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Elementary excitations for the two-dimensional quantum Heisenberg antiferromagnet
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1The excitation spectrum of the antiferromagnetic spin- —Heisenberg Hamiltonian H=QJS;.S, on

L XL lattices is evaluated by a projector quantum Monte Carlo method. These results suggest that the

exact spectrum for the finite lattice is tok-Z(L)toi, , for all k, where rois =4JS+1—yz with

Zl, =(cosk„+cosk„)/2 is from linear-spin-wave theory. We find Z(L) =Z~+B /L', leading to

ZE = 1.21+0.03 for L = 00. A comparison with experiments on La2Cu04 is discussed.

I. INTRODUCTION II. METHOD

Largely because of its relevance for high-T, supercon-
ductors, the two-dimensional Heisenberg antiferromag-
netic Hamiltonian

coskw'D =J I »n(ka) I

and for two dimensions leads to

sw —4JS( 1 y
2

)
1/2

where

(2)

(3a)

H=gJS S, , J&0,
(ij )

has been extensively studied recently. ' ' However,
there remains considerable uncertainty about the excita-
tion spectrum for (1).

The most common approximation to (1}is linear-spin-
wave (SW) theory, ' which for one dimension (1D} leads
to

To calculate the eigenstates of (I), we use the quantum
projector Monte Carlo' ' (PMC} method for finite L XL
lattices and extrapolated to L = 00. The basic idea of the
PMC method is to start with trial functions p, l(t (not or-
thogonal to the ground state) and to apply the projector
exp( —rH ) on P for a sufficient time r such that the wave
function exp( rH}P—is a good approximation to the
ground-state wave function. The ground-state energy is
then computed as

E(0)=(qIHe '~lg)!(&Ie (6a)

and the excitation energy is computed as

(ylR (
—k)H. —

R (k) I y)
&glR( —k)e-' R(k)ly&

(6b)

where the R(k} operator projects out the states with
definite momentum k from a mixed wave function.
Takahashi has used such a momentum operator in 1D.'

Here we extend it to the 2D case

yk = [ cos(k„a )+ cos(ksa )]/2 . (3b) R(k)=g (S;—S)e'"',
For the one-dimensional case, the exact spectrum is

solved by using the Bethe ansatz, ' giving

1D Z1D SW, 1D~k E k '

where

(4)

Z =—=1.57 .1D
E

Thus spin-wave theory leads to results low by 36%%uo, but
the shape of the spectrum is exactly correct. Unfor-
tunately, for 2D and higher, there has been no general
solution of (1).

In this paper we calculate numerically the exact spec-
trum for 2D periodic L XL lattices (L =4,6, 8, 12). Ex-
trapolated to L = 00, these results lead to

co„=Z to =Z [4JS(1—y„)' ],
where ZE=1.21+0.03. Thus, for 2D, the shape of the
lowest excitation spectrum is also the same as for spin-
wave theory, but the renormalization factor is 1.21 rather
than 1.57.

where S„' is the spin- —,
' operator at site r =(r„,rr ) and the

sum is over the L sites in the periodic lattice.

A. Phase convention

The Hamiltonian (1) has non-negative off-diagonal ma-
trix elements, making the PMC method inapplicable.
Thus we make a unitary transformation"'

U =exp i tr g S,'

where the sum is over alternate sites. This flips the x,y
components of spins on alternative sites,

UHU '=J g ( S,"S, Sf—S,"+S;—S')
(ij)

(i.e., the x,y terms change signs). Consequently, all off-
diagonal elements become nonpositive and the PMC
method is applicable. This does not change any observ-
ables, but the momentum of wave functions are shifted by
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im(L S—M )
UT U '=e 'T

1
i 77(L S—M )

where M, =g, S,' is a conserved quantity and S=—,'.
Since L is an even number in our calculation and the
lowest state is in M, =0 subspace, there is no momentum
shift. In two dimensions all L XL (L even) antiferromag-
netic system have k=(0,0) as the ground states.

