagonal matrix D1 for the d = 2 Ising model on
a square lattice. 54 When v = 0 the diagonal matrix is

~D = I exp(NK), so the system describes N uncoupled
one-dimensional Ising chains. Thus, the parameter v can
be used to try to interpolate continuously between one
and two dimensions. Note that the value of J is not
changed in this interpolation, rather the interpolation
scheme changes the connectivity, since it acts only on the
permutation matrix P. Also, it is clear that the system
has translational invariance, since both D„and A com-
mute with P, the generator of single-step translations in
the finite direction.

One difficulty which is inherent in Eq. (7) is that the
reHection symmetry, (1,2, . . . , N —1,N) ~ (N, N—
1, . . . , 2, 1), is not preserved when v is not an integer.
This is remedied by using the diagonal matrix given by

D„=I O (P"A) O (P-"A),

where A is the same as the Kronecker-product matrix
A except that it has an interaction constant J/2 rather
than J in the matrix given by Eq. (5).

We now detail how the diagonal matrix is constructed
for v values vrhieh are not in general an integer. The
power of the matrix is given by

2N

where ~k) is the eigenvector of P associated with eigen-

Here ~U~) is the eigenvector of A formed by a Kronecker
product of m vectors ~u+) and N —rn vectors ~u ) in
some particular order. The sum in Eq. (11) is over all EI,
distinct permutations of the vectors formed by multiply-
ing by some integer power of P (Eg & N, and EI, = N
whenever N is a prime number). Performing this pro-
cedure with all inequivalent combinations of the vectors
formed from Kronecker products of ~u+) and ~u ) gives
a complete set of orthonormal eigenvectors of A and P

Let ~S) be the physical state with a particular choice
of the Ising spins s~ = +1. Then from Eqs. (7) and (10)
the elements of the diagonal matrix are formed from the
eigenvectors constructed in Eq. (11) by

(S(D„~S)= ) exp(iv(tq)(S~k)(k(A~S). (12)

Thus, even though the elements of ~k) are complex this
does not afFect whether the elements of D„are real.

We also have the freedom to choose the phases Pk.
For odd N we choose the values pg = N" with k =
0, +1, . . . , + 2 . Thenalltheelementsof D„ inEq. (13)
are real and positive. This is because the phases enter
as complex-conjugate pairs, and each pair has the same
value for C'g and the same values for ~(S~k)~ since they
were formed by the prescription in Eq. (11). Thus when
N is odd all the elements of D„are positive. For even
N the root of unity Pg = vr does not allow for a simple
pairing method to make the elements of D„real. Con-
sequently, we will henceforth restrict ourselves to odd
values of ¹

C. Finite-size-scaling method

The correlation length for an N x oo Ising model
is given by the ratio of the largest and next-largest
eigenvalue of the transfer matrix DHD„A as ((T, N) =
1/in~As/A1~. Provided that the model is between the up-
per and lower critical dimension (1 & d & 4 for the Ising

However (k~, the Hermitian conjugate of ~k), is also an
eigenvector of A with eigenvalue 4k, so this can be rewrit-
ten as

gN

(S~D„~S) = ) exp(ivPA, .)@k ~(S~k)
~
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model), near H = 0 and T = T, of a second-order tran-
sition the correlation length should asymptotically scale
as"

((T H N) —Nil(d 1)y-~ tN»l(~ 1) H-N»l(d »-~

(14)

where t = ~1 —T/T, ~.

One disadvantage of the interpolation procedure de-
scribed in Sec. IIB is that if v is not an integer, the
function d(v) is not known. Nevertheless, by using mod-
ified finite-size scaling of numerical transfer-matrix data
the dimension can be obtained. At H = 0 define

A,~ (T) = ln ((T, N, )/((T, N~) /ln(N, /N~). (15)

If T, were known exactly, A,~(T,) could be viewed as
the phenomenological-renormalization finite-size esti-
mate of 1/(a —1). By using three lattice sizes and lo-
cating the minimum of the function R(T) defined by

R(T) (012 013) + (012 fl23) + (~13 f123)

(16)

with respect to T, it is possible to obtain finite-size es-
timates for both T, and 1/(d —1). This possibility was
mentioned in Ref. 59, but was not further investigated.
An example of the function R(T) is shown in Fig. 1. For
all values of N and v the function R(T) was found to
have only a single finite-temperature minimum.

