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Theory of impurity-concentration dependence of freezing temperatures of metallic spin glasses
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We present a theory of the freezing temperature Tg of metallic spin glasses. Length scales associated
with intrinsic sd scattering and finite temperature play essential roles. We describe an approach in
which T~ is calculated directly in terms of the strength and range of the e6'ective spin-spin pair interac-
tions. The theory leads to a clear physical picture of the dependence of Tg on the concentration and type
of impurities in the spin glass, and provides a comprehensive account of a wide range of experimental
data.

I. INTRODUCTION

Spin glasses are complex magnetic systems having in-
herent structural disorder. Localized magnetic moments
experience "frustrated interactions" which lead to a
freezing transition to a glassy state at a low temperature
Ts. Dilute alloys of 3d transition-metal (TM) impurities
in a noble-metal (NM) host (e.g. , Ag-Mn) are canonical
examples of spin glasses. Since the original description of
freezing in spin glasses in 1959 by Blandin and Friedel, '

many problems have been studied. Despite intense
efforts by numerous researchers, many questions remain
unresolved.

In this paper, we focus on the following problem. If
the fundamental structure of a spin glass is changed, by
adding a small concentration of impurities for example,
the freezing temperature T will also change. What are
the physical processes which determine the changes in
T? We will focus on the canonical NM-TM spin glasses,
in which the dominant rnechanisrn driving the freezing
transition is the indirect exchange interaction J,z be-
tween 3d magnetic moments. In its simplest form (two
moments in an otherwise pure metal at zero tempera-
ture), the exchange interaction for spin separation
R ))kF ' is of Ruderman-Kittel-Kasuya-Yosida (RKKY)
form:

J,ft(R ) ~ R cos(2k~R ) .

Since the interaction is mediated by the conduction elec-
trons, when account is taken of various physical scatter-
ing processes and finite temperature, a more general form
is required for J,s(R). It is the general form of J,ft(R)
which will determine T .

Concerted experimental efforts have been made to re-
veal features of J,ft(R) by adding impurities to a spin
glass and observing how the changes in T of the result-
ing alloys depend on the concentrations and types of add-
ed impurities. A rich supply of experimental data has
been obtained. Some important results for NM-TM spin
glasses are given next. These results have not been ade-
quately explained previously (see below).

(1) Ts(c). As the concentration c of magnetic impuri-
ties increases, the freezing temperature follows the empir-

ical relation T (c) ~c~. For example, /=0. 58 in Au-Fe
(Ref. 4) while /=0. 69 in Ag-Mn (Ref. 5) over the ranges
studied.

(2) Ts(c; ). With c held fixed, Ts (c; ) typically exhibits a
rapid initial decrease as the concentration c; of nonmag-
netic impurities increases. At higher values of c;, Ts(c; )

decreases more and more slowly. T (c;) appears to flat-
ten out and almost saturate.

(3) T'"(c). The dependence on c of Ts at its "satura-
tion" value also exhibits an empirical relation of the form
T~"'(c) ~c~ with P slightly less than unity and different
from that in (1) above. For example, /=0. 91+0.03 has
been reported for Ag-Mn.

(4) Ts(c, ;cz ). In spin glasses having two distinct mag-
netic species (e.g. , Mn and Fe) with concentrations c

&
and

c2, two types of behavior can occur. If c, is held fixed
and c2 increased from zero, Tg(c„c2) could increase
monotonically with c2 or show an initial decrease to a
minimum value followed by an increase until T exceeds
its value for c2 =0.

(5) Ts(c, , ). At fixed concentration of a magnetic
species in a NM-TM spin glass [e.g., Ag-Mn (5.5 at. %%uo)],

Tg initial ly increases sharply as impurities with strong
spin-orbit scattering (e.g., Au) are added. As the concen-
tration, c... of the added impurities increases, Ts(c, , )

increases more slowly and may tend to flatten out at a
plateau value.

We next describe the theoretical picture. Consider first
the variation T (c, ) described in (2) above. There have
been many theoretical works which have addressed this
question by using [J,s(R )],„, the average of J,s(R ) over
all possible configurations of impurities. Because of the
approximate form

[J,s(R ) ],„=J,~(R )e (1.2)

where A, ; is the electron mean free path due to elastic
scattering by nonmagnetic impurities, these works have
enjoyed some degree of agreement with experiment. The
approach of using [J,s(R)],„ is, however, fundamentally
wrong, as has been shown by several investigators.
The distribution over impurity configurations of
J,ft(R,J)—:J~. is so broad that [J,"],„ is a completely
inadequate representation of the effective interaction in a
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given particular configuration. Instead, ( [J,"],„)' ~ pro-
vides a much improved estimate of the effective interac-
tion. Indeed, while [J,"],„exhibits strong dependence on
A, , calculations at zero temperature of [J,"],„show no
dependence at all on A, Thus, all accounts of Tg(c;)
based on [J,, ],„or closely related inodifications must be
regarded as invalid. Although the investigations based
on [J,"],„have a more sound theoretical basis in that they
take account of the broad statistical distribution of J;,
the results presented thus far do not provide explanations
for the five experimental features described above.

In this paper, we present a theory of T . Our approach
accounts for experimental data on Tg(c), Tg(c; ), Tg"'(c),
Ts(c&,cz), and T (c, , ). The theory has a firm theoreti-
cal foundation and also gives a very clear picture of the
physical processes involved in the behavior of T . The
essential features of the theory are as follows: (i) Our cal-
culations are based on [J~ ],„. (ii) We include the intrinsic
sd exchange scattering from TM ions. A consistent treat-
ment of sd scattering introduces new length scales in the
effective spin-spn interaction. Unlike A, ;, these new

length scales survive configuration averaging to appear ex-
plicitly in [J, ],„. These length scales play a crucial role
in accounting for the experimental trends. (iii) We work
at finite temperature and explicitly retain the finite T
dependence in our final expressions. This leads to a finite
range for the effective interaction and plays an essential
role. (iv) We develop an approach to calculating the
variations in T due to changes in impurity concentra-
tions. We express T directly as a pairwise sum over in-

teraction strengths.
The outline of the remainder of this paper is as follows.

