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Antiferromagnetic-ferromagnetic transition in FeRh
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First-principles band-structure calculations based on the augmented-spherical-wave method and the
fixed-spin-moment procedure are used to determine the volume dependence of the total energy and the
local moments in ordered FeRh. The calculations reveal the coexistence of antiferromagnetic (AF) and
ferromagnetic (FM) solutions over a wide range of volume. The zero-pressure equilibrium state is found
to be AF with —+3.0p~ iron local moments and precisely zero rhodium local moments, in agreement
with experiment, and the calculated lattice constant is within 0.14% of the experimental value. A meta-
stable ferromagnetic state with iron and rhodium local moments of -3.1p& and 1.0pz lies just above
the AF state and has a minimum energy at a lattice constant -0.5% larger than the AF state, implying
that when the system undergoes the AF-FM transition at finite temperatures, the transition is accom-
panied by an enhanced thermal expansion. At expanded volumes, the FM state becomes energetically
more favorable than the AF state. Calculations also show that type-II AF is more stable than type-I AF
in the CsCl structure, in agreement with experiment.

I. INTRODUCTION

FeRh in the ordered CsC1 structure, which was found
to undergo a transition from antiferromagnetic (AF) to
ferromagnetic (FM) behavior by heating above room tem-
perature by Fallot and Hocart' over 50 years ago, has
been intensively studied both experimentally and theoret-
ically. At low temperatures, experiment shows that
FeRh is AF with iron local moments of -+3pz with no
appreciable rhodium moments. At high temperatures,
the system is found to be FM with iron and rhodium lo-
cal moments of -3 and 1pz, respectively. The transition
occurs at a temperature T„—340 K with no change in
the CsC1 structure. At T„,the thermal expansion un-

dergoes an abrupt "enhancement, " which is manifested
by an -0.3% lattice expansion. The transition from fer-
romagnetic to paramagnetic behavior occurs ' at a Curie
temperature, TC„„,-670 K. No Neel temperature is

detected. In addition, it is found that the AF-FM transi-
tion can be induced by a critical magnetic field H„which
varies with temperature and which goes to zero at T„.
Under the inhuence of pressure, T„increases. Above

T„,positive pressures again stabilize the AF state by in-

ducing the inverse FM-AF transition. These unusual
properties are very sensitive to stoichiometry. It is ob-
served that a few percent increase in the iron content
causes a substantial decrease in T„and that the critical
fields necessary to induce the transition can vary by al-
most a factor of 2 for different alloys near the
stoichiometric composition.

In 1960, Kittel suggested that AF-FM transitions can
be due to a vo1ume-dependent exchange inversion. In
this model, a system is decomposed into two identical
sublattices which are coupled by an exchange interaction
that changes sign at a critical lattice constant. Thermal
expansion through this critical lattice constant was pro-
posed as a possible explanation of the AF-FM transition.

However, Kouvel noted an anomalously large increase
in the magnetic entropy at the transition temperature and
observed that this was incompatible with an exchange in-

version model. Tu et al. ' proposed that this excess
magnetic entropy actually stabilizes the FM state. At-
tempts to understand the properties of the FeRh system
in terms of exchange inversion and/or stabilizing magnet-
ic entropy do not provide a reliable description of the
transition.

Although it has long been recognized that first-

principles band-structure calculations may be useful for
studying the AF-FM transition in ordered FeRh, existing
calculations fall short of this goal. Early calculations are
either non-self-consistent" or non-spin-polarized '" and
are therefore incapable of addressing magnetic implica-
tions. More recent' band-structure calculations, based
on the linear muffin-tin orbital (LMTO) method, the
atomic-sphere approximation (ASA), and the local-
density approximation (LDA) to density-functional
theory, explicitly consider the nonmagnetic, ferromagnet-
ic and antiferromagnetic forms of ordered FeRh. These
latter calculations, however, are all done for the experi-
mental lattice constant and do not attempt to study the
relative stabilities of the AF and FM states by total-
energy comparisons. Hasegawa' attempted to study this
relative stability by using a canonical d-band model and
the Hartree-Pock and coherent-potential approximations.
These calculations involve a number of adjustable param-
eters which are determined from experimental properties.
Although useful, these are not first-principles calcula-
tions, and they do not prove that the equilibrium state is

