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Spin excitations in a two-dimensional antiferromagnet with mobile holes
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The spin dynamics of a two-dimensional antiferromagnet doped with a finite concentration n of
mobile holes is studied. The holes weaken the antiferromagnetic order by dilution, but more important-

ly by disrupting the antiferromagnetic order as they move. We calculate the renormalization of the spin
excitations induced by hole motion. Spin-wave theory is applied to the t-J model and the range of small
hole concentrations, n ((1, is considered. We find that the spin-wave spectrum is significantly softened
upon doping, and that strong damping effects set in at a low concentration, resulting from decay of spin
waves into "electron-hole" pair excitations. This implies that the spin-wave spectrum and eventually the
antiferromagnetic order will collapse as the hole concentration increases. A comparison is made with

measurements of spin-wave softening in doped copper oxide superconductors and other layered magnet-
ic systems. Implications for hole motion are also briefly discussed.

I. INTRODUCTION

The discovery of superconductivity in the layered
copper oxides' has stimulated a large number of studies
on the nature of magnetism in these materials, both be-
cause of its intrinsic interest and its possible role in the
mechanism for high-T, superconductivity. The undoped
parent compounds are antiferromagnetic (AF) insulators.
When dopant holes are introduced, the AF order is rap-
idly destroyed with increasing hole concentration. Upon
further doping, the system becomes superconducting.
There is experimental evidence for a magnetic moment
on Cu, while short-range AF correlations remain in the
superconducting state.

It is widely believed that the Cu02 planes are responsi-
ble for the superconductivity. In the undoped materials,
these are well described by the isotropic spin- —, Heisen-

berg model in a square lattice. Doping introduces holes
into the oxygen orbitals. Zhang and Rice argued that, in
the relevant parameter range, the oxygen holes may form
a singlet with the copper moments, leading to a hole in
the magnetic square lattice of copper moments. As ini-
tially suggested by Anderson, the simplest model that
contains the physics of the high-T, materials is the
single-band Hubbard model with strong on-site repulsion
U, near half-filling. In the limit of very large U, the Hub-
bard model can be transformed into the t-J model Hamil-
tonian acting on the space with no doubly occupied sites:

H, J= —t g [(1 n, )c, c—(1—n )+H. c. ]
(i,j),~

+J g (S, S —
—,'nn).

Here (i,j ) indicates nearest-neighbor pairs, n,
=c, c, and c, , c, are creation and annihilation
operators of an electron on site i with spin o., the factor
(1 n, ) enforcing the con—straint of no double occu-
pancy, S,- is the spin on site i, n; =n; &+ n, &, and the ex-
change coupling is J=4t /U. At half-filling only the
Heisenberg part of the Hamiltonian is relevant, and it de-

scribes an AF insulator. With doping and near half-
filling, the Hamiltonian describes holes which are the
charge carriers moving in an Heisenberg spin system.
For the copper oxide materials the exchange coupling has
been determined experimentally to be J-0.1 eV. The
hopping parameter is less well known, but is usually tak-
en to be t-3J.

A very important feature of these systems is that the
holes are strongly coupled to the antiferromagnetic spin
array. The motion of holes tends to disrupt the AF order
because, as it moves, the hole leaves behind a trail of
overturned spins. This is a consequence of the strong
constraint on the occupancy. In the case of highly aniso-
tropic Ising spin interactions, the hole motion is hindered
by the scrambling of the spin order, and the holes are lo-
calized. The physics is qualitatively different if we con-
sider Heisenberg interactions because quantum fluctua-
tions associated with the transverse exchange interactions
may "repair" a pair of wrongly pointed overturned spins,
allowing the holes to be mobile. It then follows that the
holes are no longer simple free charge carriers, but be-
come dressed by a cloud of spin excitations. Spin dynam-
ics is the essential factor in determining hole mobility,
i.e., the hole effective mass or bandwidth. The spin ar-
rangement is only a perfect antiferromagnet at half-
filling. With doping, the spin order is disrupted. The ex-
citations are no longer pure AF spin waves, but are re-
normalized by interaction with the holes. The dressing of
the holes is therefore determined by the resulting dressed
spin excitations. In order to understand the destruction
of the AF order, and the transition to superconductivity,
one needs to include the renormalization of both the hole
and the spin dynamics.

