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Low-frequency light scattering from disordered hydrogen-bonded solids
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We present an analysis of the disorder-induced light-scattering spectrum observed in Raman-
scattering experiments from various kinds of disordered solids. In particular, the shape of the Raman
spectra in the e~O limit is discussed. In this limit hydrogen-bonded solids show an anomalous behav-

ior; the Raman spectra do not show the co frequency dependence expected in this kind of system. In this

paper we propose a model to describe low-frequency light-scattering spectra in disordered hydrogen-
bonded solids. The model is developed for a system composed of incoherent scatterers whose induced
polarizability is a very strongly varying function of the instantaneous relative distance between scatter-
ers. As a consequence, the usual one-phonon expansion of the induced polarizability is no longer mean-

ingful, and a full multiphonon treatment is carried out. The results of the model are found to explain
qualitatively the observed low-frequency behavior of the Raman scattering in these systems. Moreover,
a conjecture is made for the possible physical origin of the proposed induction mechanism in ice Iz.

I. INTRODUCTION

It is well known that all disordered solids exhibit a
wide Raman band, with a frequency range extending con-
tinuously from zero to a few hundred wavenumbers, thus
roughly covering the entire energy region of the density
of dynamical states. ' The physical origin of this spec-
tral component has been identified to be the disorder in
the effective atomic and/or molecular polarizability in-
duced by structural or by "electrical" disorder. If A is
the correlation length of the "disordered" variable, then
all the phonons with wavevector ~k~ =k (2n. /A are, in
principle, allowed to appear in the already mentioned
band with k-dependent coefficients, giving rise to the
disorder-induced light scattering (DILS).

A rigorous evaluation of shape, intensity, and polariza-
tion rules of DILS spectra is, generally speaking, a very
difficult task; indeed it implies the identification of the
microscopic mechanism, which modulates the effective
polarizability together with some knowledge of both the
structural disorder and the atomic dynamics. Simple
models have thus been developed in order to predict, at
least qualitatively, some general features of this spectral
component, ' and a detailed review can be found in Ref.
8. It has been shown that the spectral shape I(co) of the
DILS component in the low-frequency region (where the
atomic motion is well described by quasiharmonic
Debye-like excitations) is

I(co)=p(co)C(co, A)[n(co, T)+ I ]/co

(for the Stokes side), where p(co) is the density of states,
n(co, T) is the Bose factor, and I/co accounts for the usu-
al normalization of the harmonic phonon propagator.
The function C(co, A) represents the coupling coefficient
of the co mode with the radiation field and may depend on

+ A, exp( —co A /8m c, )], (1.2)

where c, and c, are the longitudinal and transverse sound
velocity, and A, and A, are mode-dependent intensity
coefficients. This behavior has been found experimentally
by Nemanich in the Raman spectra of As2S3 at low tem-
perature.

Something different happens in the class-b systems,
whose prototype is the silver iodide crystal in its n phase
(a-Agl). In this system the iodine lattice is ordered and
the dynamics of the iodine ions can be well described by
quasiharmonic phonons, while silver ions are topological-

the correlation length A. Since p(co) ~ co [and
n(co, T) =K& T/%co] for co~0, the low-frequency shape
of the spectrum is completely determined by C(co, A).

A qualitative analysis of the function C(co, A) can be
then conveniently carried out dividing the disordered sys-
tems into two broad classes: (a) those solids having a
high degree of dynamical correlation between all atomic
or molecular components (for example amorphous solids,
strong glasses, etc.) and (b) those systems in which, on the
contrary, the components responsible for the reciprocal
polarizability modulation are at least partially (dynami-
cally) uncorrelated (for example solid electrolytes).

In the first class mentioned the low-frequency behavior
of C(co, A) may be predicted to be co -like assuming
that ' '" the modulation of the effective polarizability in-
duced on each molecule by the surrounding ones can be
expanded in series of relative displacements and retaining
only the linear term (one-phonon approximation). A gen-
eral expression for C(co, A) has been derived by Martin
and Brenig

C(co, A)=co [A|exp( co A /8n c—f )
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+ A, exp( cu A /—8~ c,2)] . (1.3)

Many disordered solids that have been investigated
show a DILS low-frequency spectral behavior that can-
not be explained by either theory. Among them an in-

teresting class is represented by hydrogen-bonded solids
with some degree of disorder. Two typical examples are
ice Ih and KHzPO~ (KDP) in its paraelectric phase.