AF or show that the AF-FM transition must occur.
The present work makes use of extensive calculations

of the volume dependence of the total energies and of the
local magnetic moments of iron and rhodium. The re-
sults show that the equilibrium state is type-II AF with

large iron local moments and zero rhodium local mo-

ments; that a metastable FM state exists a few mRy
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above the AF state and with an -0.5%%uo larger lattice
constant, and make plausible that an AF-FM transition
at finite temperature would be accompanied by an abrupt
expansion to a larger lattice constant. The present work
provides an example of a first-principles electronic struc-
ture calculation that shows unambiguously that the equi-
librium state of a transition-metal element or alloy is anti-
ferromagnetic, and shows that FeRh is an example of
anti-Invar, ' a transition-metal system which exhibits
"enhanced" rather than "invariant" thermal expansion.

This work represents a substantial extension of our
previous work on magnetic properties of transition-metal
elements using constrained total-energy calculations.
Studies of the elements in cubic structures in the FM
state can be made with one-atom cell calculations and in
the AF state can be made with two-atom cell calcula-
tions. For binary compounds like FeV or FeRh with the
CsC1 structure, two-atom cells are required to study FM,
four-atom cells are required to study type-I and type-II
AF. The fixed-spin-moment constraint then becomes
even more important for separating the many magnetic
solutions of the spin-polarized Kohn-Sham equations of
the system with the many degrees of freedom implicit in
the larger magnetic unit cells.

II. BAND CALCULATIONS

The spin configurations for type-I and II antifer-
romagnetism for the CsC1 unit cell of FeRh are shown in
Fig. 1. The antiferromagnetic coupling for type-I AF is
between successive layers of (001) iron planes, while for

type-II AF it is between successive layers of (111) iron
planes. ' The experimentally determined configuration is
type-II AF. The tetragonal magnetic unit cell used in our
calculations to capture both observed FM and type-II AF
(as well as nonmagnetic) states is shown in Fig. 2. Here,
the lattice constant a =&2a *, where a ' is the basic CsC1
lattice constant, and c =&Za. The unit cell contains a
total of eight atoms and consists of alternate layers of
iron and rhodium atoms with two inequivalent atoms in

each layer. Supplementary calculations using a four-
atom magnetic unit cell consisting of a double stack of
the cell shown in Fig. 1 (I) were done in order to study
the relative stability of type-I and -II antiferromagnetism.
The eight-atom type-II AF cell was chosen over the
equivalent four-atom fcc cell to insure similar Brillouin-
zone k sampling.

Our total-energy band-structure calculations are based
on the augmented-spherical-wave (ASW) method of Wil-
liams, Kubler, and Gelatt, ' which uses the atomic-
sphere approximation with sphericalized potentials
within Wigner-Seitz spheres of radius rs, and the local-
density approximation as formulated by von Barth and
Hedin and modified by Janak' to account for exchange
and correlation. Our calculations also utilize a fixed-
spin-moment (FSM) procedure which, for fixed volumes
V, allows us to determine total energies as a function of
constrained values of the total magnetic moment M of
the assumed magnetic unit cell. Minima in resulting
E(M) v curves give solutions that are stable in zero ap-
plied field (zero-field solutions) and also give the corre-
sponding total energies and local magnetic moments.
The calculations are nonrelativistic, assume collinear
spins, and are done on a uniform mesh of 40 k points in
the irreducible part of the first Brillouin zone.

The ASA approximation with Wigner-Seitz spheres
used in our work requires that the volume V of the unit
cell be assigned to constituent atomic spheres with radii

FIG. 1. Spin configurations for type-I and type-II antifer-
romagnetism for the basic CsC1 unit cell for FeRh. Shaded and
open spheres represent rhodium and iron atoms. Configuration
(II) with no spin on the rhodium atom is experimentally ob-
served. In the ferromagnetic state, all iron and rhodium spins
are parallel.

FIG. 2. Magnetic unit cell used to study both antiferromag-
netic and ferromagnetic states in FeRh. Shaded and open
spheres represent rhodium and iron atoms, respectively. Ar-
rows indicate the antiferromagnetic iron spin configuration. In
the antiferromagnetic state, the rhodium atoms have no local
moments. In the ferromagnetic state, all iron spins and rhodi-
um spins are parallel.
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rI;, and rz& such that the sum of the sphere volumes is V.
In this work, we arbitrarily chose the two sphere radii to
be equal to a Wigner-Seitz radius, res. For type-II AF,
V=8(4m/3)rws =a (c/a).