The problem of hole motion has been studied in a
variety of approaches. These include exact diagonaliza-
tion of small clusters, ' variational calculations, ' and
self-consistent Green's-functions techniques. " ' Using
Green's functions, Schmitt-Rink, Varma, and Rucken-
stein, " and Kane, Lee, and Read' considered the cou-

pling of a hole to virtual spin excitations, Gros and
Johnson' developed a technique that improves the treat-
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ment of the constraint of no double occupancy, and Su
et al. ' further included the effects of local spin distor-
tions around a hole. However, most of this work treats
only one hole so that the spin excitations correspond to
that of a pure antiferromagnet. With a finite concentra-
tion of holes, the AF spin excitation spectrum will

change, and the proper renormalized form for AF excita-
tions should be taken into account when calculating hole
motion. Indeed, numerical calculations by Szczepanski
et al. show that the shape of the hole spectrum depends
significantly on the nature of the spin background. Nev-
ertheless, spin-wave renormalization due to a finite hole
concentration has largely been neglected. The work of
Ko, ' and Brenig and Kampf' considers the limit of lo-
calizated holes. Gan, Andrei, and Coleman' studied the
effect of mobile holes on spin dynamics, however, fol-
lowig the Schraiman and Siggia' hypothesis in which in-
commensurate helimagnetic long-range order is assumed.
There is no experimental evidence for the existence of
such incommensurate order in the low concentration re-
gime considered. '

We study the spin dynamics of an antiferromagnet in
the presence of a finite concentration of mobile holes in
this work. We are particularly interested in the effects of
hole motion on the spin excitations. We find as a result
that the spin excitations in the two-dimensional AF
planes are very sensitive to doping, and become
significantly softened even upon light doping. We also
find that strong damping effects start to occur at low hole
concentrations. Recent experiments in copper ox-
ides, ' ' and also in other layered magnetic systems,
have revealed a combination of softening and damping in
the spin fluctuations of the doped materials when com-
pared with those in the pure materials. It has been sug-
gested that these effects are associated with the mobility
of the holes. This will be shown to be the case in this
work. In addition, the softening of the spin excitations
has implications for hole motion, and this will also be dis-
cussed below.

II. CALCULATION OF THE SPIN EXCITATIONS

Our starting point is the t-J Hamiltonian, Eq. (1},for a
two-dimensional square lattice with spin —,. We use a
Green's-functions formalism in our calculation. Because
we consider small hole concentrations, n &&1, and so
wish to study states close to the pure AF state, we choose
the Neel state as the vacuum. We then define hole opera-
tors (obeying Fermi statistics) h; =c;&

on the spin-up sub-
lattice and c;& on the spin-down sublattice, and hard-core
boson operators b;, such that b; =S; on the spin-up sub-
lattice and S,+ on the spin-down sublattice. Introduc-
ing these definitions in (1), the Hamiltonian becomes

H, 1= t g h, h (—b; +b~).
(ij )

+ —,'J g (1—h,~h;)(I —hj~hj. )
(i,j)

X(b,tb, +b b +b, b +. b., b 1} . —

In the Heisenberg part, the factor (1—h,th, . )(1—
hj~hj )

H, J =Hsw +HI, +H, +HJ

with

(3)

Hsw g ~k PkPk cvk J(1 n )(1 yk }
k

~k=&Qyhkhk ED= 2J(1 n)
k

H, = —t ghkhk q[(yk qvq+ykuq)p
k, q

+(yk ,u, +ykv, -)P, ],
HJ= —J(1 n) g hkh—k q q[Apq P pPq

k,p, q

(3a)

(3b)

(3c)