In the case of ice I& single crystals' ' it can be ob-

served that the behavior of DILS for co~0 deviates from
~, despite the high harmonicity of the acoustic modes
describing the low-frequency dynamics of this crystal.
Also the KDP spectrum taken in the x [zx ]y
configuration shows a very similar shape' ' in the low-

frequency region.
Other examples may be quoted, where the DILS devia-

tion from the co behavior cannot be explained thus pos-
ing the question: May DILS spectra of Debye-like har-
monic excitations be predicted to deviate from the co

scaling even in homogeneous dynamically correlated
disordered solids?

The predicted line shapes we mentioned earlier [Eqs.
(1.2) and (1.3)] can be derived from a microscopic point of
view, provided that the mechanism of induced polariza-
bility is well described by regular and smooth functions
of the distance between different molecules and/or of the
molecular reciprocal orientations; this will certainly be
the case in atomic, ionic, and molecular systems where
the action of the intermolecular forces does not cause a
severe rearrangement of the electronic states. ' The re-
normalized effective atomic or molecular polarizability
may in such a case be expanded in terms of displacements
from the equilibrium positions of each molecule or atom
(hereafter called "scattering units") giving rise (for
Debye-like excitations) to the already-mentioned first-

order leading term, while multiphonon processes deriving
from higher-order terms may be shown to be negligible in

comparison.
In this paper an additional mechanism for the polariza-

bility modulation is proposed. We suppose that, due to a

ly disordered and free to diffuse from site to site. ' Hence
their dynamics is almost totally uncorrelated from that of
the iodine ions. The main contribution to the disorder-
induced polarizability of the iodine ions is given by the
presence of the disordered silver sublattice; therefore the
light-scattering spectrum will reAect both the vibrational
dynamics of the iodine lattice and the diffusive motion of
the silver system. Since the Ag+ ions dynamics contrib-
utes to the light scattering well below the typical instru-
mental resolution' ' the entire observed spectrum can
be attributed to iodine lattice modes. Therefore in this
system C(co, A) contains the correlation function of the
relative displacement of dynamically uncorrelated atoms,
so that it turns out to be co independent in the frequency
range cu « 2m', /A. However, since the correlation
length A of the polarizability disorder is nonvanishing,
then the coupling coemcients for longitudinal and trans-
verse modes becomes decreasing functions of co', in this
case the expression for the function C(co, A) becomes'

C(co, A)=[A, exp( —co A /8n. c, )

rearrangement of the electronic states, the effective polar-
izability of a given scattering unit is drastically changed
even for a very small displacement of the atoms from
their equilibrium positions, where the polarizability itself
attains its maximum (or minimum) value. This mecha-
nism is thought to be relevant for systems like hydrogen-
bonded or strongly covalent solids. In the next section,
general relations for the light-scattering intensity are
brieAy reported in order to introduce the quantities of in-

terest in further calculations. Then, in Sec. IV, the
scattering equations are specialized to the proposed mod-
el for the polarizability modulation. In the last section
the assumption underlying the model will be justified on
physical grounds in the case of ice Iz.

II. BASIC LIGHT-SCATTERING THEORY

I(q, co) 0- g m n&m~nsI &rs(q, co),
a, P, y, 5

where

(2.2)

I
& &(q, co)= dt e' '(P &(q, r)P's(q, O)) .

2m.N
(2.3)

In these equations ~=co, —cu„q=k; —k„m (n) is the
polarization unit vector of the scattered (incoming) radia-
tion, whose frequency and wave vector are ~, (co; ) and k,
(k;), respectively, and the star indicates complex conju-
gation.