In Sec. II, we give an overview of the basic physical
features of our picture of T and describe its conse-
quences. The essential features of our previous work' on
effective spin-spin interactions in disordered electron sys-
tems are recalled in Sec. III and the different physical
length scales are discussed. Our result for T in terms of
a sum over pairwise interaction strengths is derived in

Sec. IV with a mean-field theory. The evaluation of Tg
as a function of nonmagnetic impurity concentration, c;,
and the magnetic ion concentration, c, is given in Secs. V
and VI, respectively. T as a function of concentration of
two magnetic species is given in Sec. VII. Section VIII
consists of a discussion of the effects on T of adding im-

purities with strong spin-orbit interactions. A summary
is given in Sec. IX.

II. PHYSICAL DESCRIPTION OF THE THEORY

In this section we describe the basic physical picture
which emerges from our theory. Our intention here is to
emphasize the essential ideas, so a number of details and
more complete descriptions are left to later sections.

In our approach, sd scattering introduces new length
scales which are of the same order and are denoted col-
lectively by A,d. Finite temperature imposes a strictly
finite range Az- on the spin-spin interaction. These length
scales are such that A, & A,d & A~.

The spin-spin coupling strength, denoted by E (R ) has

the approximate form at large R

K(R) =h (R)EO(R), (2.1)

where Eo(R) ~ R is the form appropriate for two spins
in an otherwise pure metal at T=O+, and

1 for R &Ad

h(R)= y ««d &R &AT

0 for R &A&,

(2.2)

with 0&@&1. Note that the usual mean free path, A, ,
does not appear. Using Eqs. (2.1) and (2.2), we may de-
scribe the pairwise couplings as follows. All spin pairs
having R &A,d are coupled with strength ICo(R), all
pairs with R )Az are completely uncoupled, and all
pairs with A,z & R & Az have coupling strength yEO(R ):
i.e., there is a drop in coupling strength at R =A,d. Al-
ternatively, on the average, we may picture a fraction y
of pairs in this range as having coupling strength Ev(R),
the remaining pairs as being uncoupled.

Consider the case of a fixed concentration c of spins
and ask what happens to T as c; increases. We find (Sec.
III) that the length scales A,d and A& decrease as c; in-
creases. Decreasing A~ clearly implies decoupling spin
pairs. Specifically, the decrease from Ar to Ar —~5Ar~,
where 6A& &0, implies the decoupling of all pairs with
separation R in the range Ar —~5Ar~ &R & Ar. Similar-
ly, a fraction (1—y) of pairs having R in the range
A,d

—~5A,d ~
& R & A,d also become decoupled. The

decoupling of spin pairs with increasing c; implies a
reduction in the overall ordering energy scale and a drop
in T . A simple way to express this is

5Tg =
Tg [(1—y)5A, d/A, d+y5Ar/Ar],

with Tg being a constant of proportionality. [Equation
(2.3) is easily derived by counting the number of spins in
shells of radii A,d and Az-, with respective thicknesses
~5A,d ~, ~5Ar ~

(see Sec. V).]
Alternatively, Eq. (2.3) can be integrated to give

(2.3)

Tg
—Tg'= Tgln[(A, d/A, *d )' ~(Ar/Ar)i'], (2.4)

where T is a constant of integration having the meaning
of the spin-glass transition temperature at an arbitrary
reference point A,d

=A,*d, A z =A z.
The functional form T (c, ) then depends on A,d(c;)

and Ar(c;). The sd-generated length scale A,d plays a
crucial role in establishing the behavior of T (c, ). Con-
sider Fig. 1, which shows experimental data for T as a
function of the total resistivity p, as well as our theoreti-
cal result (solid curve) obtained from Eq. (2.4) and de-
scribed in Sec. V. The crossover from rapidly decreasing
T at low p to a slowly decreasing T at high p is due to a
crossover in the form of A,d, from A,d

~ p
' at low p to

A,d p
' at high p. In contrast, Az- p

' at all p.
The crossover in A,d means that spin pairs are eliminated
much more rapidly with increasing p at low p then they
are at high p.

A similar description applies for the dependence of T
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III. EFFECTIVE INTERACTIONS
AND LENGTH SCALES
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In a previous paper, we calculated the magnitude and
range of the effective spin-spin interaction in a disordered
metal at finite T (Ref. 12). We ensured that the intrinsic
effects of sd scattering and finite temperature were prop-
erly taken into account. We expressed our results in
terms of the quantity K(R), defined as the magnitude of
the effective interaction between an average, or typical,
pair of spins with separation R = ~R," in a typical, par-
ticular configuration, viz, E (R ) is obtained by averaging
~J,s(R;~)~ over all spin pairs (i,j) having ~R; =R. For
the general case where both magnetic and nonmagnetic
ions are present in the metal host, we obtained

p (pQ cm) E(R)=j,&g(R)h (R), (3.1)

FIG. 1. The spin-glass freezing temperature T~ vs the total
electrical resistivity p for Ag-Mn (2.6 at. %) with added Sb. The
experimental data are from Ref. 6. The open circle indicates no
added Sb. The dashed curves are low-p and high-p asymptotic
forms, extrapolated into the intermediate-p regime. The solid
curve models the crossover as described in the text.

on c in the case c; =0. Figure 2 shows experimental data
and our theoretical result for Ag-Mn. The Ts(c) behav-
ior has the characteristic feature that the slope BTs(c)/Bc
decreases as c increases. This is readily interpreted using
the length scales A,& and A~. As c increases, spin pairs
are added and T increases. However, not all of the add-
ed spin pairs contribute to T . An increase in c means
more sd scattering, decreased A,& and Az-, and the decou-
pling of all spin pairs in the range Ar —~5Ar~ (R (Ar
and a fraction (1—y ) in the range A,z —