+&„(P,P, +P ,P , )], ——
(3d)

A =(1—y + )(u u +v v )+(y +y )(u v +v u ),
8 =

—,'[(1+y +q)(u v +v u )

+(y +y )(u~uq+v v )],
where now J=zJ, t =zt, z is the coordination number
(z =4 for the square lattice), and (1—h; h;)(1 —h h ) has
been set equal to 1 —(1—n)(h; h; +h ht)Jn 'Th—e in-.
teraction terms H, and HJ renormalize the pure spin-
wave Green's function. Our purpose is to study the
effects of hole motion and thus we are primarily interest-
ed in the renormalization due to the transfer interaction
H, . We will neglect the interaction HJ while studying
this renormalization because the effect of HJ on this

projects out the spin coupling between two neighboring
sites if one or both are hole occupied, and the usual
Holstein-Primakoff transformation has been performed
keeping only linear terms. The transfer part of the Ham-
iltonian preserves the constraint of no double occupancy
because h;b, =0, and also properly describes the spin re-
versal as the hole moves. It neglects, however, the distor-
tion of the spin directions in the vicinity of a hole. Su
et al. ' used a particular formalism to study the effect of
spin distortion on hole motion. They found that spin dis-
tortion can generate hole hopping and hence contribute
to the hole bandwidth. For small mobile hole concentra-
tions, we do not believe this will qualitatively change our
results.

By Fourier transforming, and applying the Bogoliubov
transformation for the spin-wave variables

~k ukbk vkb —k

~—k vkhk+ukb —k ~

where

1+(1 2 )1/2

2(1—y )'

1 —(1—y„)'
vk g (yk) 2 ]/22(1—

yk }

and yk =
—,'(cosk„+cosk» ), the Hamiltonian (2) becomes
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effect is J/t times smaller than the effect itself.
We select terms from Eq. (3) to construct the eff'ective

Hamiltonian,

H Hsw+Ha +H

and calculate the spin Green's function,

G(k, t t')—= i —( TPk(t)Ptk(t') ) .

(4) q-k, &

FIG. 1. Self-energy diagram considered in the approximation
for the propagator of spin excitations. The solid line is the hole
propagator and the shaded circle is a hole-spin vertex, which is
of order t.

Because J=1000 K, we adopt the zero-temperature for-
malism. The Fourier transform of the spin Green's func-
tion (5) is given by

G (k, co) = 1

co —cok X(k—,co)+i tI
(6)

X(k, cu)= 't g (rquk+—rq kuk )—
q

X 6 q —k, co —cu 6 q, e)

(7)

where 6 is the hole propagator.
To calculate this self-energy, one needs to know the

hole propagator. Physically each hole can gain energy by
transfer, for t )J, and will do so by carrying a cloud of
flipped spins as discussed earlier. In the effective Hamil-

where X(k, co) is a self-energy generated by H„and
g~0+. In our calculation we sum an infinite class of
"bubble" diagrams which describes decay of the spin
waves into "electron-hole" pairs. This corresponds to
considering only the first contribution from H, to the
self-energy, of order t, as illustrated in Fig. 1. Summing
only the "bubble" diagrams ignores corrections to the
hole-spin interaction vertex. It would seem that this di-
agrammatic expansion in terms of the transfer interaction
would not yield a sensible result because we treat the re-
gime where t & J. However, as will be shown, the actual
expansion parameter is [(t/J)&n ]. Thus, the expansion
is valid even for t & J as long as n is sufticiently small.
It is this condition which sets the limits on the magnitude
of the hole concentration regime that we are allowed to
study. The expression for the self-energy shown in Fig. 1