2

B. Partitioning of the Hamiltonian

The trial wave function P is the sum

C

~y&= g w ~m&,
m =1

where the spin state ~m) is a product of L one-spin
eigenstates of S for an L XL system and where C —10 is
the number of walkers which jumps from one-spin state
to another in the calculation. The total number of spin
states for the L XL system (with M, =0) is the binomial
coeScient

(8)

1/2
2 1

C —2max ] L2
2

(for L =8 this is 2X 10' ). Thus C is much smaller than
C,„. Applying the projector, the ground-state wave
function is approximated by

4 'f 3

2

where g p &=1. The transition matrix p changes the
two-spin state from /3 to a with probability p &. The di-

agonal matrix q contributes to the weight multiplicative-

ly,

12 (1/2)L 2

w;(r„+))= g g qt3 w (r„),
j=1 P=1

(12b)

FIG. 1. Decomposition of H into Hl+H2+H3+H4. Hl
contains all the bonds denoted by 1 and similarly for H„H3, H4.

e ' = w ~ m ~ where j is over the 12 factors in (11).9

As the computation evolves from ~„ to ~„+1,each walker
m evolves from spin state

~
m (r„)) to spin state

~m(r„+, ) ) according to the propagator e

A problem here is that the 2L terms in the Hamiltoni-
an do not commute. To simplify the calculations, we
decompose H into four sub-Hamiltonians"

H =Hl +H2+H3+H4, (10)

+0((br) ),
where 6z=h~/2, 64=6~/4. Because the L /2 terms in
each H, commute among themselves, the propagator—6H
e ' factors into a product of L /2 two-spin transfer
matrices, each of which can be further decomposed into a
product of two matrices, ' '

(s' s;, ~e ~s;, s;, )pq, , (12a)

where each H, has L /2 terms that commute among
themselves (see Fig. 1):

H 1 /J =Sl 1 'S21+S12'S2~+

H2 /J =S21 S31+S22 S3

Using (10), we can write e ' as
—b, i(Hl +H2+H3+H4)

e

64H 1 62H 2 64 H
1 64 H3 —

62 H4 —64H=e e e e e e

64H4 62H3 4H4
—64H2 —62H l

—64H2Xe e e e e e

C. Redistribution

One application of e ' contributes 6L factors to
each weight [cf. Eq. (12b)]. Successive applications of
e ' thus lead to large increases in some w and large
decreases in others, resulting in orders of magnitude
differences in w for different walkers. As a result, the
wave function P, becomes quickly dominated by a few
walkers having very large weights, leading to an effective
reduction of the sampling space. To solve this problem,
we periodically redistribute the weights to obtain a new
set of C walkers equivalent to the existing set, but with
equal weight. ' ' In this way walkers with very small
weights are eliminated and those with large weights mul-
tiply in number. For the 8X8 lattice, we find it neces-
sary to redistribute about every two applications of
e

—b, 7.H

D. Contraction

~y)„,= g ~m) .
all states

(13)

The reason is that ( m, ~
H

~
m z ) is very sparse. Using

P=P would lead to very few nonzero off-diagonal contri-
butions, resulting in large fluctuations in energies. The
all-states function of (13) guarantees that each term of P

A second issue is the choice of the contraction function

g in Eq. (6). One common choice' is setting
However, we find that it is important to use the all-states
function
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will make nonzero off-diagonal contributions. In addi-
tion, since f has the same coefficient for all possible
states, we need not store g, nor do we need to search f
for the corresponding spin state once H lm ) is generated.

Another significant advantage of the all-states choice is
that with P independent of P, we can coherently add the
contributions from independent runs:

&&IHI&)+&2& &&IHI&, )+&&IHI&, &

&ply, +y, & &ply, &+&ply, &

(14)

Typically, we do 500 such independent runs. Thus, from
each run P;, we need only accumulate the two numbers

( PlH l P; ) and ( pl P, ) from different runs until sufficient
accuracy is obtained. With the other choice of g =P, the
coherent average would require evaluation of cross terms

(P, Hlgz), (g, l(t)2); this would require storing 500 wave
functions each with 50000 terms and would require
evaluating 50 000 matrix elements.

E. Procedure

P(k)=e' R(k)lg) =g w (r)R(k, m)lm(r)), (15a)

and E(k) is evaluated every two steps. (This is very simi-
lar to the forward walking in the Green-function Monte
Carlo method. '

) At the end of the r2 process, we take
the current wave function as the starting wave function
of the next 7, +72 process. We found that ~2 cannot be
too large because Po is not exact ground-state wave func-
tion at the beginning of the r2 process when R(k, m ) is
calculated. The ~, process separates the ~2 process so
that the consecutive measurements of Eo and E(k) are
less correlated.