In atomic and/or molecular systems the microscopic
description of the polarizability density tensor P &(r, t )

can be carried out in a general way through the effective
microscopic polarizability tensor ~ &(t) associated to
each unit. Indeed P &(r, t ) can be thought of as the sum

of individual atomic (molecular) polarizability contribu-
tions ~'&(t) as

(2.4)

where R'(t) =x'+u'(t) is the instantaneous position of the
ith unit whose equilibrium position is x. So that, from

Eq. (2.1),

P p(q, t ) = g ~' p(t)e (2.&)

The effective atomic polarizability tensor vr &(t) will be,
in general, a quite complicated function of all the micro-
scopic variables of the system and will depend on the
kind of atoms, ions, or molecules the system is composed
of, as well as on the mutual interactions that perturb
their electronic states. These effects will depend on the
density of the system itself so that it is possible to define,
for a given unit, an ideal "bare" polarizability p'&(t) as

The light-scattering spectral density I(q, co) can be
written in terms of the correlation function of the spatial
Fourier transform of the macroscopic polarizability den-

sity tensor P &(r, t ),

P &(q, t)= fdre 'q'P &(r, t) (2. 1)

and reads'
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its polarizability in vacuo. Using a perturbative pro-
cedure, the effective polarizability can be then written
as the sum of the polarizability p'&(t) plus the "incre-
mental" (or "induced") term bp' t3(t)

m't3(t)=p'p(t)+bp'p(IRJ(t)j, ~) . (2.6}

Here the induced polarizability of the ith unit,
bp'&(IRJ(t)jJ, ~},can be expressed in terms of the
ground-state electrical properties of the units themselves,
and is a function of all the degrees of freedom of the sys-
tem.

Depending on the system under study, the relevant
contributions to the induced polarizability may be given
by different physical effects, namely the dipole —induced-
dipole (DID) effect, the electronic overlap, the effect of
dispersion forces, and so on.

For example, the effective polarizability coming from
the DID effect can be written as '

T,",'(k'&(t) )
Ap'p(t}= g g p'r(t) . .

3 pJst3(t) .
R'i(t)

(2.7)

A further example of a widely used model for the in-
duced polarizability is the bond polarizability model
where

bp'
&
= g I T"tI(R"(t)}f( ~R"(t)

~ }
jE NN(i)

+g( IR"(t)
I )& pj (2.8)

In the previous equations R'J(t)=RJ(t) —R~(t), the hat
stands for unit vector, T'tI(x)=3x x~—5 tt, NN(i) indi-
cate the set of nearest neighbors of unit i, and f(x) and
g(x) are appropriate smooth functions that can be de-
duced by ab initio calculation or by fitting experimental
data.

A generally employed hypothesis on the dependence of
the term hp'&(t) from the degrees of freedom of the sys-
tem is the pairwise additivity. One says that Ap &(t) is
written as a sum of terms each dependent on the relative
distance between the unit i and another unit j,
(j=1. . .N),

bp' p(IR'(t) j, ~.}=g II p(R"(t)) . (2.9)
J

In Eq. (2.9), II &(r) is the function that specifies the
dependence of the effective polarizability on the distance
between units. The explicit expression for II &(r) in the
particular case of DID and BP (bond polarizability)
mechanisms can be easily deduced from Eqs. (2.7) and
(2.&).

With this choice for bp'&(t), from Eqs. (2.5) and (2.6),
and in the limit of vanishing exchanged wave vector, Eq.
(2.3) can be written as

I &rs(0, co)= f dt e' 'g g (II &(R'J(t))II&s(R'J (0))} .
2~X

(2.10)

In Eq. (20) we have not considered the contribution from
the bare polarizability p &(t), which cannot give rise to
the DILS spectrum.

Usually in solid systems because of the existence of
equilibrium positions, the quantities II &(R (t)) are ex-
panded in series of relative atomic displacements of the
units i and j and only the first-order terms are taken into
account (one-phonon approximation). This approxima-
tion is a good one provided that the mean-squared rela-
tive displacements of the atoms from their equilibrium
positions are much less than the square of the typical
length scale of the function II &(r). This ensures that
higher-order terms in the expansion are negligible, or in
other words that II &(R'~(t)) is a smooth function of r
around the equilibrium configuration, where it attains the
nonzero value [Il &(R'J)], =II &(x'J).