III.RIGID-LATTiCE RESULTS

In the FSM procedure used in all of our band-structure
calculations, we determine the total energy E of a system
constrained to have a given magnetic moment M per unit
cell. At a given volume, the constrained moment M is
varied to find E(M). The advantage of this procedure
over conventional "floating-moment" spin-polarized cal-
culations is that the constraint restricts fluctuations in
the self-consistent procedure, which can delay the con-
vergence and make the results uncertain. In addition, by
varying the moment we find all solutions (nonmagnetic,
ferromagnetic, and antiferromagnetic) to the band equa-
tions.
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A. Total energies and local moments versus total moment

Typical calculated total energies and local moments as
a function of M for FeRh are shown in Figs. 3 —6 for
volumes corresponding to res values ranging from below
equilibrium to above the AF-FM transition. %e note
that, although we considered the eight-atom magnetic
unit cell to have two inequivalent iron and two ine-
quivalent rhodium atoms, the rhodium atoms have equal
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FIG. 4. Total energy vs constrained magnetic moment for
FeRh at r~&=2. 66 a.u. showing the AF and FM stable solu-

tions. Eo is the minimum energy for this rs value.

moments at all values of the constrained total moment,
M. This result can be considered to be a calculational
verification of the results obtained by Hargitai' that a
combination of Landau theory and group theory requires
zero local moments for the rhodium atoms in the AF
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FIG. 3. Total energy vs constrained magnetic moment for
FeRh at r~s =2.48 a.u. Eo is the minimum energy for this r~s
value. This volume marks the lower end of the stability region
for the FM solution. The AF and FM states are in equilibrium
at the external field represented by the indicated common-

tangent construction. In the FM region and at this volume, the
rate of increase of the iron local moment is greater than that of
the rhodium local moment.
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FIG. 5. Total energy vs constrained magnetic moment for
FeRh at r~s =2.88 a.u. Eo is the minimum energy for this r~&

value. Here the critical field becomes negative. In the FM re-

gion and at this volume, the rate of increase of the iron local

moment is less than that of the rhodium local moment.
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FIG. 6. Total energy vs constrained magnetic moment for
FeRh at r~s =2.94 a.u. Eo is the minimum energy for this rs
value.

state. In fact, our results go further and show that the
rhodium local moments are equal for all values of con-
strained total moment, even when they acquire nonzero
local values. Accordingly, the rhodium atoms were all
constrained to be equivalent in most of the calculations.
A simple symmetry argument can be given for this
equivalence of the rhodium local moments. The two rho-
dium atoms have equivalent, although spatially inverted,
physical surroundings (Fig. 2) for all values of total mo-
ment M. Since the iron atoms are AF at M =0, the rho-
dium atoms must both have zero moment.

A variety of magnetic properties can be obtained from
the calculated local magnetic moment and energy curves
as functions of M. The minima in the E(M) curves cor-
respond to stable (or metastable) AF and FM states of the
system; the minima at M=0 correspond to stable (or
metastable) AF solutions where the rhodium atoms have
zero local moments and the two inequivalent iron atoms
have large equal and opposite local moments. As M in-
creases, the spin-down iron moments generally decrease
in magnitude, go through zero, and approach the spin-up
iron moments. Simultaneously, the rhodium atoms ac-
quire a moment which generally increases. The E(M)
curves display a local maximum at about the moment
where the two iron local moments merge. In this region,
the rhodium and the spin-up iron local moments exhibit a
dip before assuming a rather linear increase. The minima
at large values of total moment correspond to stable (or
metastable) FM solutions with spin-up local moments on
both rhodium and iron atoms.