We calculated the excited states for L =4, 6, and 8 us-
ing C=4000, 64000, and 128000, respectively. In each
case the P was chosen to have a total spin projection
component (M, ) of zero. We found that Dr=0. 1 leads
to accurate results (e.g. , tests on L =4 and 6 using
dr =0.05 lead to energies differing by less than 0.5%). In

The calculation of Eo and E(k) is done simultaneously
for all values of k. We start with an initial function P
randomly chosen and propagate according to (9), (11),
and (12) to approximate the ground-state wave function

We allow this relaxation of the initial P for 100 time
steps (vo=100hi), during which the redistribution is ap-
plied every 5 steps (for a 8 X 8 lattice).

Next, we apply the following process of ~&+~2 steps
many times until convergence is reached. During the ~,
process (=506' steps), the function Po is relaxed with a
more frequent redistribution of every two steps. At the
beginning of the next r2 process (=20hz steps), we com-
pute the phase factors

R( km)=(m(r') Rl( k) ml(r')) .

R (k, m ) remains associated with the mth walker, al-
though the walker may well possibly walk into different
spin state lm(w)). With each set of the phase factors
[R (k, m ), m =1,2, . . . , C] for a momentum k, the corre-
sponding wave function is constructed as

TABLE I. E(k,k~)/J for all momentum on the 4X4 lattice.
The exact results are from Ref. 4. The statistical uncertainties
are indicated in parentheses.

k, ky

0,0
7T0—'2

0,~

2'2
j 7T2'

Exact

—11.2285
—8.7944
—8.5183
—8.5183

—8.8864

—10.6499

PMC

—11.228(11)
—8.749(12)
—8.510(20)
—8.506(17)

—8.909(17)
—10.63(4)

III. RESULTS AND ANALYSIS

The calculated ground-state energy density (energy per
atom) E(O, L)/L is shown in Fig. 2(a) for L =4—12. We
find that E(O, L)/L is very accurately fitted by

all cases the coherent averages were carried out on the
~&+~2 process for 500 repetitions. As a test, we comput-
ed the spectrum on a 4X4 lattice and compared with the
exact results from direct diagonalization in Table I. The
agreement is excellent.

We found that the ground-state energy converges
quickly, leading to accurate results up to L =12. [This is
a singlet spin state (S 4=0) for the L spin system. ]
The excited-states energies are much more difficult to cal-
culate for large lattices, and the excited-state spectrum
for L ~ 10 did not converge well. [In each case the excit-
ed state is a triplet spin state S 4'=2%.] Probably, the
large configuration space (-10 for L =12) requires a
substantially larger number of walkers or a larger number
of runs in the coherent average. Another difficulty in ob-
taining the spectrum cok =E (k) —Eo is the subtraction of
two large numbers. Both E(k) and Eo are extensive
quantities proportional to the area of the system L,
whereas their difference remains a constant (very weakly
dependent on the sizes). For an 8 X 8 lattice,
Eo= —43.03+0.05J, while cok is about 1J. Consequent-
ly, to obtain an accuracy of S%%uo error in col, requires an
accuracy of 0.1% error in E(k) and Eo. Considering the
Monte Carlo (MC) nature of our method, this is a rather
stringent requirement. The coherent addition mentioned
above [cf. Eq. (14)] is critical to obtain reasonably accu-
rate results.

The program was developed on a parallel supercom-
puter, the 64-node Caltech/JPL MarkIIIfp Hypercube.
Each node contains a fixed number (C/64) of spin states.
Application of e ' is carried out locally on each node.
However, redistribution must be done globally because
the weights on one processor will influence the redistribu-
tion of walkers on other processors. We have devised an
efficient algorithm for this redistribution which for
C =64 000 takes only 15% of the total time. For
C =64000 the total time for one h~ step in the 64-node
hypercube is 4 sec. In comparison, the same code (writ-
ten in C) running on a one-processor Cray XMP (at JPL)
is 20 sec. Thus the hypercube is about 5 times faster.
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eo = ( —0.668+0.001)J, (15b)

in good agreement with other calculations. The Green-
function MC results are eo= —0.6692(2) and the
world-line MC results are eo = —0.670(1), —0.6661(2),'

and —0.6693(2).' (See Ref. 13 for more complete re-
view. )