Gaussian, which will be used as an adjustable parameter.
The hypothesis underlying our model are therefore

summarized as follows: The system is mechanically or-
dered, i.e., the motion of the units can be described by the
phonon formalism. The system is electrically disordered.
As discussed in the introduction this is a prerequisite for
the appearance of the DILS spectra in mechanically or-
dered systems. The system is composed of fully in-
coherent scatterers, i.e., the configurational average in
Eq. (2.10) is nonvanishing only if the pair of units (ij ) is
the same as (i'j') The cont. ribution to the effective po-
larizability coming from this anomalous term (in contrast
with all the other "normal" contributions for which the
one-phonon approximation holds) can be written as

11.,(R'J(t) ) =11.,(x'J iA „(t)

III. FORMULATION OF THK MODEL =all'J~„(t) (3.1)

In this paper we want to explore the kind of spectral
shape arising if one is forced to deal with all the terms in
the series expansion of II &(R'~) (multiphonon terms), i.e.,
when the induction polarizability function is a rapidly
varying function of R'~. In order to treat the problem
analytically we adopt a Gaussian model for this "anoma-
lous" induction mechanism. This choice has also the ad-
vantage that the length scale of the proposed mechanism
is naturally related to the standard deviation of the

with

A;, (t)=expI —Iu"(t).R ] /2cr j, (3.2)

where u'J(t)=u'(t) —u~(t) is the instantaneous relative
displacement and R =x' —I is the relative distance be-
tween the equilibrium positions of the units. o. represents
the length scale of the variation of the induced polariza-
bility; the lower cr, the more abrupt the variation. Under
the mentioned hypothesis Eq. (2.10) reduces to
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I tt s(0,co)= g b, II'~&b, II'~, f dt e'"(A,"(t)p((, ,"(0)) .
1

2~%,
(3.3)

We will now calculate the spectral shape arising from this contribution; its (possible} physical origin will be discussed
in the last section. Assuming that the dynamics can be described within the framework of the harmonic approximation
for a mechanically ordered solid and making use of the normal-mode expansion, we can write

1/2

IJ 1

2NM
e(kg) ik x, . ik x,. t~ (k)i „ i~ (k)t

k,, [~»«)]
e ' —e ' ak e +a* k»e (3.4)

where a)»(k), e(ky), and ak» are the eigenfrequency, the polarization vector and the normal coordinate, respectively, of
the phonon of the branch y and wave vector k. Let us define

I k»= [R e(kg)]e '(1 —e '"'
) .

[4NM(T co»(k)]'

Then we have

(3.5)

u'J(t) R i0) (—k)t + t'0)»(k)t

k» ak»e +a*—k»e)' 2(T kx

ky

(3.6)

which implicitly defines Ak& and Bkz as the real and imaginary part, respectively, of akim. In order to use a more com-
pact notation let us define further the quantities yk('»)(t) and Ck» (with e= —,+ ) as

(3.7}

and

(+)— ( —)
Cky ~kg & Cky ~kg &

so that Eq. (3.1) can be cast in the form

A(t) =exp[ g g yk'»(t)y'k'„'(t)Ck'»Ck'» ] .
k, y, e k', y', (."

The quantity of interest is the spectrum of the autocorrelation function of the quantity A(t), i.e.,

2(a))= f dt e' '(A(t)A(0)) = f'e' 'c(t)dt

with

(et)=(exp X X (Yk (tt) ) k(tk)+ k)( k) 0k)' (k0)]CkkCk't' )k, y, e k', y'e'

(3.8}

(3.9)

(3.10)

(3.11)

The calculation of c(t), given in detail in the Appendix,
yields the simple result

c(t)= 1

&[1+f(0}]'—[f(t)]'}
with

(3.12)

f(t) =4k' T g cos[a&»(k)t ] .
k»»

(3.13)

Provided one knows the dynamics of the system {i.e.,
the eigenvalues and the eigenvectors), Eq. (3.12) together
with Eqs. (3.13), (3.5), and (3.10) completely solves the
problem of the calculation of the light-scattering spectra
with the chosen model polarizability.