With increasing r~s, the energy "barrier" between the
AF and FM solutions increases, but the energy difference
between the minima, E„M—EA„,decreases and changes
sign at r~s -2.88 a.u. , where the FM state becomes more
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FIG. 7. Total energy vs constrained positive and negative
magnetic moment for FeRh at r~s =2.40 a.u. Eo is the
minimum energy for this r~s value.

favorable. We note that, at large M, the rate of increase
of the local iron moment is greater than that of the local
rhodium moment for low r~s values and lower for large

WS

By symmetry the total energy for negative total mo-
ments must be the same as for positive total moments.
However, the local moments will change sign. The sym-
metric E (M) and antisymmetric local-moment curves for
rws=2. 40 a.u. are shown in Fig. 7. For this volume,
there is no FM solution. In fact, the AF solution is just
barely stable; the local AF iron moments are only
-+1pz. At res=2. 30 a.u. , the solution for M=O is
nonmagnetic (all local moments are zero). At this lower
volume, the hysteresis-like local iron moment loop shown
in Fig. 7 collapses and both the iron and rhodium local
moments vary linearly with the total moment.

At volumes where there are both stable AF solutions
and metastable FM solutions, an external field can bring
the two states into thermodynamic equilibrium. This
external field can be determined by the common-tangent
construction shown in Figs. 3—6. At the indicated
volume-dependent critical field H„the AF and FM
states are in equilibrium. This is the magnetic analog of
the critical pressure obtained by the common-tangent
construction applied to different branches on E ( V)
graphs. ' With increasing volume, H„decreases, goes
through zero, and becomes negative at volumes which
favor the FM solution. Although the calculated critical
fields are larger than observed, a similar construction be-
tween free-energy curves at finite temperatures is expect-
ed to yield the experimental critical fields. Negative fields
correspond to fields directed antiparallel to the ferromag-
netic spins.

In Table I, we summarize the results of our E(M) and
local-moment calculations for different r~s values. List-
ed are (1) the energy difference between the FM and AF
minima of the E(M) curves, (2) the average magnetic mo-
ment at the FM minimum, (3) the calculated critical field,
(4) the iron local moments for the AF minimum (where
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TABLE I. Calculated ferromagnetic and antiferromagnetic quantities vs Wigner-Seitz radii rws for
FeRh. NA signifies "not applicable. " At rws =2.30 a.u. , the system is nonmagnetic and there are no
AF or FM local moments.

rws
(a.u.)

2.30
2.36
2.38
2.40
2.48
2.54
2.60
2.66
2.70
2.72
2.74
2.76
2.78
2.80
2.82
2.84
2.86
2.88
2.90
2.94
3.00

EFM —EAF
(mRy/atom)

NA
NA
NA
NA
3.25
5.50
6.25
5.00
4.00
3.50
3.00
2.50
2.12
1.75
1.25
0.75
0.37

—0.10
—0.37
—1.00
—1.63

MFM

(pq/atom)

NA
NA
NA
NA
1.00
1.25
1.62
1.87
2.00
2.04
2.06
2.07
2.07
2.08
2.10
2.10
2.11
2.11
2.13
2.14
2.18

H„
(kOe)

NA
NA
2820
4200
8800
9990
8934
6286
4702
4034
3422
2838
2407
1977
1399
839
412

—111
—408

—1099
—1763

m F.(AF)
(p&/atom)

0.00
0.20
0.30
0.95
1.87
2.26
2.52
2.74
2.82
2.86
2.92
2.93
2.98
3.04
3.06
3.09
3.14
3.18
3.20
3.24
3.30

m F.(FM)
(p~/atom)

0.00
0.00
0.00
0.00
1.54
1.91
2.45
2.82
2.98
3.06
3.10
3.12
3.12
3.15
3.18
3.18
3 ~ 19
3.20
3.23
3.26
3.32

m k„(FM)
(p&/atom)

0.00
0.00
0.00
0.00
0.46
0.59
0.80
0.98
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.04

the rhodium local moments are zero), and (5) the iron and
rhodium local moments at the FM minimum. As shown
in Table I and as Fig. 3 implies, we lose the FM minimum
somewhere between r~s =2.48 and 2.40 a.u. That is, the
zero-field FM solutions terminate at rws -2.48 a.u. Note
that, because of residual FM influence, common-tangent
constructions and the associated critical fields persist
even at volumes where there are no FM minima. Over
1000 fully self-consistent band-structure calculations (ap-
proximately 50 for each rws value) were required to ob-
tain the data listed in Table I.