DifFerentiating Eq. (14) with respect to T and eval-
uating it at H = 0 and the finite-size estimate for T„
gives

The ratio of (yT + 1)/(d —1) with 1/(d —1) then gives
an estimate for y~.

In a similar fashion to Eq. (17), differentiating Eq. 14
twice with respect to H, and then evaluating it at H = 0
and the finite-size estimate for T, gives an estimate for

2yH + 1 8 ((T, N, )/OH
d —1 82((T, N~)/BH2

In this case the second derivative must be taken since
the system is finite in all but one direction so that
8((T, N, )/BH~H o = 0.

(18)

III. DATA AND ANALYSIS

The results for critical exponents as a function of d
(which will be presented below in Figs. 4—9), appear
to be extremely good, and compare favorably with the
d = 4 —e and d = 1+ e expansions. However, first
we show the behavior of the dimension d obtained from
finite-size scaling as a function of v. Figure 2 shows the
finite-size estimates for d obtained at the fixed values of
v for the symmetrized transfer matrix of Eq. (9). The
finite-size scaling described by Eqs. (14)—(18) was per-
formed with v in the interpolation scheme kept fixed for
each of the three lattice sizes used for each data point.
As N1 becomes larger, this function becomes closer to a
step function. Consequently, v must not be considered to
be the dimension, as was done in Ref. 41. Rather there
exists some function d = f (v, N1), which may be contin-
uous for large but finite N1, such that f (0, Ni) —+ 1 and

f(1,N1) ~ 2 as N1 ~ oo. Figure 2 illustrates one inher-
ent weakness of the present method, namely the possi-

yT + 1 8((T, N, ) /OT
d —1 8((T, N, )/BT

ln(N, /N~ ) (17)
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FIG. 1. The function R(T) from Eq. (16) is shown as a
function of temperature. This is for the symmetric implemen-
tation with N = 7, 9, and 11 with v = 0.97. The location
of the finite-T minimum gives the finite-size estimate for the
critical temperature, T, . The scale of T has been chosen so
J k~=1.

FIG. 2. The dimension d obtained from the finite-size
scaling is shown as a function of the interpolation parameter
1+v. The symbols represent results obtained from finite-size
scaling of numerical transfer-matrix data for the Ising model
using three system sizes: x for N = 3, 5, and 7; + for N = 5,
7, and 9; o for N = 7, 9, and 11; o for N = 9, 11, and 13; a
fancy square for N = 11, 13, and 15; a fancy horizontal cross
for N = 13, 15, and 17; and a fancy diamond for N = 15,
17, and 19. For the last three symbols only a single point
obtained with v = 1 is shown.
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bility that the thermodynamic limit (N~ ~ oo) does not
exist for d = f(v, Nq). If the limit does not exist, then
this interpolation method of obtaining critical exponents
should be viewed as a computational method. Another
weakness of the method is that each curve in Fig. 2 comes
from three lattice sizes, so a given lattice size N enters
in three different curves in Fig. 2. Consequently there is
not a single value of v that would give a single value of
d to the lattice with strip width N.

Figure 3 shows that the critical temperature also ex-
hibits large finite-size effects. Also shown in Fig. 3 are
the results for the d = 1+e expansion of the near-planar
interface model, ~~~z which gives

( " 3"
It gT, = 2J~ e ——+ (19)

2 8
7.4

+O(e )

The d = 1 + s results for T, do not have the same
functional form as the results for T, from our numeri-
cal transfer-matrix study. This should not be considered
to be very surprising since, unlike the critical exponents,
T, is a nonuniversal quantity and may depend explicitly
on the parameters of the particular model.