In order to show the main features of the resulting
spectra we will now explicitly calculate the correlation
function c(t) using a Debye model for the dynamics and

I

considering only the longitudinal acoustic phonons in the
long wavelength limit. In this limit (k R ~0) the ex-
pression (3.5) for I k» becomes

[Ro.e(4) ]'[R,.k]',
4MNo co»(k)

(3.14)

and the expression for f (t) follows:

4m. ki) T~R()] k)0 A
4

f(t)= f dk, cos[a) (k)t] .
5MNpg o co (k)

(3.1 5)

iR'i'f(t) =— St (t)
5 McL o.

with

(3.16)

Assuming a linear dispersion relation, i.e., (t)»(k) =c»~k~,
and kD =3Np/4m the final relation for f(t) then is
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FIG. 1. Low-frequency part of the spectrum of the scattered
light calculated according to our model. The different curves
refer to different values of the parameters A (see text). All the
spectra have been purified from the 5(m) contribution and have
been normalized to I(0).

COg) t

SL (t) =(cont )
' J x'cosx dx

0

=3(a)Dt) I2cont cos(a)nt)

+[(coDt) —2]sin(coDt)) . (3.17)

The above relationship (3.16) together with Eqs. (3.10),
(3.12), and (3.17) allows one to calculate the spectrum of
scattered light. It is evident that the parameters deter-
mining the shape of the spectrum are k&T/Mct (the
square of the ratio of the thermal velocity to the sound
velocity of the system) and R /o (i.e., the ratio of the
nearest-neighbor distance to the length scale of the in-
duced polarizability function). The low-frequency region
of the spectra are reported in Fig. 1 as a function of
co/coD for some values of the parameters

3 =(ktr T/5Mct )(~R ~/cr

These spectra have been calculated from the Fourier
transform of Eq. (3.12). It is apparent from Fig. 1 that
S(co)=const in the limit co~0. This behavior is due to
the relevance of the multiphonon terms enhanced by the
particular form chosen for the polarizability induction
mechanism.

FIG. 2. Arrangement of the oxygen atoms in ice Iq.

gens giving rise to a tetrahedral nearest-neighbors coordi-
nation. In the structure one can recognize the existence
of distorted hexagons with the oxygen atoms at the ver-
tices. The projection of distorted hexagons can be easily
seen both on the (aa') as well as on the (ca) or (ca')
planes.

Opposite to the oxygen sublattice the hydrogen atoms
do not have an ordered arrangement. It is well estab-
lished that one hydrogen atom is placed along each
0—0 bond, but the equilibrium position of a proton is
not at the center of the bond; in fact Lz o=2.765 A,
while the minimum of the two Lo H values is

Lo H=1.015 A. In such a way the H20 molecule is
preserved as the basic crystal unit (because of the high
energy required to create H3+0 and OH defects). Fol-
lowing the statistical model of Pauling there are many
possibilities of arranging the protons around a given oxy-
gen atom, even with the constraint of existence of the
H20 molecule, and this gives rise to an orientationally
disordered solid.

As far as the diffusive dynamics of protons is con-
cerned, in order to preserve the integrity of all the water
molecules and if the assumptions of the Pauling model
are accepted, no possibility exists of displacing any single
proton along the bond from one equilibrium position to
the other without getting other protons involved in the
motion. The diffusive dynamics of the protons can only
take place with the cooperative motion of a large number
of protons. For some peculiar situations, which may sta-
tistically occur, the motion can be performed by six pro-
tons. Indeed, if the proton distribution in some of the
distorted hexagons were those reported in Fig. 3, then the

IV. DISCUSSION AND CONCLUSIONS

Having calculated the spectrum of the scattered light
starting from the polarizability induction mechanisms of
Eqs. (3.1) and (3.2), we will now inquire as to the possible
physical phenomena that gives rise to this mechanism. In
particular we will focus our attention on a particular sys-
tem, i.e., ice I&.