these quantities, we first fit the calculated points to the
four-parameter Morse function

where ro is the equilibrium Wigner-Seitz radius. The pa-

30

B. Total energies and local moments versus volume

The local minima corresponding to dE/dM =0 in our
calculated E(M) curves correspond to zero-field rigid-
lattice solutions. The energies corresponding to these
solutions, as functions of r~s near the equilibrium
volume, are shown in Fig. 8. Note that there are two dis-
tinct branches, one for the AF and one for the FM solu-
tions. Moreover, note that the AF branch has a lower
minimum than the FM branch, implying that the rigid-
lattice ground state is AF, as is experimentally observed.
The equilibrium volume, given by the minimum of the
AF branch, corresponds to res=2. 782 a.u. This com-
pares favorably with the value res =2.778 a.u. obtained
from the experimental lattice constant given by Shirane,
Nathans, and Chen. ' At expanded volumes, the FM
state becomes more stable.

Different bulk moduli, Gruneisen constants, and Debye
temperatures are associated with the two branches of the
binding curves shown in Fig. 8. In order to evaluate
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FIG. 8. Zero-field total energy vs rws for the FeRh rigid lat-
tice near the equilibrium volume. Eo is the minimum energy for
the AF state. The points are derived from E(M) curves like
those of Figs. 3—7. Solid points are AF solutions and open
points are FM solutions. The lines are derived from the Morse
parameters listed in Table II ~
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TABLE II. Morse parameters, bulk moduli B, Gruneisen constants y, and Debye temperatures 0
for the rigid-lattice AF and FM branches of the E(r~s) curves for FeRh shown in Fig. 8. The linear

parameters D and A are in Ry/atom and B is in kbar.

Branch

AF
FM

ro (a.u. )

2.782
2.798

X (a.u. ')

1.2595
1 ~ 1342

0.4819
0.5616

—5944.3676
—5944.2860

2144
2016

1.752
1.587

8 (K)

361
351

rameters, ro, A, , D, and A, resulting from a least-squares
fit and the bulk moduli 8, Griineisen constants y, and
Debye temperatures 8 derived from the fit are listed in
Table II.

The local moments associated with the AF and FM
branches of Fig. 8 are shown in Fig. 9. At the equilibri-
um volume the local iron moments, although nearly
equal, are slightly lower for the AF than for the FM
state. Neutron-diffraction studies' reach the opposite
conclusion. The FM local moments terminate at
rws=2. 48 a.u. The local iron AF moments extend to
lower rws values and appear to approach zero (i.e., be-
come nonmagnetic) smoothly, displaying no discontinuity
in slope. Our past experiences with simpler systems sug-
gest that this smooth approach to zero moment is not
valid. We attribute this behavior to an averaging of non-
magnetic and nearby (in volume) AF solutions, and be-
lieve that the "correct" form should be singular, as was
shown ' for magnetovolume transitions from nonmagnet-
ic to ferromagnetic behavior. That is, the AF local iron
moments should approach zero with infinite slope at
some critical volume (or at a critical rws value). We esti-
mate this critical point to be at rws -2.38 a.u.

From Table I, we see that, for the FM state and for

rws)2. 68 a.u. , the rhodium local moment assumes a
constant value of 1.02pz, a value consistent with the
Hund's-rule free-atom value. Note that this moment cor-
responds only to the stable FM state and that it can be in-
creased (decreased) by increasing (decreasing) the con-
strained value of the total moment.

In Fig. 10, we show the energy difference, E&M
—EA&,

vs rws. Below rs=2. 48 a.u. , this curve is nonexistent
because of the termination of zero-field FM solutions.
With increasing rws, this energy difference first increases,
goes through a peak near rws-2. 6 a.u. , and then de-
crease monotonically, going through zero at res-2. 87
a.u. (where the AF and FM branches cross, as shown in
Fig. 8). The initial increase in this energy difference is a
consequence of the large rate of change of the FM mo-
ment in this volume range. In Fig. 10, we also show the
related function, H„(rws). Note that we can extend H„
to lower res values than the energy difference since there
is still a bulge in the FM energy curve even when the
minimum is gone (see Fig. 7).

The E(M) curves shown in Figs. 3 —7 (and 12) all as-
sume that the spins are collinear. The FSM procedure
used here corresponds to doing band-structure calcula-
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FIG. 9. Local moments for AF (solid points) and FM (open
points) zero-field solutions for the FeRh rigid lattice.