1S

tonian Eq. (4), however, the holes have a ffat band if no
renormalization effects induced by the transfer interac-
tion are included. Thus, in order to treat the holes
correctly, it is first necessary to perform a self-consistent
treatment of the one-hole problem to produce a quasipar-
ticle band allowing hole dispersion. Besides providing a
proper description of the hole propagation, this avoids
artificial effects that can later arise in the determination
of the spin-excitation spectrum. Using a self-consistent
perturbation theory, Kane, Lee, and Read, among oth-
ers, "' ' have studied the renormalization of one-hole
hopping in an AF background. They found that the hole
spectrum is strongly renormalized by the interaction with
the spin excitations, and that the hole can be described by
a narrow quasiparticle band with a bandwidth of order J,
because it is J that limits the transfer rate. They also
identified the position of the band minimum as being lo-
cated at the points (+qr/2, +qr/2) in the Brillouin zone.
Similar results have also been obtained in numerical cal-
culations. '

We shall assume the following. The hole quasiparticles
form a weakly interacting Fermi gas described by a
single-hole dispersion relation. The holes have a quad-
ratic dispersion with effective mass I—1/J, and are lo-
cated in "pockets" at (+qr/2, +qr/2) in the Brillouin zone
for an AF ordered system. Figure 2 illustrates the Fermi
surface for the system with a small concentration of
holes. Although it has been found that the band is an-
isotropic, being relatively Rat along the zone boundary, in

our calculation we shall consider the dispersion
sk =(1/2m)(k —k, ) in each of the four "pockets"
k;=(+qr/2, +7r/2) for simplicity. Performing the fre-

quency integration in (7), we obtain the following expres-
sion for the self-energy:

~« ~)= t' g (rq Uk+ rq kuk )—
q

'1 —y e(k —
Iq

—k, I )
'

y e(k, —Iq
—k —k, I

)

~+ g k
—6, + I 'g

1 —y e(k, —Iq
—k —k; I ) g e(kF —

Iq
—k; I )

CO+ f )( E l fj

where kz=&qtn. The function 8(x) restricts the sum-

mation in q to values such that x lies in the pockets" il-
lustrated in Fig. 2. The spin-excitation energies are ob-
tained from the poles of the dressed Green's function (6),
with X(k, co) given by (8). Performing the summation
over q, neglecting terms of 0 (kF ) —0 (n ), one obtains

k
ReX(k, co)= —t (sin k +sin k )

ger w —(k /2m)

X [w —(k /2m)(1 —r„)'~']

with
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, kyr' a pure antiferromagnet is determined by the parameter
[(t/J)&n ]. It turns out that, for finite hole concentra-
tions, the renormalization factor is Z & 1, implying
softening of the spin excitations upon doping. The re-
sults obtained here are discussed in the next section.

FIG. 2. The reduced Brillouin zone appropriated for an AF
ordered system and the four "pockets" of the Fermi sea at
(+7rl2, +7T/2)).

The actual form for the self-energy X(k, co) is very sensi-
tive to the position of the holes in the Brillouin zone. We
introduce Eq. (9) in (6) and study the poles of G(k, co).
We find that, for k & (t/J)kF, the spin dispersion is given
by the following expression:

0 [1+(r+g ~~2)~~3+(„—s ~~~)&~3]
CO Nk

with

(k /2m)
02

COp

kF (sin k„+sin k )—9t
Nk

3J(k /2m)
02

COk

(k /2m) (k /2m)s= —3 1—
02 02

COk COp

kF (sin k„+sin k )+3't' '
8m 02

COk

(k /2m) + (k /2m) (k /2m)
02 02 04

COp COk COk

(k /2m)
04

COk

In the limit k « 1, this reduces to

co —Zck

where c =(1/&2)J is the spin-wave velocity for the pure
antiferromagnet, and Z =Z[(t/J)v'n ] is the renormal-
ization factor, to first order in the doping n,

2 1/3
9 t—&n

32 J
1 3&3 rZ =—1+ 1+ —&n—
3 4 J

3&3 r — 9 r+ 1— —&n- —&n
4 J 32 J

2 1/3 '

(12)

It follows from (11), and more obviously from (12), that
the perturbation of the dispersion with respect to that for

ImX(k, co)%0

for [ kk—F/m +k /(2m)] &co& [kkF/m+k /(2m)] .