The structure of ice in its hexagonal phase (Ir, ), as far
as the oxygen sublattice is concerned, is shown in Fig. 2.
Each oxygen atom is surrounded by four equivalent oxy-

A

FIG. 3. The two possible arrangements of hydrogen atoms in
a "hexagon", which give rise to delocalization of the proton
wave function. The oxygen atoms are at the corners of the
(nonplanar) hexagons, while the hydrogen atoms (~ ) occupy
one of the two equivalent position (+). Going from situation A
to B, all the protons shift counterclockwise.
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cooperative motion of the six protons along the bonds
should become possible. It can be easily seen that the
rearrangement of the six protons shown in the same
figure will be independent from the positions of all the
other protons of the system. In a very rough approxima-
tion (completely uncorrelated hexagons) the probability
of occurrence of such a situation is about 0.03, and all
these hexagons will be hereafter referred to as "activated
rings. "

The ground state of activated rings may be thought of
as resonating between the two equivalent configurations
shown in Fig. 3; this implies that all the protons are delo-
calized along their bonds, their total eigenfunctions being
either symmetric or antisymmetric with respect to the
center of the bond. Due to the proton delocalization, we
may reasonably assume that the electronic polarizability
of the activated rings is higher than that of nonactivated
rings.

Even small distortions of the hexagonal structure break
the symmetry of the proton Hamiltonian on the activated
rings, projecting protons (at least partially) in localized
states (A and B in Fig. 3); in such a way the polarizabili-
ty of the whole ring is drastically lowered, as required by
our polarizability model.

The mechanism we have introduced has the effect of
enhancing multiphonon processes [only even terms be-
cause of the symmetry of Ll(t)], giving its maximum con-
tribution in the low-frequency part of the spectrum. In
the particular class of systems mentioned earlier, the
spectrum may be thought of as the superposition of a
normal one-phonon contribution coming from "regular"
induction mechanisms (as the DID efFect, bond polariza-
bility modulation, electronic overlap, etc. ) plus the spec-
trum coming from the proposed polarizability modula-
tion model. This contribution will be most relevant in
the low-frequency region of the spectrum where the regu-
lar one-phonon term vanishes like co .

We want to stress that there are certainly multiphonon
terms coming from regular mechanisms but these may be
predicted to be negligibly small with respect to the one-
phonon term in all the frequency ranges examined, and
cannot be at the origin of the deviation observed in low-

frequency spectra.
Our model, as it stands, allows only a qualitative com-

parison with the experimental data; its value stays in the
fact that it affords a relatively simple picture of the mech-
anism leading to J(co)=const for low co in these com-
pounds. No attempt is made to put our results on a
quantitative basis; this would call for a detailed treatment
of the scattering rings, which is, at best, mathematically
complicated and beyond the aim of the present work.

Moreover, we think that the model can be of some
relevance in interpreting also the experimental results
from covalent disordered solids even if in these systems
the phenomena at the origin of a rapidly varying II(r) are
not easily identified. For instance, our model accounts
qualitatively for the results of Nemanich on As2S& (Ref.
8), which observes in the low-frequency part of his spec-
tra a temperature behavior typical of a two-phonon con-
tribution, while the high-frequency part behaves like a
one-phonon contribution.

APPENDIX

H= g d'or(k)[C&'r']
k, y, e

P= 1/ks T and Z is the partition function,

Z = dCk'~ exp —H
k, y, e

exp —
—,
' g ln[Pcor(k)]

k, y

(A3)

The calculation of the autocorrelation function in Eq.
(3.11) thus reduces to the evaluation of the integral

In this appendix we will evaluate the correlation func-
tion in Eq. (3.11). The thermal average of the physical
quantity Q, indicated by ( Q ), can be written as

(Q) =Z ' J g dC&z Q exp( PH), — (Al)
k, y, e

where H is the Hamiltonian of the system, which in our
case turns out to be

c(~)=Jr exP —,
' g in[Poor(k)] f g dCk'r'exP —g g Ck'r'Ck'r' Wk'k'r'r (A4)

with

k, y k, y, e k, ye k', y', e'

Wkk =5kk5 6 ) ~&(k)+[1 k (r)Yk (r)+7k (0)3 k' (A5)

In order to simplify the notation in the following we will use the index s to indicate the set of indexes (k, y, e). The ma-
trix W is then written as

[W)„,=Pcs, 5„+y,(t)y, t)(+y, ( . )0y, (0) .