Data were not obtained for lower values of d than those
shown due to numerical difficulties associated with un-
derflow and overflow when the critical temperature be-
comes small. Figures 2 and 3 together illustrate the nu-
merical difficulty involved in trying to reach lower values
of d for a given Nq. At low d there is a point beyond
which T, vanishes extremely rapidly while d changes very
slowly. Below this point it is extremely difficult numer-
ically to try to go to lower d values for fixed values of
¹

All scaling was done using three lattice sizes: Nq,
N2 ——N1+2, and Ns = Nq+4. For Nq & 9 many

different values of v were used. However, for N & 15 the
construction of the diagonal matrix, using Eqs. (7)—(13),
became extremely memory and computer-time intensive
(for N = 15 it would take about 3 h of CPU time on
a four-processor Gray YMP to obtain a single diagonal
matrix). Consequently, for N& & 11 the only data ob-
tained were with v = 1, for which the construction of
the diagonal matrix could be performed by just calculat-
ing the energy between states. As opposed to the tra-
ditional transfer-matrix methodM where computer-time
and memory limits come from the diagonalization of the
matrix, in the present case the limiting part of the calcu-
lation is the construction of the diagonal matrix. The nu-

merical diagonalization of the resulting symmetric trans-

fer matrix (D&D„) A (D&D„) was accomplished
1/Z s/s

using the NAG routine F02FJF on a Gray YMP. Note
that the matrix can only be made symmetric in this fash-
ion since all of its elements are non-negative as shown in
Sec. II B.The matrix A was broken up into N sparse ma-
trices formed from a Kronecker product of one matrix a
from Eq. (5) and (N —1) 2 x 2 identity matrices. Thus
the matrix A never had to be stored in the computation.
The critical exponents obtained for each value of v for
N& ——9 took about 2 h of CPU time on a Gray YMP.

Figure 4 shows the results for the thermal exponent
yT obtained from Eq. (17) at the finite-size estimate of
T, obtained by minimizing Eq. (16) and using the sym-
metrized diagonal matrix in Eq. (9). This is related to the
critical exponent v associated with the divergence of the
correlation length, ( ~ t " near T„since v = 1/yy. r so

Figure 4 shows that the results for y2 are in excellent
agreement with both the d = 1+e expansions1~rz (par-
ticularly near small d and with the result to third order)
and with the results of applying summation methods to

I I I I I I
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o.e

1.5
0.6

1.0 0.4

0.5 0.2

0.0
1.2 1.4 1.6 1.8

0.0
1 1.2 1.4 1.6

FIG. 3. The critical temperature T, is shown as a function
of the dimension d. The plotting symbols have the same inter-
pretations as in Fig. 2. The lines are results of the d = 1+ e
expansions for the near-planar interface model to the order
of one-loop (dotted line) and two-loops (dot-dash line) from
Ref. 10, three-loops (dashed line) from Ref. 11, and four-loops
(solid line) from Ref. 12. The scale of T has been chosen so
J A:gy=l.

FIG. 4. The value of the thermal critical exponent yT is
shown as a function of d. The open circles with error bars
are results from resummed d = 4 —t expansions from Ref. 9.
The other symbols and lines have the same meanings as in
Fig. 3. Because of the good agreement between the results,
the three-loop d = 1+e expansion results and the data points
of the d = 4 —c expansion near d = 2 cannot be clearly seen
in this 6gure.
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d = 4 —e expansions. 9 In fact, the agreement between
the data from the finite-size-scaling results of the inter-
polation scheme and the results of both the three-loop
d = 1+ e expansion and the d = 4 —e expansion near

d = 2 is so good it is difficult in Fig. 4 to see the differ-
ences between them.