FIG. 10. Critical rigid-lattice magnetic fields (solid points)
and energy difference between the AF and FM solutions (open
points).
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tions with the system in an effective external magnetic
field given by dE/dM. For an antiferromagnetic system,
even in a relatively low field, spins antiparallel to the field
will tend to bend into the field direction, resulting in non-
collinear local moments if the vector character is intro-
duced. Therefore, the collinear spin arrangements and
total energies implied in our E(M) curves for the AF
states as M increases from zero are unrealistic. However,
at dE/dM =0, the field vanishes and our collinear as-
sumption is expected to hold. Therefore, our results for
the AF and FM minima and the implied critical fields are
expected to be valid.

As mentioned above, the results in Table I are derived
from over 1000 band-structure calculations done over a
range of values of res and total moment. Each calcula-
tion is self-consistent and includes the determination of
energy bands and density of states (DOS). In Fig. 11, we
show the local DOS for iron and rhodium for our type-II
AF calculation (M =0) and our FM calculation
(M=16.5ps) for FeRh at rws=2. 80 a.u. Our results
show that the iron moment is strongly enhanced (com-
pared to the elemental bcc iron moment) by a complete
filling of the up-spin bands and by the associated decrease
in occupation of the down-spin bands for both the AF
and FM states. In fact, the shapes of the bands differ
substantially from the bcc iron bands with much of the
weight shifted to lower energies for the up-spin bands and
to higher energies for the down-spin bands, which now
have a large peak above the Fermi energy.

In addition to these differences in the iron AF and FM

bands, there are significant differences in the rhodium AF
and FM bands. In the AF state, the up-spin and down-
spin rhodium bands are identical, reflecting the fact that
the local rhodium moment is zero. In the FM state, the
rhodium up-spin and down-spin bands are split, resulting
in a rhodium local moment of about 1p~.

Although the AF and FM DOS differ in detail, we find
a similar charge transfer of about 0.13 electrons from
rhodium to iron (normally, iron has eight and rhodium
has nine valence electrons) in both cases. The DOS for
iron at the Fermi energy is also almost identical for the
AF and FM states, amounting to 0 08 and 1 71
states/eV atom for the up-spin and down-spin bands, re-
spectively. This similarity in values between the AF and
FM iron DOS contrasts with the results of Koenig' who
finds 0.44 and 2.58 states/eV atom for the iron up-spin
and down-spin bands, respectively, for the AF state, and
0.06 and 0.73 states/eV atom for the FM state.

We can also compare our total DOS at the Fermi ener-

gy with the calculation of Koenig' and the low-
temperature specific-heat measurements of Tu et al. '

Our values for the AF and FM states are, respectively,
2.7S and 2.34 states/eV for an FeRh formula unit, with
the AF value slightly larger than the FM value. Koenig's
results are 1.02 and 4.76 states/eV per formula unit, with
the FM value a factor of 4 larger than the AF value. The
experimental result' for Feo 49Rho», which is AF at low

temperatures, is 1.08 states/eV, and for Feo 5~Rho 4g,

which is FM at low temperatures, is 4.04 states/eV. Our
result is approximately midway between the two mea-
surements, as might be expected for a composition mid-

way between these two stoichiometries. Hence, in con-
trast with Koenig, we interpret the experimental
difference to be due to the difference in compositions
rather than to a property of Feo 5oRho 50. The fact that
our total DOS at the Fermi energy is not very different in
the AF and FM states is consistent with the conclusions
of Chen and Lynch based on measurements of the
dielectric function that the "band structure of FeRh is
not drastically affected as the antiferromagnetic-
ferromagnetic phase transition occurs. "
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FIG. 11. Local density of states (DOS) for iron (left panels)

and rhodium (right panels) in the type-II AF (upper panels) and

the FM (lower panels) states for FeRh at res=2. 80 a.u. The
up-spin DOS is shown above and the down-spin DOS is shown

below the zero DOS line. q is the charge associated with each
atom. The spin-up and spin-down charges can be obtained from

Table I, which lists the local magnetic moments, or the
differences in charges.