If 8'is a nonsingular and positive-definite matrix, the following relation holds:

[GWG ']„.=5„.A, ,

(A6)

(A7)

where A., are the eigenvalues of W and G is 6N X6N unitary matrix. The argument of the exponential in Eq. (A4) thus
becomes

—g W„.C, C, .= —g (C,') k, (A8)
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with

C,'= g G„C,. ;
S

(A9)

moreover,

dC,
'

II c.=II d, G
=IId ~ .

$ S

We then have for c(t)

c(t)=a exp —,
' gin(Pcs, ) I IIdC,' exp —g(C,') A.,

S S
' 1/2

(A 10)

exp —,
' gin(Pco, )

S ~$
=exp —,

' g ln(Pc@, ) exp —
—,
' Tr ln( W)

S L

(Al 1)

A„=5„+pcs, . (A12)

In order to proceed further let us define the 6N X6N di-
agonal matrix 0,

If we now introduce the 2 X 2 a matrix as

a,"=5,, + gg,'g,', (A20)

So doing we can rewrite Eq. (Al 1) in the form

c(t) =exp I
—

—,
' [ —2 Tr ln(Q)+Tr ln( W)]]

=exp[Tr ln(Q ' WQ '
) ]=exp[Tr ln( Q ) ]

then

g a,,fj=g,',
j=1,2

(A13) and therefore,

(A21)

with

1
$$ $$

~scos'

Defining now

[y, (t)y, (t)+y, (0)y, (0)] .

(A14)

X„=5„.— g P;,g,'g,'
i,j=1,2

(A22)

with p=a '. Notice that so doing the calculation of the
elements of the X matrix has been reduced to the diago-
nalization of the 2 X 2 a matrix. We are now in condition
to perform the trace calculation:

gs = y, (t) Tr ln(Q ) =Tr g —[I—Q ']"
n=1

y, (0)
gs

=
v p~,

and the Q matrix has elements

Q„=5„+ g s,s,'

(A15)

(A16)
with

00 l 00

=Tr g [I X]"= g———Tr[Y]"
n n

(A23)

i =1,2

Our aim is now to diagonalize the 6NX6N matrix Q.
Defining X=Q ' and multiplying Eq. (A16) for the X
matrix, we can write

Now

P;,S,'S,' .
i j =1,2

(A24)

5„,=X„,+ gX„g g,'g,'. , Vs, s' .
i =1,2

(A17)
i j=1,2 $$$

Tr[Y]= +5„.Y„= g p;J gg,'g,'

Now, defining f,' =Q,X„g,' (so that X„.=5„.
, 2f,'g,' ) we can write Eq. (A17) in terms of the

quantities g,
' and f,' only, i.e.,

I,J=1,2
P,, rt, , =Tr[(Pg)], (A25)

i =1,2
g,

' 'g,' f,' g f,'g gtjg,
' =0,—Vs,—s' . (A18)

j=1,2 t

where g;.=a;j —6; . In the same way one can show that

g f,'[5;, + gs,'s,']=s,' .
j=1,2

(A19)

For the system in Eq. (A18) to have nontrivial solutions
then, for a given i, the coefficients of each g,'. must vanish,
that is

Tr[ Y"]=Tr[(PrI )"] . (A26)

Notice that Y is a 6N X6N dimensional matrix whereas p
and g are 2X2 matrices. After this lengthy calculation
the final result is now at hand: in fact, using the defining
equation for g, we have
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OO

Tr[ln(Q)]= g —Tr[(Prl)]"
&

n

Finally, the correlation function reads

c(t)=exp[ —
—,'Tr[ln(Q)]]

=Tr[ln(P ')]=Tr[ln(a)]=lndeta . (A27)
1=exp[ —

—,'ln deta]=
&deta

(A28)
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