The point ka =(n., m. ), is of special interest. This state
is a spin-triplet state, whereas the ground state (0,0) is a
spin-singlet state. In spin-wave theory the (~,m) and
(0,0) states are degenerate. Similarly in 1D the state
ka =~ is degenerate, with k=O for both spin-wave
theory and the exact energy. However, for finite L,
k = ( m, m ) has an energy higher than lt = (0,0) by

b. =E(~,n ) Eo)—0 . (16)

This gap decreases with I., and we find that the gap goes
to zero ' ' ' as

E(O,L)/L =eo+B/L3,

as indicated in Fig. 2(a}. This fit (B= —2. 17+0.04) gives
the ground-state energy per site of the infinite system,

(17)

where A =9.26 rsee Fig. 2(b}]. The triplet state (m, n } is
dificult to calculate directly in M, =O subspace. We in-
stead obtain E(vr, n } as the lowest energy for in the
M, = 1 subspace.

Our goal is to obtain an analytical expression of the
spectrum for cok for the infinite lattice. In principle, for
each fixed (k„,k ), one could compute cok on a series of
lattices and then extrapolate to the infinite lattice. How-
ever, this is difBcult to implement because each I.XI. lat-
tice leads to a different set of discrete momenta (k„,k~)
with few in common. Here we use the alternative ap-
proach of finding an analytical expression which fits the
data for each finite lattice and then extrapolating the
fitting parameter to the infinite lattice.

As discussed in the Introduction, for 1D the linear-
spin-wave spectrum has the same analytical form as the
exact spectrum except for a scaling or renorrnalization
constant ZE =1.57. Motivated by this result, we factor
the finite-size dependence for the 2D system into the
form
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FIG. 2. Size dependencies of various quantities: (a) the ground-state energy (in units of J), and the line is eo+B/L fit; (b) the en-

ergy gap co(~, m) =E(„&—E(o p) and the line is co(~, m) = A /I; (c) the spectrum renormalization factor Z(L); and (d) A(1.) from

Schwinger boson MF theory.
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cok (L)=Z(L, k)[4JS(1—yk+Ak/L )' ], (18a) 2.5

where Z(L, k)=1 and Ak =0 would lead to the cok of
Eq. (3a). Here the term Ak/L accounts for the finite-
size effects, ' which break the symmetry of 1 —

yk be-
tween (0,0) and (~,m) and thus generate the gap. Ak
changes smoothly with k; the exact form is not impor-
tant, as shown below. At k=(w, n ) this form leads to a
gap that scales as 1/L . For all other momenta, except
(0,0), of course, the Ak/L term is very small compared
with 1 —

y&, so that this correction can be neglected.
[Even in the most extreme case of k~0,

1.5
N
CO

8 1

0.5

0
M X

1 yi,-—(k„+—k )/2=2m (n„+n )/L

where n n ((L are integers. This is still much larger
than Ak/L .]

The above analysis also suggest that Z(L, k) has little
dependence on k, i.e., Z (L, k ) = Z (L). Thus we have

co =Z(L)4JS(1—y )' =Z(L)aP (18b)

Indeed, using the only parameter Z (L) for a given L XL
lattice, one can fit the obtained co(k) to Eq. (18b) for all k,
as shown in Fig. 2. Plotted in units of 8JSZ (L), all data
points on the three lattices (L =4,6, 8) collapse into a sin-
gle curve [except at k=(m. , m. ) because of the gap term
Ak/L ], giving clear evidence that the exact spectrum
has the same shape as the spin-wave spectrum (1—

yi, )'~ .
The fact that one parameter Z(L) fits all data points on
each lattice confirms the usefulness of Eqs. (18).

