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Based upon the well-known normal-core model for flux line in high-v superconductors and by correct-
ly taking into account the backflow current due to both pinning forces and other vortices, we developed
a theory for flux motion in the framework of the Bardeen-Stephen and Nozieres-Vinen approaches. %e
derived analytically the longitudinal resistivity p„, and the Hall resistivity p„~ as functions of the mag-
netic field in the region of flux flow. Our results explain qualitatively all the essential features of recent
experiments on p,~, including, in particlar, the observed negative Hall resistivity at low magnetic field in

certain high-T, superconductors. Furthermore, a long-standing problem concerning the expressions for
the viscous-drag force and the applied force on a vortex is discussed and clarified.

I. INTRODUCTION

Although flux motion in type-II superconductors is an
old subject, ' it currently enjoys a renaissance because
of worldwide research into many aspects of the mixed
state in high-T, superconductors. The Hall effect in the
mixed state has been an important problem for the under-
standing of flux motion in type-II superconductors.
Recently, transport measurements on some high-T, su-

perconductors with high critical currents have shown an
anomalous behavior of Hall resistivity p, in ceramic,
single-crystal, and epitaxial-film samples, especially an
unexpected sign reversal of the Hall voltage (or p, ) in

low magnetic field and at temperatures close to but below
the superconducting transition temperature T, . '

Furthermore, this behavior seems to be an intrinsic prop-
erty of these superconductors and could not be explained
with existing theories ' ' of flux motion.

An important theory of flux motion was proposed by
Bardeen and Stephen. It was based upon a local
normal-core model without considering the pinning
effect. In that work the dissipation of the system is as-
sumed to come from the region inside the normal core
and normal-superconducting transition boundary (a
closely related model was also suggested by Niessen and
van Vijfeijken ). Let us consider a single fiux core which
is parallel to the direction of the magnetic field (z axis,
unit vector k), carrying a quantum of fiux Co=bc/2~e~
(e =charge on the carrier). The drift velocity v~c of
charge carriers is assumed to be constant inside the core
and is described by a force-balance equation,

in local equilibrium with the lattice; i.e., the total chemi-
cal potential in the lattice frame of reference, p„„is con-
tinuous across the boundary of the flux core and there
should exist a contact electrostatic potential. Corre-
spondingly, the tangential component of the force field is
continuous, and the effective electric field is obtained as'

eE~c= (e/c—)vL XH, 2 for H ((H, 2 . (1.2)

BXVL(E)= (1.4)

where B is the magnetic induction (the average local
magnetic field over the whole sample). The longitudinal
resistivity p„and Hall resistivity p are defined by

(1.5)

where J&=1Vevz is the applied current density with N as
the charge-carrier density. Thus p„and the Hall angle

0& can be obtained as

8
pxx pn IIc2

Here the core radius a -g with g as the superconducting
coherence length, H, 2=Co/2ngis the u. sual upper criti-
cal field, and vL is the velocity of flux flow. Consequent-

ly, inside the core, one should have

8'T 8'7vr= — (vL XH, z)+ (vrXH) .
PIC mc

The measured macroscopic electric field is equal to"

foal v~c e
t-'Exc+ vxc XH,

7 C

0~= tan '
p /p„

C7=tan ' H
VlC

where ~ and m are, respectively, the momentum relaxa-
tion time and mass of the charge carrier, and E~c and H
are, respectively, the effective electric and magnetic fields
inside the core. In the Bardeen-Stephen (BS) theory, it
has been shown that the drift velocity v~c is equal to the
applied current velocity vz- in the absence of pinning
forces. In addition, the charge carriers are assumed to be

where H = ~H~, 8 = ~B~, and p„=(Ne r/m) ' is the
resistivity of the normal state.

Nozieres and Vinen (NV) proposed an alternative
model in which the electrostatic potentia1 is continuous
and there should be no contact potential at the core
boundary. The absence of the contact potential leads to
an additional driving force on the charge carrier inside
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the core. This total force derived by them is given by

e
eENC= —(vT —

vL ) XH, 2 .
C

(1.8)

vs v0+v T+vb

with vb"'= vb(r )a). If we choose the gauge as

(2.1)

e~vT= (vT vL
—)XH,2 for H &&H2 .

mc
(1.9)

The longitudinal resistivity is the same as that in BS mod-
el. However, the Hall angle is

When this result is substituted into Eq. (1.1) and again
vNc is taken to be vT, the basic equation in NV model be-
comes

with

A(r) = A (r)ee, (2.2)

A (r)=(1/r) f r'H(r')dr', (2.3)
0

where A is the vector potential, e& is the unit vector of
the 8 component, and H(r) is the magnitude of the local
magnetic field H [ =H (r)k], vo can be represented as

vo= (e@a/me)(ee/2n r) (e Ic—m ) A
ex.

OH =tan H2
mc

(1.10) = [eg, (r)/mc](ee/2m r), (2.4)

Obviously, neither Eq. (1.7) nor Eq. (1.10) can give the
sign reversal for the Hall effect.