~
5A,& ~

&R &A,z. As a consequence, T does not increase as
much as it would have in the absence of "self-damping"
induced by sd scattering.

where j,& is the sd exchange constant which enters the
portion of the Hamiltonian that describes the sd scatter-
ing of electrons from the TM ions, g (R ) =2mk~/(2mR ),
and where h(R) has the following features. For R &A, ,
h (R)-1, which gives K(R) the same form as in the pure
metal case. Here, A, is the total electron mean free path
and includes both elastic scattering by the nonmagnetic
impurities as well as sd scattering by the magnetic irnpur-
ities. For R Ar » iL, h(R) is exponentially small [viz. ,—R /A~
h (R) ~ e ]: Ar is the finite range of the spin-spin
interaction and is given by

A =(AA, /3)'i (3.2)

where

A, r = T~/(nk~T) . (3.3)

The various length scales involved in determining T, in-
cluding Az- and A, ~, will be discussed in the next section.
For A, &R &A~,

h (R)-[Io(R)+I,(R)+Ip(R)+I3(R)]' ~,

25-

20

15

10

c (at.% Mn)
A, SR SAr, (3.4)

where the I„(R) (n =0, 1,2, 3) depend sensitively on the
ratio c; /c =p;/p, z and are, in general, quite complicated
(p; and p,z are, respectively, contributions to the total
resistivity p due to scattering of electrons by nonmagnetic
and magnetic impurities). Simple asymptotic forms exist,
however, both in the regime we call "low p,

" in which
p =p, +p,& is, at most, a few times p,&, and the regime we
call "high p" where p »p, z. For all p, Io(R ) ——,', . In the
"low-p" regime, each of the other I„(R)~e " for
k&R ~A&-. In the "high-p" regime they acquire the
asymptotic form

0
0.0 0.5 1 ~ 0 1.5 2.0 2.5 3.0

I (R)
3 1+ 2R + 4R 2R/k„—
16 A„

FIG. 2. T~ vs concentration c of Mn in Ag-Mn. The data
were presented by Vier and Schultz in Ref. 6. The large dots
are their results; the small dots were obtained from the litera-
ture. The curve is our theoretical result, shown as a function of
x =c/co, co=2.6 at. %.

where

A, ~R ~A&-, high p, (3.5)

A„-A[(p/p, & 2n/3)/2n—]', high p . (3.6)

The results for h(R) have been presented above as
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asymptotic forms. Strictly, this means that h (r) asymp-
totically approaches unity for R «A. , asymptotically ac-
quires the form of Eq. (3.4) for k «R «Ar, asymptoti-
cally goes to zero for R ))A~, and goes smoothly be-
tween these asymptotic forms when R =O(A, ) or

R =O(Ar). We do not have precise information on the
form of h (R) for R =O(A, ) or R =O(A&). We expect
these asymptotic forms to be good approximations except
when R is quite close to A, or to Az-, and we will therefore
take

1, A,, &R &g

h(R)= [Io(R)+I,(R)+I2(R)+I3(R)]'~2, A, &R &Ar

0, R)A~,

(3.7a)

(3.7b)

(3.7c)

where the length scale A,, is discussed below. We will

show in Sec. V that the smooth behavior of h (R) for R
close to A, or to Az can be readily incorporated into our
theory of T .

A variety of physical length scales appear in this spin-
glass problem. These length scales, A, , k,„,A, , X„XY., A~,
and A„, will be briefly discussed next.

The length scale A, ; is the electron mean free path due
to collisions with the nonmagnetic impurities, while A,,d is
the mean free path due to sd scattering by the magnetic
species: A, , /A, ,d =p,d /p;. The total mean free path
A. = I/(I/A, , + I/k, d ).

The parameter A, , represents the ejective lower limit

spin-spin separation and must be of order of the nearest-
neighbor spin-spin separation, A,NN. We have introduced

k, in order to parametrize numerous physical features
implicit in the problem of calculating T, including

preasymptotic corrections' and statistical fluctuations in
the nearest-neighbor separation.

The length scale A, z is the finite range at temperature T
for the RKKY spin-spin interaction in the case of just
two spins in an otherwise pure metal: for R & A, z, the in-

teraction is exponentially small, being proportional to—R /A, Te . As Eq. (3.3) shows, A, r is very large. In the
disordered case, however, the finite range of the effective
spin-spin interaction is Ar. From Eq. (3.2), we see that
Az- «kz and is certainly finite at finite T. We will show

in Secs. V —VII that the finite range Az- plays a major role
in determining the spin-glass transition temperature Tg.

The three length scales A„(n = 1,2, 3) enter because of
the sd scattering. These length scales have an interesting

p dependence. At "low p" (where p is, at most, a few

times p,d ), the A„—A, to leading order, whereas at "high
p" (where p is at least several times p,d ) the A„are given

by Eq. (3.6) to leading order. If p/p, z is very large, then

Eq. (3.6) will simplify to A„-A[(p/p, d)/2n]' . Thus,
there is a crossover from A„~p

' at low p to A„~p
at very high p, whereas Az-~p ' at all p. This implies

that, at low p, the A„decrease much more quickly with p
than Az does. This feature of the length scales will have

important consequences for the overall behavior of T~(p),
as we will see in Sec. V. Finally, we will always have
A, &A„&Az- in the experimental situations we will con-
sider.

IV. A MEAN-FIELD THEORY FOR Tg

In this section, we derive a result for Tg specializing to
the case of fixed concentration c of TM ions with variable
concentration c; of nonmagnetic impurities, and working
within mean-field theory. The experimentally determined
freezing temperature typically decreases as c; increases.
The basic physical idea underlying our approach is that
the observed variations in T are due to variations in the
magnitude and range of the effective spin-spin interac-
tion. We illustrate this idea by treating an Ising model
spin glass within mean-field theory. Generalizing to the
Heisenberg case is straightforward.