These data fits to theoretical form give
Z (L)= l.38+0.002, 1.26+0.01, and l.22+0.02 for
L =4, 6, and 8, respectively. [For 4X4 we used the exact
spectrum at (rr/2, 0) and (m, 0) in the fit.] To estimate the
limit for L~~, we fit Z(L) to L " and find a size
dependence of Z(L) as

ZE(L)=ZF+8/L (19)

cok "=2A(L)[1—
r) (L)yk ]' (20a)

where yk is given in (3b). A and g are determined by
minimizing the free energy, leading to

I yk I ~k ' coth( ,'Peek ), —
k

(20b)

subject to the condition

as shown in Fig. 2(c); the result is ZE=1.21+0.03 and
8=11.1+0.8. [Here we use Zz to distinguish from Z„
the renorrnalization of the spin-wave form at the k —+0
limit. ]

To give some further understanding of the 1/L extra-
polation found in our data fit, we examined E ( k, L )

within the framework of the Schwinger boson mean-field
(MF) theory. This theory is an approach difFerent from
spin-wave theory, and it gives improved results on a nurn-
ber of aspects, such as the correlation length, uniform
susceptibility, etc. The theory leads to a spectrum very
close to the spin-wave result: For a L XL squar lattice,
the spectrum is given by

FIG. 3. Comparison of results from PMC calculations for
L XL lattices with L =4,6, 8 to the spin-wave spectrum [see Eq.
(18)]. In each case the results have been scaled as
co(k)/8JSZ(L) with Z(4)=1.38, Z(6) =1.26, and Z(8) =1.22,
which are obtained by fitting the spectrum in the branch I
[k=(0,0)] to X [k=(0,m. )]. Except the gap at M [k=(m, ir)],
all other data points fall along the curve (1—

yk )'/ .

1 1

A(L)
co„coth( —,'Pcu„), (20c)

where P= 1/T. Clearly, A(L) is very similar to Z (L) in
Eq. (18) and we are interested in the size scaling of A(L).
For this purpose we solved Eq. (20) for L =4—24 at the
T~O limit. [We used T =0.02J and verified with
T=0.01J.] First, r)(L) is found to be very close to 1 (q
increases from 0.993 for L =4 to 0.999 for L = 16 and be-
comes indistinguishable from 1 for larger lattices).
Second, the A(L) can be well fitted by

IV. DISCUSSION

At the long-wavelength limit k~0, the spin-wave
spectrum is simplified to

~sw —+8JSka k 2 —k 2+ k 2 (21)

The linear coefficient &8JSa is the usual spin velocity.
The correction to this linear coe%cient, the spin-velocity
renormalization factor Z, has been calculated by a nurn-
ber of authors. ' ' ' On the other hand, our results
suggest an overall renormalization ZE for all k. Thus
ZE=Z, . Oguchi obtained Z, =1.16 using a 1/25 ex-
pansion of higher-order spin-wave theory. Singh ob-
tained Z, =1.18+0.02 by a series expansion around the
Ising limit. The Green-function MC simulation of
Trevedi and Ceperly gave an estimate Z, =1.14+0.05
from a variational method. Gross, Sanchez-Velasco, and
Siggia' measured ground-state energies of various size
square lattices by a projector Monte Carlo technique and
compared them with those of spin-wave theory, giving
Z, =1.18+0.10. Our result Zz =1.21+0.03 is in reason-

A(L) =A„+D/L

as shown in Fig. 2(d). We find A„=1.158+0.001 and
D =2.24+0.01, in good agreement with the original cal-
culation. This is a theoretical justification to our empiri-
cal scaling.
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able agreement with these calculations.
The linear dispersion relation at small k has been ob-

served in inelastic neutron-scattering experiments. For
La2Cu04, expel iment gives a spin-wave velocity of

0

Ac, =0.85+0.03 eV A. Using a lattice parameter of
0

a =3.80 A (determined by x-ray diffraction ) and an ex-
change coupling value of J=1450+30K=0.125+0.003
eV (obtained by fitting the Monte Carlo results" to the
observed spin-correlation length ), our result
Zz =1.21+0.03 leads to A'c, =Zz&8JSa =0.80+0.03
eV A, quite close the experimental value. (Using
Z, =1.16 leads to A'c, =0.77 eVA. ) This indicates that
the simple Heisenberg model describes well the magnetic
interactions in LazCu04.

In conclusion, our numerical calculation of the excita-
tion spectrum and finite-size analysis suggests that the ex-
act spectrum of the 2D Heisenberg Hamiltonian has the

same form as linear-spin-wave theory, except for an
overall renormalization constant of ZE = 1.21+0.03.
This justifies the use of the spin-wave spectrum for a wide
variety of calculations, including the Schwinger boson
mean-field theory and modified spin-wave theory. Our
numerical value on spin velocity agrees with both the
previous calculations and neutron-scattering experiment.
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