Recently, there have been some suggestions that the
sign reversal may result from superconducting fluctua-
tions, "' two types of charge carrier, ' the existence of
fluxon and antifluxon, ' thermomagnetic effect, and a
special form for the drag force. ' ' Although these mod-
els are interesting, we feel that they are unlikely and are
based upon some artificial assumptions.

A simple explanation for the negative Hall effect based
upon the existence of pinning forces in the sample has
been given by us in an earlier publication. ' In this paper
we shall present a general and more detailed derivation of
the theory for flux flow in the presence of pinning forces.
The effective friction force acting on a moving flux is the
viscous-drag force plus the pinning force. In Sec. II we
shall set up the equation of motion for describing the flux
motion with the backflow current due to both pinning
forces and other vortices. In Sec. III the longitudinal and
Hall resistivities will be derived analytically. We demon-
strate that the observed negative Hall resistivity at low
magnetic field in some high-T, superconductors can be
qualitatively explained by our results. In the meantime, a
simple physical picture for this effect will be discussed.
In Sec. IV the viscous drag force and applied force acting
on a single vortex will be derived and discussed in detail.
Finally, in Sec. V a short summary will be given.

II. EQUATION OF MOTION FOR FLUX FLOW

In order to study the transport property in the flux-
flow region where the average driving-force density is
larger than the pinning-force density, we need to estab-
lish the equation of motion for charge carriers. For
high-~ superconductors, we shall adopt a mathematical
description using a local model and approximate the flux
line to have a normal core with radius a(-g'), i.e.,
normal-state region for r (a and superconducting-state
region for r )a.

Let vo(r) be the circular velocity distribution of the
superfluid flow of a stationary flux, where r=x+ y is the
position vector in the x-y plane, and vb(r) be the velocity
associated with the backflow current. Outside the nor-
mal core, the total velocity of a charge carrier can be
written as

where

VXv, +(eH/mc) =0,
outside the normal core we obtain

V.vout —P V X vout Pb b

(2.5)

(2.6)

Therefore it can be shown that the backflow velocity for
r )a takes the dipolar form (see Appendix A)

vt,"'=V[(vr vNC) r(a I—r2)] . (2.7)

Next, from the force-balance condition, we can, in
principle, establish the equation of motion for charge
fluid inside the core (per unit length in the z direction):

In Nm
FNc+F~ = m.a vNc .

7
(2.8)

The term (Nm/r)m. a vNc denotes the momentum dissi-
pated inside the normal core (per unit time). F~" and
FNc are, respectively, the effective pinning force and
external driving force acting on the charge fluid inside
the core. FNc can be represented as

FNC= f f f N eE+ —vNCXH —
VtMo dQ .

c
(2.9)

Here E is the local electric field, p0 is the chemical poten-
tial in the absence of currents and fields, and 0
represents the volume of the unit-length cylinder with
core radius a =a —0+ (sketched in Fig. 1). The terms
inside the integration represent, respectively, the electric
force, Lorentz force, and the force due to fluid pressure.
From the general formula for the local electric field,

$,(r)=[1 nr H(r—)I40]4o,
with

H(r)=(2/r )f r'H(r')dr',
0

as the average magnetic Geld inside radius r. In steady
state the flux is supposed to move uniformly at a constant
velocity vt, and the charge carriers drift with a uniform
velocity vNc inside the normal core. In consideration of
the charge-conservation condition V v, =0 and the Lon-
don equation
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mp„,=p'„",'=po+eP'"'+ —(vo+vT+vb"')~ (r &a),
2

(2.19)

mp„,=p',"„=po+e$'"+—vNc (r & a),
2

(2.20)

FIG. 1. Sketched profile for 0, 0+, X, and X

i3A
cBt

(2.10)

with P as the electrostatic potential and A = A(r —vi t).
It is straightforward to show that

1E= ——vI XH —VV(r),
C

V(r) =P —
vL . A/c .

(2. 1 1)

(2. 12)

V, = V (r & a) with V V, continuous at r =a,
(2.14)

(r &a) with VV& continuous at r =a,
(2.15)

Eq. (2.13) becomes

FNc f f f„[( N)V(eV2+po)

+(Nelc)(vNC —
vL )XH]dQ

Nef f f V—(V, —V, )dQ. (2.16)

The second term on the right-hand side of the above
equation is the contact force acting at the interface of the
core, which can also be represented as follows due to the
continuity of V V, and V V2:

F,„„=Nef f f V( Vi —Vz)dA

= f f Ne[V(a )
—V(a+)]ds

= f f Ne[$(a )
—P(a+)]ds,

(2.17)

(2.18)

where 0 and X+ represent, respectively, the volume
and surface of the cylinder with core radius a+ =a +0+
(Fig. 1). By defining p,„,as the total chemical potential in

the lattice frame of reference,

Consequently, we rewrite Eq. (2.9) as

FNc= f f f [( N)V(eV—+po)

+(Ne lc)(vNC —vL ) X H]d 0 . (2.13)

By constructing two special functions in whole space
(r &0) as

where P'"'=P(r & a) and P'"=i|i(r & a), the contact force
can be represented as

F„„=f f N[p', "„(a )
—p«,'(a+)]ds

+Nm vT+vb"' .vods

N p',"„a —p'„",' a+ ds

Ne+ (2vr vNc) X 4o .
2c

(2.21)

In the above derivation, the formulas of (Bl) and (B6) in
Appendix B are used.