Figure 5 shows yT as a function of d with the lowest-
order d = 1+ e expansion subtracted. Now it is possible
to see the finite-size eKects. When N1 ——3, the results
are not in agreement with the d = 4 —e results for d
near 2. However, as NI becomes larger the results all
agree within the error estimates for yz from the d = 4 —e
results. Also note that the results for N1 = 3 only give
values with d & 1.86, since this is the value obtained
when v = 1. As Nq increases, the value of d obtained
from scaling when u = 1 approaches d = 2 as seen in
Fig. 5(b). Figure 5(b) is the first time the data with
Nr & 9 (near d = 2) can be clearly seen. It is possible
to use the data for v = 1 in Figs. 4 and 5(b) to obtain
derivatives for yT with respect to d evaluated at d = 2.
In this case, the v = 1 square-lattice Ising-model exact
resultss~ can be used for the correlation length as a func-
tion of N. Using these exact results and lattices up to
size Nr = 1001 gives dyT /ddIg 2 = 0.46210 +0.00001. It
is possible to calculate in a similar fashion higher deriva-
tives of yz with respect to d at d = 2, but this will be
left for a future publication. ss Figure 5(a) shows that the
numerical transfer-matrix results agree with the d = 1+&
expansion to third order for 1.35 ( d ( 1.5. However this
may be fortuitous since perhaps the d = 1+ e expansion
is not very good for this large value of e. Figure 5(c)
shows that although the general trends of the numeri-
cal transfer-matrix data and the d = 1+ e results are
in good agreement, they differ by a value of about 0.01
when d & 1.3. Figure 5(c) also shows that the finite-size
effects become extremely large at low dimensions; in fact
for the temperatures which could be studied numerically
low values of d can only be obtained for large system
sizes. The upturn in the points at small d seems also to
be a finite-size effect, since it moves to lower d as N1 be-
comes larger. Consequently, the study of smaller values
of d would require the use of much larger values of Nr
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FIG. 5. The thermal exponent yz with the d = 1+ e

expansion to first order subtracted is shown as a function of d.
This shows the finite-size effects in yT, which are particularly
evident near integer d as shown in (b) and (c). The plotting
symbols and lines have the same interpretations as in Fig. 4.

FIG. 6. The exponent g is shown as a function of d. The
plotting symbols have the same interpretations as in Fig. 4.
The solid line is obtained from the result for the droplet
model, Eq. (3) (Ref. 13).
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interpretations as in Fig. 6. Finite-size efFects are illustrated
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than are studied here. It is also interesting to note that
the most severe finite-size effects, i.e., near the upturn of
yT —(d —1) at low d in Fig. 5, occur near the value of d
where the function d = f(v, Ni) shown in Fig. 2 changes

from falling rapidly to being rather flat.
Figure 6 shows the results obtained for rl = 4+2 —2y~

from Eq. (18) as a function of d for the symmetric diago-
nal matrix of Eq. (9). The solid line in the figure is from
the droplet model, Eq. (3), with which the data agree at
low d. The transfer-matrix results also agree with the
d = 4 —e results and the exact value g =

4 at d = 2.
Again the finite-size effects are difficult to see in Fig. 6.
Figure 7 shows d —y~, with Fig. 7(b) showing the finite-
size effects near d = 2 and Fig. 7(c) showing finite-size
effects at low d. Figure 7(b) shows that the results only
agree with the d = 4 —e result when Ni ) 3, and there
is a small systematic shift between the Ni ——5 result and
the results with larger Ni. For a given value of Ni the
data point with the largest value of d in Fig. 7(b) is ob-
tained when v = 1, and hence gets closer to d = 2 as Ni
increases. For lattice sizes with Ni & 15 one obtains from
numerical differentiation that dy&/dd~g z = 0.73 + 0.01.
Better bounds on this derivative can be obtained by us-

ing larger Ni values, which will be treated in a future
publication. sz Figure 7(c) shows that results fall outside
the error bars of the d = 4 —e expansion at d = 1.375,
although the errors on data points of the d = 4 —e ex-
pansion at low d are extremely large (see Table I). Also,
there are again large finite-size effects at low d. This
should not be surprising since the finite systems are try-
ing to mimic a function that has an essential singularity
atd=1.