Consider an Ising model spin glass with the spins and
nonmagnetic impurities arranged in a particular
configuration. For T just below T, mean-field theory
gives

(4.1)

for the thermal average of S, , where the J; are the cou-
plings between spin pairs (i,j ) for the particular
configuration under consideration. We may equally well
write

2SM'( T)=—y (S; )'= —y J~J (S; ) (SJ ) . (4.2)

For a particular configuration, the double sum in Eq.
(4.2) is a very complicated quantity. For example, as we

sample various pairs (i,j ) of spins, the J, oscillate in sign,
and the ( S; ) and ( S,. ) vary in direction (or sign). How-

ever, such variations are not completely random; if they
were, the double sum would be identically zero, but it is
manifestly positive. This characteristic positivity is an
essential feature of the double sum which must be recog-
nized if a suitable approximation for T is to be obtained.
A second feature of the double sum which must also be
adequately recognized is the distinctive spatial variation
in the J; which was the subject of our previous paper,
Ref. 12. We briefly review the spatial properties of J;,
then discuss the positive character of the double sum and
thereby obtain our formula for T .

There are two crucial properties of J, which were re-

ported in Ref. 12. One is that the magnitude of J; is ex-
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An expression for T similar in form to Eq. (4.3) has
previously been suggested by Kinzel and Fischer' in the
low concentration limit of an Ising spin glass with
sufficiently short-range interaction. The interpretation of
their formulation and its predictions differ, however,
from ours.

It is essential to realize that Eq. (4.3) gives Tg for a par
ticular configuration As a consequ. ence, it is important
that we estimate l J;t l by a quantity which captures the
essential characteristics innate to a particular
configuration; E(R) is precisely such a quantity. Since
Tg wl 11 vary only slight 1y from one configuration to
another, we have

Tg ~k~ 'c f d R E(R), (4.4)

where K(R) is given by Eq. (3.1). This form for Tg cap-
tures the essential physics which is present in a particular

ponentially small for virtually all pairs (i,j ) with

R; RA&, in any typical, particular conjiguration .The
other is that, in addition to the regular 1/R falloff in the
magnitude of J, —which occurs both in the pure metal
and the disordered metal —there is a further decrease in
the magnitude of J;. in the disordered case, which takes
the following form: E(R}=j,dg(R) if R &A, , whereas
E (R ) =h (R )j,d g (R ) if R )A,, where the reduction is by a
factor h (R) & l. It is essential to realize that this reduc-
tion in E (R ) at R =A, results because the same reduction
occurs for the individual Ji; recall that K(R) was ob-
tained by averaging J; over all pairs (i,j ) with lR;~ l

=R.
The important consequence of these two spatial charac-
teristics is that the double sum will decrease if nonmag-
netic impurities are added to the spin glass. This de-
crease may be understood as follows. Adding nonmag-
netic impurities will increase p and decrease both Az- and
A.. Decreasing the finite range of interaction means elim-
inating spin pairs from the double sum in Eq. (4.2), which
means a decrease in the double sum. Similarly, decreas-
ing A, means reducing the magnitude of J; for all pairs
(i,j) whose separation R,. is such that A, goes from
greater than R j to less than R j which causes a further
drop in the net value of the double sum. As the double
sum decreases, so must T .

The behavior described in the above paragraph is re-
tained in the formula which we will next derive for Tg.
The derivation begins by recognizing that the manifestly
positive character of the double sum arises in conse-
quence of the off-site (iA j) spin correlations in the spin-
glass state. The relative orientation of the spins at sites i
and j—and hence the sign of J; & S; ) & S )—depends on
the full distribution I I, J, but the posit"ive character of
the double sum implies an overall tendency —subject to
frustration —for a given spin pair to take up the relative
orientation favored by the sign of the specific pair s J; .
To within a constant factor which rejects the frustration
inherent in the spin glass, the double sum can then be es-
timated by g; J. l J;J. lM ( T), which gives

(4.3)

configuration. To complete the specification of our for-
mula, we introduce an overall scale factor T and use
Eqs. (3.1) and (3.7) to obtain

T =T 5 dR/R+ 5 h(R)dR/R
C

(4.5)

where h (R} is given by Eq. (3.7b), and we have special-
ized to the Heisenberg case. We regard Eq. (4.5) as a
semiphenomenological form, with parameters A., and T .
We will comment further on these parameters in the next
two sections where we calculate Tg(c; ) and T~(c).

Before making use of Eq. (4.5), recall the commonly
quoted form for T which is based on assuming a Gauss-
ian distribution for J; . One way to obtain this expression
was given by Sherrington' who iterated Eq. (4.1) to ob-
tain

(4.6)

where the primes on the sums denote jAi and kAj, re-
spectively. Neglecting the correlations between the vari-
ous interactions and & SI, ) and using a Gaussian probabil-
ity distribution to average over the distribution of in-
teractions effectively picks out only the k =i term in the
k sum and yields

2ST — yi [J2 ]
'' 1/2

B j
(4.7)

for the spin-glass transition temperature. The approxi-
mations leading to Eq. (4.7) are very severe. In particu-
lar, the neglect of correlations between the interactions
and the spin directions is not justified for a spin glass.
Indeed, it is precisely these correlations which we have
taken into account in arriving at Eq. (4.3). The predic-
tions of these two forms for T are very different also. As
discussed below, Eq. (4.7) cannot account for the experi-
mental results in contrast to Eq. (4.3), which appears to
have captured the essential physics.

V DEPENDENCE OF Tg ON c '

In this section, we calculate the spin-glass freezing
temperature as a function of the concentration c; of non-
magnetic impurities for a fixed concentration c of mag-
netic ions. In order to compare our result to experimen-
tal data, we express T as a function of the overall resis-
tivity p.