C. Type-II vs type-I antiferromagnetism

The stability of type-II vs type-I antiferromagnetisrn
for FeRh is implicit in Fig. 12, where we show the total
energy versus constrained moment (pz/atom) for two
FeRh calculations with the spin configurations shown in

Fig. 1 for r~s =2. 80 a.u. , close to the equilibrium

volume. At large values of the constrained moment,
where all spins are parallel (i.e., where the solutions are
ferromagnetic), the two calculations are identical and
have identical E(M) behavior (the type-I and type-II cal-
culations have four and eight atoms per magnetic cell, re-

spectively). The equivalence of the two E(M) curves for
M & -0.5p~/atom shows that the two sets of calcula-
tions are well converged and that the number of k points
used is adequate. At M =0, we see that the type-II AF
solution is more stable than the type-I AF solution, in

agreement with the experimental observation. The ener-

gy difference between type II and type I is 1.75
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FIG. 12. Total energy vs constrained (average) moment for
four- and eight-atom magnetic cells implied in Fig. 1 for
r~s =2.80 a.u. and used to study the relative stability of type-I
and type-II antiferromagnetism in FeRh. The dashed lines cor-
respond to an unstable nonmagnetic (at M =0) solution. Eo is
the minimum energy for this rs value. At r~s =2.80 a.u. , type
II is 1.75 mRy more stable than type I.

IV. TEMPERATURE EFFECTS

The results presented above are all rigid-lattice rigid-
spin results. Temperature-driven lattice vibrations and
spin fluctuations are not included in the calculations.
The results, in fact, do not even apply for zero tempera-
ture because zero-point lattice vibrations are also miss-
ing.

mRy/atom which corresponds to approximately 260 K.
The iron local moments derived from the type-I and -II
calculations are nearly identical, even at M=O, where
the energy difference is greatest. Another E(M) branch,
corresponding to an unstable nonmagnetic (NM) solution
(dashed lines), is also found. The band equations have
multiple solutions (i.e., type-I and -II AF, NM, and FM)
that can be found by using different starting potentials in
the iteration procedure used to achieve self-consistency.
A qualitative argument that type-II AF is more stable
than type-I AF in the simple-cubic iron lattice is made by
observing that all near neighbors of a given iron atom
have the opposite spin in type-II AF but have mixed
spins in type-I AF.

Our result that type-II AF is more stable than type-I
AF only applies to cubic structures. Since type-I AF
breaks the cubic symmetry around each iron atom, a
tetragonal distortion will lower the total energy. Evi-
dently this lowering of the type-I AF total energy is not
enough to reverse the order of stabilities since the experi-
mental' structure is cubic and type-II AF.

At finite temperatures, lattice vibrations and spin fluc-
tuations contribute to the free energy and change the
curves in Fig. 8. Using Debye-Gruesien theory to ac-
count for lattice vibrations in simple (nonmagnetic) met-
als leads to a shifting of the free energy to successively
lower energies accompanied by a shift in the minimum to
larger r~s values due to the anharmonic character of the
binding curves. This shift to larger r~s values successful-

ly explains the observed thermal expansion. The same
general behavior is expected for magnetic and antiferro-
magnetic systems. Thus, inclusion of the temperature
dependency of the energy and entropy of lattice vibra-
tions and spin fluctuations should shift the curves of Fig.
8 to lower energies and shift the positions of the two
minima to successively larger r~s values. Since the
temperature-dependent energy and entropy of lattice vi-
brations and spin fluctuations is different for the AF and
FM states, the two curves shift at different rates. In or-
der to explain the observed AF-FM transition at
T„=340K, the minimum of the FM free energy must
fall below the minimum of the AF free energy. Hence, at
T„,the AF-FM transition occurs and the system exhibits
an abrupt expansion from the AF minimum to the larger
FM minimum. It is plausible that this abrupt expansion
should be approximately the same as the difference be-
tween the two minima depicted in the rigid-lattice total
energy curves shown in Fig. 8, or approximately 0.5%%uo.

This theoretical value, derived from first-principles
band-structure calculations with atomic numbers as the
only input, may be compared with the experimentally
determined value of 0.3%%uo.

For all temperatures above T„,the minimum in the
FM free-energy curve must be lower than that of the AF
free-energy curve. As a consequence positive external
pressures determined by the construction of a common
tangent to the two (FM and AF) free-energy curves and
similar to that used to determine H„yield critical pres-
sures at which the two states are in thermal equilibrium.
These pressures are temperature dependent and are ex-
pected to be zero at T„and to increase with increasing
temperature.