Table II gives the numerical transfer-matrix results for

yT and y~ obtained at the values of d where there are
series estimates (see Table I) from the resummed Wilson-
Fisher expansions in d = 4 —e,s and from recent results
of a variational method derived from high-temperature
series expansions. 4s As seen from the tables and from
Figs. 5 and 7 the numerical transfer-matrix results gen-
erally agree with the d = 4 —c results, except for y~
at d = 1.375. The agreement is not as good with the
results from Ref. 48. Although the general trend is cor-
rect, the transfer-matrix results fall outside of the error
estimates in Ref. 48 for yT at d = 1.875, and for yH when
1.5 & d & 1.875. However, the authors in Ref. 48 have
difficulty locating T, and need to keep H finite in their
study. This may be the source of the difference between
the present results and the results of Ref. 48.

Also shown in Table II are results at the dimension
d = ln3/ln2 = 1.585 . This dimension was chosen
since it is the easiest dimension below d = 2 for which
Migdal-Kadanoff bond moving can be employed. The
values obtained from the Migdal-Kadanoff bond moving
are yT ——0.6302 and yH ——1.5610. These results are
near those given in Table II. However, as X1 becomes
larger the value of yT appears to converge to a value
about 5% higher than the Migdal-Kadanoff result, and
the value for yH converges to a value about 0.2'%%uo higher
than the Migdal-KadanoK result. This agreement is quite
good when one considers that the Migdal-Kadanoff result
is the exact result for a non-translationally-invariant frac-
tal with a Hausdorff dimension d = ln 3/ ln 2. Differences
at other values of d between the critical exponents from
d = 4 —e series results and Migdal-KadanofF results have
previously been reported (see Fig. 5 of Ref. 31).
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The error estimates in Table II for yT and yH come
from a variety of sources. One error is in the location
of T, when finding the minimum of R(T) in Eq. (16)
(Fig. 1); T, was typically located to about one part in
10s. Another source of error is that at the finite-size esti-
mate of T, the finite-size estimate of d given by Eq. (15)
uses only two system sizes, whereas three system sizes
were used to calculate T, . An error estimate for d was
obtained by using all three pairs drawn from the three
system sizes, and choosing the error to be the difference
between the largest and smallest of the three values of
d. This error is largest for small values of NI. Addi-
tional errors come from the numerical differentiation of
Eq. (17) or Eq. (18). These errors were added to the
errors obtained by using all pairs drawn from the three
values of N, as was done for error estimates for d. It
is important to realize that all of these error estimates
could in principle be reduced further for a given value of
NI . (The exception is the systematic error due to taking
all pairs of the three lattice sizes, which can only be re-
duced by taking larger values of Nq. ) However, since the
error estimates here are comparable to the finite-size ef-
fects evident in Table II as Nq increases, no further work
on decreasing the errors was done. The error estimates
in Table II should also be used as a guide to the errors

on the numerical transfer-matrix data results for yT and
yH in various regions of d in Figs. 4—9.

Figure 8 presents the result for the critical exponent P
associated with the order parameter at H = 0 and T = T,
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TABLE II. The critical exponents yl and yH obtained
kom finite-size scaling of numerical transfer-matrix data using
the symmetrized diagonal matrix of Eq. (9) are tabulated for
the same values of d as in Table I. The three system sizes used
in the finite-size scaling are Nq, N2 ——Nq+2, and N3 ——N~+4.
See the text for a description of the error estimates.
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FIG. 8. The exponent P is shown as a function of d. The
plotting symbols have the same interpretations as in Fig. 4.
The solid line is obtained from the result for the droplet model
[Eq. (8)] and the value for yT from the near-planar interface
model to three-loop order from Eq. (2). Finite-size eRects are
illustrated near d = 2 in (b) and at low d in (c).
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where 0 t~ .The value of P is given by the relation

P = (d —yH)/yT. 7 Also note that the general trend for

P agrees with the results of s expansions IFig. 8(a)], and
agrees very well with the d = 4 —s expansion at high d
[Fig. 8(b)]. However at low d, Fig. 8(c), the results are
not in very good agreement with the e expansion results.
Note, however, that the error estimates for the d = 4 —~

expansion become extremely large at small d, and in fact
at d = 1.25 the physical values P ) 0 are outside the
error estimates. Also, the way P increases as a function
of d is much faster than predicted by the lowest-order
term from the droplet model. Note, however, that the
droplet-model results grow too slowly, and are far below
the exact value P = s at d = 2. For a fixed Nq, Fig. 8(c)
shows that finite-size effects limit the value of d to which
interpolation can be used. Consequently, testing Eq. (3)
at lower values of d would require the use of much larger
values of Nq.