Extensive experimental investigation af the freezing
temperature in metallic spin glasses has been carried out
by Vier and Schultz (VS), among others. Our attention
wi11 be primarily directed at the VS results, as these re-
sults offer a thorough test of our theoretical ideas. In
particular, we will focus in this section on the VS T~(p}
data for Ag-Mn with Sb impurities. These data span a
wide range of p, fram p=p, d =4pQ crn with no Sb im-
purities to p =50pQ cm at the highest concentration of
Sb (the Mn concentration was 2.6 at. %). The data,
therefore, cover the low-p, intermediate-p and high-p re-
gimes.

We require a formula for T (p) which covers the whole
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range of p investigated experimentally. Our strategy is to
use the low-p and high-p asymptotic forms for E (R ) (Sec.
III) to obtain asymptotic forms for T (p) in the low-p
and high-p regimes, then use these results to interpolate
into the intermediate-p regime. It is not feasible to calcu-

late directly a single expression for T (p) valid at all p
(Ref. 12).

Combining Eqs. (4.5), (3.7b), (3.5), and (3.6) gives the
following asymptotic expression of Tg(p) in the high-p re-

gime:

31/2 x (P )

C

3

1+elf(xp)
n=1

1/2

high p, (5.1)

where 3 =PA. is a constant whose value depends on the
material,

A~x,„(p)=
1/2

TFp
3m.kF AT (p)

(5.2)

f„(x;p)= [1+a„(p)x+—,
' [a„(p)x ] ]e

1/2
2na„(p)=2

p/p, d 2n /—3

(5.3)

(5.4)

and the variable of integration x =R/A, . Given values
for the two parameters T and A,„Eq. (5.1) is readily
solved numerically for Tg(p) in the high-p regime. In the
low-p regime, recall that I„(R) ~ e "~ (n = 1,2, 3),
while Io(R)- —,'„ for A, &R &Az. . The I„(R) are there-
fore negligible compared to Io(R), except when R =A, .
As such, in order to compensate for the neglect of I„(R)
for R very close to k, we introduce a parameter ~ as a
multiplicative factor of the second integral in Eq. (4.5)
and obtain the following asymptotic for T (p ) at low p:

T (p)-T ln + Irln
4

low p,
(5.5)

or

T (p)=T (p,d) 1 —C, ,
—~ ln

8

Psd

Tg (p)—~C„ ln
Tg psd

low p , (5.6)

where T (p) is the value of Tg when p=p, d (no magnetic
impurities),

8 FPsdT
+~ ln

3vrkFTg(p, d ) A

(5.7)

and

o 8
Tg =

i~~ ~ g(psd )
3

(5.8)

comparison of Eqs. (5.1) and (5.5) shows the
significance of the parameter ~. One can readily verify
from Eq. (5.3) that 0 &f„(x,p) & 1 for 1 &x &x,„(p). If

we express the value of the second term in Eq. (5.1) as
(3' /4)a'In(Ar /A, ), we then see that 1&~'&2. Recall

that the factor h (R) has been interpreted (Sec. IV) as the
reduction in the coupling strength between moment pairs
having R & A, . The high-p coeIIicient ( 3' /4)a. '

represents replacing the gradual reduction in coupling
strength [see Eq. (5.1)] by a sudden sharp reduction at
R =A, . Similarily, the low-p factor (3' /4)x in Eq. (5.5)
replaces the gradual reduction by an equivalent sharp
reduction taken to occur at R =A, . Had we treated the
I„(R) (n = 1,2, 3) at low p as though they were identical-

ly zero for A, &R &Az-, we would have had ~=1 in Eq.
(5.5). This would have been too severe an approximation,
as comparison with Eq. (5.1) has shown.

Our objective now is to use Eqs. (5.1) and (5.6) to fit the
VS data at the high-p and low-p ends. Specifically, we
ask if reasonable values exist for the three parameters ~,
k„and T~ which provide a fit to the data. Reasonable
values require 1&~&2, k, of order A,z~, and T~ of order
1K. The dashed lines in Fig. 1 show the fits obtained for
the values s =1.4, A,,=7.8 A, Tg =2.9 K (A,~~ =12 A in
2.6 at. % Ag-Mn). We fit the theoretical, asymptotic
forms to the VS experimental data by first choosing a
value for s. and using Eq. (5.6) to fit to one of the VS

[p, Tg (p) ] data points in the low-p regime. Note that Eq.
(5.6) automatically passes through the point

[p,d, T (p,d)]. A value for A,, is obtained from Eq. (5.7)
and a value for T from Eq. (5.8). Equation (5.1) was

solved numerically for the high-p Tg(p) curve using the
T and k, values. We adjusted ~ until a satisfactory fit

resulted at both the low-p and high-p ends of the VS data.
In Fig. 1, we have indicated the extrapolation (dashed
curves) of these low-p and high-p asymptotic curves into
the intermediate-p region. These extrapolations do not
give a complete description of the VS data. As a result,
we require a representation of the p dependence which in-

terpolates correctly between these two asymptotic limits.
We have developed such an interpolation and the result is
indicated in Fig. 1 by the solid curve which clearly pro-
vides a much improved description of the data. The basis
for this interpolation is most easily described in connec-
tion with a physical interpretation of the behavior of
T (p) in Fig. l. A simplified version of this interpreta-
tion was given in Sec. II ~

The trends exhibited by T (p) result directly from
combined physical effects of sd scattering, potential
scattering, and finite temperature, and can be interpreted
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as follows. The length scales A„and Az- all decrease as
nonmagnetic impurities are added to increase p. As a
given length scale A (A„or Az ) drops by 5A, spins
within a shell of thickness 6A and radius R =A are
decoupled from a spin at the center of the shell. The
decoupling of spins is obvious for the finite range Az-, but
strictly speaking, the coupling strength is simply reduced
by a factor (3' /4)v in the case of A„. However, an
equivalent picture is that a fraction 1 —(3'~ /4)ir of spins
have been completely decoupled and that the coupling
strength of the remaining spins has been unaltered. The
simple picture of spin pairs being decoupled as p in-
creases implies that the overall ordering energy is re-
duced and T falls.