A possible explanation of the anomalously large mag-
netic entropy at the transition found by Kouvel is sug-
gested by our calculations. We confirm by direct calcula-
tion that the rhodium moments in the AF state are
locked in by symmetry to be precisely zero, whereas they
have a finite variable moment in the FM state. Hence,
the FM state has more magnetic degrees of freedom than
the AF state and can be expected to have a larger mag-
netic entropy which will tend to stabilize the FM state.
Since we also find at least three spin configurations with
energies within a few mRy of each other at the equilibri-
um lattice constant (type-I and -II AF and FM), we ex-
pect large increases in magnetic entropy at temperatures
which can excite these states, such as T„.

V. DISCUSSION

The FeRh results presented above bear an interesting
relationship to results obtained' ' for the model Invar
system, ordered Fe3Ni. In both cases, the calculated
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E(rws) curves must be represented by two separate
branches associated with different magnetic states. For
Invar, the two branches correspond to high-spin (HS) and
low-spin (LS) ferromagnetic states, while for FeRh the
two branches correspond to AF and FM states. In both
cases, the two branches are separated by a few
mRy/atom so that the metastable state is within thermal
range of the stable rigid-lattice state. An important
difference between the two systems is that for Invar the
minimum for the more stable rigid-lattice HS state has a
larger volume than the less stable LS state, while for
FeRh the minimum for the more stable AF state has a
smaller volume than the less stable FM state. This
difference produces a pause in the thermal expansion for
Invar, but an enhancement in the thermal expansion for
FeRh. In both cases, the systems undergo a transition
from one type of magnetic behavior to another. The In-
var HS-LS transition is less obvious than the FeRh AF-
FM transition because for Invar both states are ferromag-
netic and the transition is less abrupt. In addition, the lo-
cal moments for the FeRh system are appreciably larger
than those of the Fe3Ni system.

The two systems exhibit a large difference in the coex-
istence volume range of the two states. In Invar, the
coexistence range of the HS and LS states is very narrow
and only occurs at volumes below the equilibrium zero-
pressure volume associated with the HS state. In FeRh,
this coexistence extends over a large range and occurs at
expanded as well as contracted volumes. Since the ex-
istence of critical field effects depends upon both states
existing at the same volume, these effects have a much
greater volume range, and are more observable in FeRh.

Another interesting comparison is with FeV, which
also exists in the ordered CsC1 structure. However, FeV
is FM in the ground state, and the equilibrium volume
corresponds to res=2. 66 a.u. , which is considerably
lower than that of FeRh. A striking difference between
the two systems is that the local iron moment in FeV is

reduced to —
1LM& at equilibrium, whereas it is enhanced

to —3ptt in FeRh (in both the FM and AF states). A re-
lated difference is that the bulk modulus for FeV is
greater than that of bcc Fe (or bcc V), whereas that of
FeRh is less than that of bcc Fe. These differences are
partially explained by the expansion of the lattice pro-
duced by the larger moments, which thereby reduce the
bulk modulus (which is expected to fall rapidly with lat-
tice expansion).

The results presented here illustrate the diverse effects
that can occur in binary magnetic systems. With many
more degrees of freedom than in the elements, many
magnetic solutions can exist at a given volume. For
FeRh, our calculations confirm the presence of an AF
equilibrium state and the preference for type-II over
type-I AF, and find a FM equilibrium state at slightly
higher volume and energy which suggests the possibility
of an AF-FM transition at finite temperature. Our calcu-
lations imply a pause in the thermal expansion for Invar
as the system undergoes a transition from a larger volume
HS state to a lower volume LS state, but an enhancement
in the thermal expansion for FeRh as the system under-
goes a transition from a lower volume AF state to a
larger volume FM state. Thus, FeRh is an anti-Invar sys-
tem in the sense discussed in Ref. 14.

Finally, we comment that the reliability of our results,
which are derived from first-principles calculations with
atomic numbers as the only inputs, is supported by quan-
titative agreement with experiment of five ground-state
properties, namely, the lattice constant and the local
magnetic moments of the iron and rhodium atoms in
both the AF and FM states.
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