(10)

III. COMPARISON
WITH EXPERIMENT AND DISCUSSION

We have treated a two-dimensional antiferromagnet
doped with a small concentration of mobile holes, and
have calculated the renormalization of the spin excita-
tions due to hole hopping. We find that the long-
wavelength, k «1, excitations have a dispersion of the
form co=Zck, where Z is a renormalization factor. The
fact that Z &1 implies that the spin excitations are
softened upon doping. We find that, for t/J =3, and a
concentration of n =0.01 hole per site, the spin-wave en-
ergies are renormalized by a factor Z =0.98. For
n =0.05, the renormalization factor takes the value
Z =0.78, showing substantial softening. The renormal-
ization down of the spin-wave velocity would imply insta-
bility of the AF long-range order for a concentration n

such that Z-0. However, important damping effects
start to occur at a lower concentration, which we now
discuss.

Damping of spin waves occurs in the region where the
spin-wave spectrum crosses the pair excitation continu-
um, defined in Eq. (10) as the region where ImX(k, co)%0.
For sufficiently small doping, long-wavelength spin waves
remain well defined. The reason is that decay of these
spin waves into electron-hole pairs is not possible be-
cause, in this case, the spin-wave velocity is larger than
the Fermi velocity. However, some of the short-
wavelength spin waves are heavily damped by decay into
"electron-hole" pairs. For concentrations above a certain
threshold n *, such that the spin-wave velocity equals the
Fermi velocity, Z*c/(kF*/m)=1, the spin-wave spec-
trum lies entirely in the pair excitation continuum, and,
in this case, even the long-wave-length spin waves are
overdamped. We find from our calculation that
n "=0.32 (for which Z =0.36). The decay of spin waves
into "electron-hole" pairs gives rise to a broadening of
the spectral density of the spin-wave modes. Ramakrish-
nan has suggested that this implies an increase in the
zero-point fluctuations which leads to a dramatic reduc-
tion and eventual destruction of the magnetic order.
Hence, one expects that long-range AF order could col-
lapse at a concentration n, (n, & n *), above which a con-
siderable fraction of spin waves is overdamped. In real
materials, true long-range AF order disappears at rather
low concentrations, for example, in La~ „Sr(Ba)„Cu04
at a concentration n =0.02. However, neutron-scattering
experiments have revealed that, above such concentra-
tions, there are AF correlated regions present in the sys-
tem corresponding to the magnetic correlation lengths g.
These regions can sustain spin excitations with wave-
lengths up to the size of g. Aeppli et al. and Hayden
et al. ' investigated the spin dynamics of pure La2Cu04
and doped La2 005Ba005Cu04. Their data shows that,
for the dynamics of the doped material, excitations with
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energies above a certain value, corresponding to excita-
tions within the AF correlated regions, exhibit a com-
bination of softening and damping effects with respect to
the corresponding ones in the pure material. More
specifically, for the doped material, Aeppli et a/. find
that the spin-wave velocity is renormalized by a factor
Z =0.74(+0.08), while Hayden et al. find a renormal-
ization factor Z =0.60. La2 „Ba„Cu04is insulating at
very low concentrations but undergoes a metal-insulator
transition at n =0.05, before finally becoming a super-
conductor at n =0.15. Based on electrical resistivity
measurements in the doped material, Aeppli et al. and
Hayden et al. ' suggest that the softening and damping
effects observed in the spin-eave excitations are associat-
ed with the appearance of (weakly localized) carriers
rather than to simple disorder as found in insulating ran-
dom magnets. Spin-wave softening has also been ob-
served in YBa2Cu306+„, though the authors remark
that, in this case, the experiments were performed in a re-
gime where the holes are well localized (for a concentra-
tion of n = 1.8% they find a spin-wave velocity renormal-
ized by a factor Z=0. 50). Besides these cases, strong
spin-wave softening associated with an increase in metal-
lic conductivity has also been found in the layered mag-
netic material La2Ni04+„. The spin-wave velocity is
reduced by at least a factor of 2 in this case, which im-