Consider more fully the role of the sd-generated length
scales A„. The transition from a rapidly decreasing T at
the smallest values of p to a more slowly decreasing T at
the high-p extreme is due to a combination of two effects.
First, as p increases and spins decouple, the rate at which
ordering energy is lost (and Tg falls) decreases in magni-
tude. It is easily seen from the picture of decoupling
spins that BT /Bp ~ —

p ', which leads to a gradual ten-
dency for T to "flatten out" as p increases (see Fig. 1).
The second effect is a crossover in the p dependence of
A„ from A„~p in the sd-dominated scattering regime
at low p to

A„-A, [(p/p, d 2n /3)/2n—]'

Tg (p ) = Tg (p,d )
—

Tg 1 ——ln
'V p

psd

2+(p/p, d
)'"—(1—

y )ln
3

Tg (p)+—ln
2 Tg(p, d )

(5.11)

A,d (p }=A,d (p,d )
p

psd
(5.12)

where A,d(p, d ) = A /p, d. We require 8(p)-1 as p~p, z,
and 8(p)- —,

' as p/p, d~~. There are, of course, many
possible choices for 8(p). We tested the simple form

8(p) =(p/p, d ) (5.13)

obtaining a value for the constant v by equating the
A,d(p) of Eq. (5.12) with the high-p form, Eq. (3.6), for
A„(n =2) at the highest p value for the VS data in Fig.
1. We found v=0. 11, and 8=0.8 at this highest p value.
Combining Eqs. (5.12), (5.13), and (5.10) gives

V

T(p)=? (p,d) —?' . ++(1
psd

as a possible interpolation formula. We return to this
formula below, but first describe an alternative approach
in which we model the crossover directly in terms of a p-
dependent effective exponent 8(p), viz. ,

—0(p)

A,d(p) = ', [A, + ,'l, (p p/, )'d—]— (5.9)

to interpolate for the sd length scales A„.' Combining
Eq. (5.9) with the physical picture described above, we
write

5' = Tg [(1—y )6A,d /A, d +y 5Ar/Az. ] (5.10)

for the variation in T, where y=(3' /4)& So»ing for
? (p) gives

in the high-p regime where both potential and sd scatter-
ing are important. (When p is very much larger than p,d,
A„~p ', but we do not quite reach this behavior in the
VS data of Fig. 1). This crossover in the p-dependence of
A„contributes further to the tendency for Tg to "flatten
out" at high p.

It is necessary to include the crossover behavior of A„
in the developinent of an interpolation formula for Tg(p).
In order to test the sensitivity of the interpolated Tg(p)
curve we modeled the crossover in different ways. For
example, a simple way to model the crossover is to form a
linear combination of the lowIi and very high-p asymp-
totic forms, A, and (2n) '~

A, (p/p, d )', respectively.
Since the A„are of the same order even at high p, we
take the middle value (n =2) and use

y Ts(p)+—1n
2 T (pd)

(5.14)

VI. DEPENDENCE OF T~ ON c

Our basic formula for Tg may also be applied to the
case where only magnetic impurities exist within the me-
tallic host. In this case, Eq. (4.4) leads directly to an ex-
pression very similar to Eq. (5.5):

as an alternative to Eq. (5.11) for the interpolation formu-
la. The solid curve plotted in Fig. 1 is actually Eq. (5.14).
However, the curve specified by Eq. (5.11) results in vir-
tually the same curve for Tg(p). Sensitivity to the precise
modeling scheme is minimal provided the essential phys-
ics is included correctly.

Note that the solid curve has not quite merged onto
the high-p asymptote. This is because the extreme high-p
asymptotic form for A,d, the second term on the right-
hand side of Eq. (5.9), has not quite been reached at
p=50pQ cm for Ag-Mn with 2.6 at. %%uoM n, as isreadil y
verified from Eq. (3.6).

We emphasize that if sd scattering had been neglected
the crossover effect discussed in this section would have
been missed, and a complete description of the T (p) data
over the entire range ofp would not have been obtained.

We have also applied our T (p) theory to other materi-
als. Some results will be given in Sec. VI.
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o c A,
AT

T (c)=T ln +y ln
geo A,,

(6.1) 14-

where T and y are the same constants as in Sec. V, c is
the concentration of magnetic ions, and co is a "refer-
ence" concentration of magnetic ions. For example, co is
the 2.6 at. % concentration of Mn in the VS Ag-Mn data
of Sec. V. Note that Eq. (6.1) is the "low-p" asymptotic
form for Tg(c). We use this form because the experimen-
tal data we compare our results to are always in the
"low-p" regime (see below).

We express k, k„and AT explicitly as functions of c,
which gives A, = A Ip,d(c) =BIc, A,, =B'Ic', and

AT IA, = {TFc l[3mkFBT (c)) ]
'

12-

10-

10 12

where A, B, and B' are constants. Thus, Eq. (6.1) be-
comes

t (x)=x —a,x Inx+azx ln[x lt (x)], (6.2)

where x =clco,—t(x)—= Tg(c)ITs(co), and a&=0. 19 and
a&=0.086 are constants which are already fixed in terms
of the parameters used to fit T (p) to the VS experimen-
tal data of Fig. 1. More specifically,

2 TFP»0
a&= — ln ++In

g,p d 2 3~kF ATg(co)
(6.3)

and

Q2 =—Pcx( (6.4)

where iP, =X,(co), p d =p d(co), and Tg(co)
= [ Tg (c)], , (this should not be confused with T ).

0

We emphasize that there are no free parameters in Eq.
(6.2). Of course, the values given above for a, and a2 are
characteristic of Ag-Mn. Other materials, such as Cu-
Mn (see below), will also have their own characteristic
values of a, and a2. Equation (6.2) may be regarded as a
prediction of the theory in the sense that the VS Tg(p)
data for Ag-Mn have been used to obtain values for n,
and az, and knowing only T (co) we predict the values of
Tg(c) for other concentrations. In any case, Eq. (6.2)

provides a test of the theory. In Fig. 2, we show Tg(c)
for Ag-Mn. The data points are those given in Fig. 2(b)
of VS. The solid line is our theoretical result, Eq. (6.2).
Note that c ~2.5co in Fig. 2, which means p,d(c) S2.5

p,d(co)= llpQ cm, so that the data fall well within the
low-p regime discussed in Sec. V.