Figure 9(a) shows the exponent p associated with the
order-parameter susceptibility y as a function of d. At
H = 0 near T„y t r, with p obtained from the scaling
relation p = (2yH —d)/y~. r Again we observe that the

I I I I I I I I

10—
98-
7—

general trend for the exponents is correct, and the agree-
ment with the d = 4 —e expansion is good only near
d = 2. The agreement with the droplet model results are
good to about 10% at low d. It is also interesting to note
that the results from Migdal-KadanoiF bond moving at
d = 1.585, which yields p = 2.439, are very close to
the numerical transfer-matrix results.

Figure 9(b) shows the exponent 6', which governs the
vanishin of the order parameter at T, for small H by
0 H' . The exponent b is given by 6' = yH/(d —yH).
Again there is good agreement with d = 4 —e expansion
results at high d, while the d = 4 —e results predict
unphysical values for d = 1.50. The results from Migdal-
Kadanoff bond moving at d = 1.585 yield b = 65.2, ~s

which is very close to the numerical transfer-matrix re-
sults. However, there is not good quantitative agreement
between the d = 1+&expansion results and the numerical
transfer-matrix results at low d.

Another question that must be addressed is how large
the difFerences are between using the symmetric interpo-
lation scheme used above with the diagonal matrix from
Eq. (9) and the unsymmetrized scheme with the diagonal
matrix in Eq. (7). Figure 10 shows that the function d(v)
falls much faster for the unsymmetrized case than for the
symmetrized case. One effect of this is that it gives larger
errors for yz and yH in the unsymmetrized case, since
the errors are calculated using two system sizes at a time
as described above. Note that when v = 1 (v = 0) both
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FIG. 9. The critical exponents p (a) aud b (b) are shown
as a function of d. The plotting symbols and line have the
same interpretations as in Fig. 8.

FIG. 10. The value of the dimension d obtained &om scal-
ing is shown as a function of the interpolation parameter 1+v.
This illustrates one of the differences between using the sym-
metrized diagonal matrix in Eq. (9) and using the unsym-
metrized diagonal matrix in Eq. (7). The symbols represent
results obtained from finite-size scaling of numerical transfer-
matrix data from the symmetrized diagonal matrix [Eq. (9)]
using three system sizes: x for N = 3, 5, and 7; + for N = 5,
7, and 9; o for N = 7, 9, and 11;D for 1V = 9, 11, and 13. The
other symbols represent results obtained using the unsym-
metrized diagonal matrix [Eq. (7)] using three system sizes:
a fancy diagonal cross for N = 3, 5, and 7; a fancy horizontal
cross for 1V = 5, 7, and 9; a fancy diamond for N = 7, 9,
and 11; and a fancy square for N = 9, ll, and 13.
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FIG. 11. The thermal critical exponent, y~, is shown with
the lowest-order results &om the d = 1+ e expansion sub-
tracted. Only results using system sizes N = 9, 11, and 13
are shown. This illustrates the difFerences in the critical ex-
ponent yl between using the symmetrized diagonal matrix in
Eq. (9) (o ) and the unsymmetrized diagonal matrix in Eq. (7)
(fancy squares). The open circles with error bars are results
&om d = 4 —e expansions from Ref. 9. The lines have the
same interpretations as in Fig. 3.