plies a renormalization factor Z (0.50 for a concentra-
tion of n =0.05. Our results are roughly in agreement
with all of the above examples. Thus, our calculation
predicts a significant softening of the spin excitations re-
sulting from hole motion at low concentrations, and this
is in agreement with experiments. As one would expect,
the spin-wave softening effects that we find caused by
mobile holes are stronger than the ones found by Brenig
and Kampf' for static holes. However, the work of
Ko, ' which also considers static holes, but utilizes a
different formulation from that of Brenig and Kampf,
yields a reduction of the spin-wave energies not only
larger than theirs, but even larger than we find allowing
for hole transport. We are unable to explain this
discrepancy. Finally, the work of Gan, Andrei, and Col-
man, ' which considers mobile holes in an incommensu-
rate ordered background, reveals much stronger soften-

ing effects than we have found, or than exhibited by ex-
perirnents but, as we have said before, there is no experi-
mental evidence for the existence of such incommensu-
rate order in the low concentration regime considered.

The softening of the spin-wave spectrum has implica-
tions for the nuclear spin-lattice relaxation rate (1/T, ).
Chakravaty et al. ' calculated the relaxation rates in

La2Cu04 and found that they are inversely proportional
to the spin-wave velocity raised to different powers de-

pending on the site, Cu, 0, or La, and temperature range
considered. Consequently, the softening of the spin
waves implies an increase in the 1/T, rates in the doped
material compared with those in the pure material.

Furthermore, the softening of the spin waves has im-
portant implications for the motion of the holes. The de-
crease in the spin-wave velocity can be seen as a decrease
in the effective coupling between the spins, so the
misalignment generated by the motion of the hole now

costs less energy. This implies an increase in the hole
mobility. Also, the reduction of the spin-wave velocity
gives rise to an increase in the density of low-energy exci-
tations that can couple to the hole. This may eventually
lead to a significant increase in the scattering of the hole,
even for very long wavelengths, and, consequently, give
rise to a finite lifetime for the hole quasiparticle.

IV. CONCLUSIONS

We have considered a two-dimensional antiferromag-
net doped with a small concentration of mobile holes, and
have studied the modification of the spin excitations in-

duced by hole motion. We applied spin-wave theory to
the t-J model and evaluated the renormalization of the
spin-wave propagator caused by the transfer interaction.
We calculated the self-energy in the "bubble" approxima-
tion, describing the decay of spin waves into "electron-
hole" pairs. We find that, as a result of the strong spin-
hole correlation, the spin excitations are very sensitive to
doping, and become significantly softened even for light
doping. We also find that strong damping effects set in at
a low concentration because of decay of spin waves into
"electron-hole" pairs. This implies that the spin-wave
spectrum and eventually the antiferromagnetic order will

collapse as the hole concentration increases. We com-
pared our results with experiments on copper oxides, and
other layered magnetic materials. These experiments
show a combination of softening and damping in the spin
Auctuations of the doped materials, and it has been sug-
gested that these are associated with the mobility of the
holes. Our results support this view. We also predict an
increase in the nuclear spin-lattice relaxation rates in the
doped materials when compared with those in the pure
material, as a consequence of the softening of the spin ex-
citations. Finally, we discussed implications of the
softening of the spin waves for hole motion. We note
that it leads to an increase in hole mobility, and may
eventually give rise to a finite lifetime for the hole quasi-
particle.

Future work is planned to extend our investigation to
the very low doping regime where holes are localized.
We shall study the modification of the spin-wave spec-
trum in the presence of vacancies, as well as in the pres-
ence of local frustration caused by ferromagnetic bonds
randomly distributed in the AF planes. We hope that
this wi11 allow us to understand results of recent nuclear
spin-lattice relaxation measurements performed in the
insulatirig phase of copper oxide superconductors.
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