The physical interpretation of the behavior of T (c) is

as follows. If the concentration is increased by 5c from
an initial value c, the growth in the average ordering en-

ergy per spin will tend to be proportional to 5c, so that
the increment 5T in the freezing temperature will also
tend to be proportional to Sc [see Eq. (4.4)]. If this were
the whole picture we would have Tg(c) ~c. However, as
the concentration of magnetic ions increases, the intrinsic
sd scattering of electrons increases, and the important

P (ltQ cm)

FIG. 3. Tg vs p for Cu-Mn (2.2 at. %). The experimental
data are from Ref. 17. The curve is our theoretical result.
Compare with Fig. 1.

length scales A,d =A, and AT decrease. The decreases in

A» and AT imply the elimination of some spin pairs

from contributing to T, viz. , some of the spin pairs that
are formed when c is increased do not contribute to T
because A» and AT decrease. As a consequence, the in-'
crement 5T is not quite in proportion to 5c, 5T /5c de-

creases as c increases, and T (c) has the form shown in

Fig. 2.
We also point out that the curve in Fig. 2 is practically

indistinguishable from the empirical power law t (x)=x ~

with /=0. 81. However, Eq. (6.2) has a clear physical
basis and a solid theoretical foundation and is preferable
to the empirical form in this respect. It is important to
note from Eq. (6.2) that the asymptotic behavior of Tg(c)
at low concentration is

35

C (at.% Mn)

2 3 4 5 6

28

21

I
—

14

0
0

FIG. 4. Tg vs c for Cu-Mn. The data were presented in Ref.
6. The curve is our theoretical result with c0=2.0 at. %. Com-

pare with Fig. 2.
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T (c)~ —clnc, c&&1. (6.5) lent agreement with the result P"'=0.91+0.03 quoted by
VS [see also their Fig. 2(b)].

This behavior is to be contrasted with a variety of other
theoretical approaches which predict that T (c) ~c at
low concentration.

We have performed a similar analysis for other materi-
als. In Fig. 3, we show our T (p} fit to the data reported
by Hitzfeld and Ziemann' for Cu-Mn with 2.2 at. %%uoMn.
The parameters X, and T required for that fit were used
to generate the parameter free curve for Tg (c) for Cu-
Mn, shown in comparison to experimental data in Fig. 4.
The data points in Fig. 4 were given in Fig. 2(a) of VS.

Finally, we can apply precisely the same procedures to
describe the c dependence of Tz"(c), i.e., in the high-p re-
gime. The result for t'"( x)=T '(c)/T"'(co) has the
same structure as Eq. (6.2) but the constants correspond-
ing to a& and a2 must be determined using the high-p
forms. For Ag-Mn, their values are 0.055 and 0.039, re-
spectively. The concentration dependence of Tgm'(c) is
also well described by the empirical power law
t"'(x)=x~, where now P=P"'=0.95. This is in excel-

I

VII. TWO MAGNETIC SPECIES

We next consider the behavior of the freezing tempera-
ture in a metallic spin glass having two distinct magnetic
species. We take the concentration c, of one type of
magnetic ion to be fixed and calculate the freezing tem-
perature T as a function of the concentration c2 of the
second type. Experimentally, two qualitatively different
types of behavior have been reported. In some cases
Tg(x) is monotonic increasing with x —=cz/c, . In others
Tg(x) shows an initial decrease to a minimum, then in-
creases with increasing x. Both types of behaviors
emerge in the formulation presented below and are readi-
ly understood in terms of physical ideas described earlier
in this paper.

Mean-field theory gives equations for the thermal aver-
ages ( S,'") and ( S' ') of the spins of the two types of
magnetic moments:

and

i i a, b j (Ai) j'
(7.1)

1 i' a, b j' (Ai') j
(7.2)

where J'", J' ', and J" ' denote the coupling between
spin pairs both of "type 1,"both of "type 2," and one of
each type, respectively. These equations were obtained in
the same manner as Eq. (4.2).

Equations (7.1) and (7.2) are complicated, coupled
equations. Nevertheless, by making some reasonable
simplifications, we can proceed along the lines of Secs. V
and VI to derive expressions for T"'(x) from Eq. (7.1)
and Tg '(x) from Eq. (7.2). We find that several parame-
ters appear. As a consequence, it is, of course, possible to
fit the VS data very well. This does not, however, pro-
vide any meaningful insight. Instead, we choose to em-
phasize the physical features which emerge. With this
goal in mind, we focus on the physical ideas and omit the
detailed calculations.

The principal quantities which appear in the expres-
sions for T' "(x) and T~ '(x ) are the length sales A, , Az. ,

g
and three cutoff lengths, A,,'", A,,' ', and A, ', ', where A. ',"and
A.,' ' are the lower cutoffs defined in Sec. V, for spin types"1"and "2," respectively, while A.,' ' is the effective, shor-
test distance between spins of diferent types. Using ap-
propriate forms for the 1,',~' (see Sec. VI), T~ "(x) and
T' '(x) are expressed in terms of the ratio of concentra-
tions x=cz/c, . Setting Tg"'(x)=Tg '(x) completes the
calculation.

Despite the involvement of several parameters, the two
di5'erent qualitative behaviors of T~(x) observed experi-

mentally (and described in the opening paragraph) readily
emerge from the expression we calculate. The key quan-
tities involved are the coupling strengths J& ~ [j,'d'],
Jz [j,'d'], and J&z [j,'d '] . The ratio J&z/J& (viz, the
ratio of coupling strengths between pairs of opposite
types, to coupling strengths between type-1 pairs} plays a
major role in determining the behavior of Tg(x). The
qualitative behavior of Tg(x) decreasing with the addi-
tion of type-2 moments requires that J&z/Jt be consider-
ably smaller than unity. If J&z/J, is of order unity or
greater, the opposite trend of Tg(x) increasing with x re-
sults.