IV. DISCUSSION AND CONCLUSION

An interpolation scheme that allows one to perform a
numerical study of a translationally invariant Ising model
between one and two dimensions has been presented.
This has been done by finding an interpolation parameter

the symmetrized and the unsymmetrized versions are the
standard d = 2 (d = 1) Ising model, and consequently
give the same exponents. At other values of v the values
for the exponents are difFerent. For the exponent yH, it
was found that the values from the symmetrized and the
unsymmetrized versions agreed to within the error esti-
mates for a given value of Ni. The same is not true for
the exponent y~. Figure 11 shows how the exponent yT is
affected by using the symmetrized or the unsymmetrized
diagonal matrix. The general trend in the critical ex-
ponents is found to be as expected. However, there are
slight difFerences, as can be seen in Fig. 11. The finite-
size effects at low d set in sooner in the unsymmetrized
case than in the symmetrized case. Also in the unsym-
metrized case, the convergence as Ni is made larger ap-
pears to be to a value of yT that is about 0.01 lower than
in the symmetrized case when 1.3 & d & 1.75. There are
two possibilities that could explain this difference. One
is that the exponents obtained do depend on the spatial
symmetries included in the model, or another that the
finite-size effects are much larger than anticipated (and
may not be monotonic), and the critical exponents really
will converge to the same value as N1 is made arbitrar-
ily large. It is not possible to decide between these two
possibilities with the present system sizes.

that continuously changes the connectivity of the lattice,
and gives the normal hypercubic lattices when d = 1 or
d = 2. By implementing a finite-size scaling of numerical
transfer-matrix data using three system sizes, the critical
temperature T, and estimates for the finite-size dimen-
sion d as well as results for the critical exponents yT and
yH have been obtained. Other critical exponents are ob-
tained by the use of scaling and hyperscaling relations.
The results for the critical exponents are in good agree-
ment with resummed series in d = 4 —e dimensions. s

The results are also in reasonable agreement at low d
with asymptotic results from the near-planar interface
modeli~i~ and the droplet model. is The results also
agree at low d with a recent variational method derived
from high-temperature series expansions, s but are out-
side the error estimates of that work for yl at d = 1.875
and for yH when d & 1.5.

The agreement between the present results and the
resummed d = 4 —e results also provides further evidence
that the results from Ref. 9 at d = 3 may be accurate.
These results are within the error estimates from previous
Monte Carlo renormalization-group studiesss ss and in
agreement with numerical transfer-matrix results for d =
3.4s ss However, these results are in disagreement with
very recent extensive Monte Carlo and Monte Carlo
renormalization-group studies.

The interpolation scheme presented here can easily be
generalized to other lattice models, such as the Potts
model. In fact it would be interesting to perform stud-
ies to test the theoretical estimates for the q-state Potts
model, s'ss' and the O(n) Heisenberg model.

By inserting interpolated lattices in place of any lin-
ear chains in a lattice, it should be possible to study
models in dimensions greater than 2. Once such an
insertion has been done, the system could be stud-
ied using Monte Carlo techniques (since all Boltzmann
weights in the interpolated system are positive), and may
even be amenable to Monte Carlo renormalization-group
studies. 7i It may be possible to utilize this method to
study systems with quenched randomness, which could
then be compared with theoretical estimates. 1

The weaknesses of the method presented in this paper
should also be kept in mind. One question is whether the
thermodynamic limit exists for the interpolation scheme
presented here; the possible lack of the existence of this
limit is hinted at in Figs. 2 and 3. There is also the ques-
tion of whether the Ising model in noninteger dimensions
has a well-defined field-theory analogue72 and whether
the interpolated model has convexity violations. s An-

other weakness is the lack of a single value of v for a given
N such that the lattice system would have a particular
noninteger dimension. However, it may be possible to
overcome some of these diKculties. In particular, the in-
terpolation parameter used in this paper is f(v) = v, see
Eq. (7). However, any function which satisfies f(0) = 0
and f(1) = 1 could have been chosen, which would lead
to the dimension as a function of v given by d(f(v)).
Thus f(v) could have been chosen to make d(v) have a
less singular behavior than d(v) does here. And it may
be possible to find a function or functions f (v) for which
the thermodynamic limit exists.
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