The physical processes underlying this behavior in T
are readily extracted from our model. As moments of
type 2 are added, T tends to increase for the same
reasons given in Sec. VI, and also because the important
length scales A,,' ' and A,," ' decrease. ' However, the ad-
dition of type-2 moments also results in k and Az- de-
creasing, which eliminates moment pairs from contribut-
ing to T so that T tends to decrease. There is thus a
competition between increased sd scattering (tending to
lower T ) and diminished nearest-neighbor distances
(tending to raise Tg ). Provided that Jz and J,z are
sufficiently smaller than J&, the sd scattering will initially
dominate as type-2 moments are added and T will fall.
If enough moments are added, the nearest-neighbor
effects will eventually win out, T will stop decreasing
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and will eventually increase beyond its original value.
However, if J2 is of order of or greater than J&, the
nearest-neighbor effects will always win out and T will
increase monotonically.

VIII DEPENDENCE OF Tg ON c

The behavior of T is complex when impurities with
strong spin-orbit interactions (e.g. , Au, Pt) are added.
There are two major competing effects. First, the added
strong spin-orbit coupling enhances magnetic anisotropy
fields and leads to an anisotropic spin-spin interaction of
Dzyaloshinsky-Moriya form as shown by Fert and
Levy. ' The resulting anisotropy sharply increases T .
In fact, Bray, Moore, and Young have argued that T
would be strictly zero in the absence of anisotropy. Nu-
merical data from Monte Carlo simulations of models for
metallic spin glasses support this view although the possi-
bility of a small but finite T is not ruled out. ' On the
other hand, Ferd, de Courtenay, and Bouchiat have an-
alyzed the experimental data of Vier and Schultz and
have suggested that RKKY-type Heisenberg spin glasses
have a nonzero T in the limit of zero anisotropy. The
data in question were taken on Cu-Mn (4.0 at. %) with
added Au or Pt and on Ag-Mn (5.5 at. %) with added Cu
or Au. The issue of whether Tg is zero for fully isotropic
interactions is not crucial for the present discussion. The
most important point is that the anisotropic interactions
provide a mechanism which does increase T markedly.

Vier and Schultz have shown that the total anisotropy
constant, E,„;„at2.0 K is linear in the concentration of
Au, c... for the full range of c, , up to 5% for the spin-
glass alloys Cu-Mn and Ag-Mn with added Au. Howev-
er, the increase in T~(c, , ) with increasing c, , is not
linear and T tends to Aatten out at the higher values of
c, , The reduction in the rate of increase of Ts(c, , )

with increasing c, , is due to a second major effect. The
spin-orbit interactions break time-reversal symmetry and
the scattering of conduction electrons from spin-orbit im-

purities leads to a loss in coherence of spin-spin interac-
tions. As a consequence, length scales A, , associated
with spin-orbit appear in [J, ]„,as was pointed out by
Stephen and Abrahams. Within our formulation of T
in Sec. IV, the A, , length scales lead to suppression of
T in the same way as do the A,d length scales; the physi-
cal reason is the same in both cases.

The experimental trends found by Vier and Schultz
(see their Fig. 3) and further discussed by Fert, de Cour-
tenay, and Bouchiat show clearly the competing effects
of anisotropy enhancement and "self-damping" suppres-
sion of T due to the spin-orbit interactions. Good fits to
the data can certainly be obtained, but in view of the
number of additional parameters which must be specified
such fits would not add further insight at this point and
are omitted just as in the previous section.

Fluctuations of J; about the configuration averaged
mean value [J,"],„are very large relative to [J,"],„. As a
result, the effective interactions for a given sample in a
particular configuration cannot be properly described by
[J,"]„.Many attempts have been made in the past to de-
scribe a variety of experimental results by using [J,"]„or
a closely related modification. All of these attempts must
be regarded as unsatisfactory, irrespective of any ap-
parent empirical success. It has been shown that they
have no fundamental foundation, and an alternative ap-
proach has emerged from the work of several investiga-
tors. " The quantity ([J; ],„)' has been found to be a
more suitable measure of the strength of the effective in-
teraction between two spins at R; and R . We follow this
procedure.

To describe the dependence of the effective indirect ex-
change interactions on the composition of the spin glass,
we find that it is necessary to take account of intrinsic sd
exchange scattering and to maintain finite temperature
explicitly in the theory. The sd exchange scattering (and
any other interaction which breaks time-reversal symme-
try) introduces length scales which strongly affect the
strength of the interaction and its dependence on impuri-
ty concentration at a given spin-spin separation R. The
role of finite temperature is to provide a possibly large
but strictly finite range or cutoff for the effective interac-
tions. Finally, we have constructed a theory for T for
these systems which properly takes account of the corre-
lations which exist between the "random" interactions
and the distribution of local spin orientations in the spin
glass. An explicit form has been given in a mean-field ap-
proximation, T ~g, ([J; ],„)' . Although approximate,
we believe this result accurately depicts the Variation of
Tg with the concentration of nonmagnetic and magnetic
impurities. Our physical picture also applies to the case
of added impurities with strong spin-orbit interactions.
In fact, we have provided a comprehensive account and
physical picture of all of the features of the extensive data
of Vier and Schultz.

We want to point out very clearly that the experimen-
tal results cannot be explained by making use of the
commonly used expression for T, namely, T
~(g, [J, ]„)'~. This expression can be arrived at in a

number of ways, using mean-field theories just as we

have, but its predicted concentration dependence is in-

correct.
Of course, it is clear that we have omitted some physi-

cal effects which may be quantitatively significant, partic-
ularly at high impurity concentration in some systems.
However, the physical effects which we have described in

terms of the effective interaction strength and its role in

determining variations in T are essential for all metallic

spin glasses.
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