When the temperature T is close to T, and a -g & lo
(mean free path of the charge carrier), the normal charge
carrier should be in local equilibrium with the lattice.
Correspondingly, the total chemical potential p„, should
be continuous at the normal-superconducting bound-
ary, ' i.e., p, ',"„(a )=p,',",'(a+). Under this condition,
F„„is given by the second term on the right-hand side of
Eq. (2.21). When T « T, and a -g « lo, it is hard to im-
agine how one can achieve an equilibrium distribution
which varies rapidly over a scale g. According to the ar-
guments by Nozieres and Vinen, p„, is not defined over
a scale g « lo (T« T, ); thus P should be continuous at
the normal-superconducting boundary [(()(a ) =P(a +

) ]
and F„„=Ofrom Eq. (2.18). In the intermediate region
[g(T)-lo], it is reasonable to believe that the contact
force should be in between the above two limiting cases.
For simplicity, we introduce a parameter y to represent
the contact force in general:

NeF „=y (2vT VNc) Xylo .
2c

(2.22)

=
—,'V(v, —vi)2 —(v, —vt ) XVXv,

=(e/m)[E+v, XH/c] —Vpo/m . (2.23)

Combining Eq. (2.11) and the London equation [Eq. (2.5)]
with the above equation, an important relation for r )a is
obtained:

The parameter y (0 & y & 1) should be determined by the
ratio g/lo and is insensitive to the magnetic field and pin-
ning force. From the above discussion, we expect that
y=0 as g« lo when P is continuous at the normal-
superconducting boundary and y = 1 as g & lo when p„, is
continuous. In order to treat our problem conveniently,
it is reasonable to consider y increasing continuously and
rapidly from 0 to 1 as T is increased from below To to
above To, where To is defined as g( To ) = lo.

On the other hand, a charge Auid outside the normal
core is governed by the Euler equation

vs c)vs
+v, Vv, =(v, —vt )-Vv,

dt Bt
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po+ eV+ ( m /2)(v, —
VL ) =const . (2.24)

Inserting Eq. (2.1) into the first term of the above equa-
tion, this term can be written as

f f (v, —vL) ds

Vy +Vg VL

Considering the continuity of VV2 and substituting Eq.
(2.24} into Eq. (2.16), FNc becomes

FNc= f f (Nm/2)(v, —VL) ds

+(Ne/c) f f f (vNc —VL)XHdQ —F,o„.
(2.25)

Combining Eqs. (2.22), (2.27), and (2.30) with (2.8), the
drift velocity of the charge carriers inside the core can be
shown to have the form

VNc=P[2[1 —y —a(1 —5)]VT Xk

+(2a+ y —1+H /h, 2)vNc X k

—(1+H /h, ~)VL Xk], (2.31)

where p=p h, &=(1 H/—2H, &)p, with p=p H, 2,

p =Te/mc being the mobility of the charge carrier. In-
serting the above equation into Eq. (2.30) and eliminating
VN&, we obtain the following equation of motion after
some procedure of vector algebra:

a )v T Xk+ a.2P v L Xk+ a 3PV T+a 4PVL + f» =D, (2.32)

+2(vT —VL+vb"') vo+(vo) ]ds . (2.26) with

In consideration of the symmetry condition
[vo(r)] =[vo( —r)], VP'(r)=vb"'( —r) and the antisym-
metry condition ds (r) = —d s( —r }, the contributions
from the first and third terms in the brackets of the above
equation are individually zero. Using the formulas of
(Bl) and (B6) in Appendix B, the integration over the
second term in Eq. (2.26) can be carried out. Substituting
this result into the Eq. (2.25), we obtain

Xe
FNc (2vT vNc vL ) Xko2c

Ne H+ (vNc vL ) X $0 Peon2c hc2
(2.27)

where go=/ok, in which $0=/, (a)=(1 H/2H 2)4—0,
with H,&=40/2ma, H=H(a) being the average mag-
netic field over the core, and h, 2=$0/2m. a .

In order to solve Eq. (2.8), it is necessary to know the
form of the effective pinning force. Since the asymmetry
of the backflow current due to the effective pinning force
is polarized in the direction of F'", i.e., F'n v'b~ =0, we can
write

a& =1—5+ P (2a —I+y+H/h, 2)

X [1—y+H lb, 2+5(1—y H Ih,—~)],
az = —(2a —1+y+H /h, 2)( 1+H Ih, 2),

a3 =2[1—a(1 —5)]—2y,

a4 = —(1+H /h, 2),
f=[F'"/(aNego/c)][1+P (2a —I +y+H /h, z) ],

(2.33)

Up to now, we have established the equation of motion
for a single vortex. In the following section, we shall
solve Eq. (2.32) to obtain vL in terms of vT and F»".

III. LONGITUDINAL AND HALL RESISTIVITIES

It has generally been accepted that the pinning force
F should be antiparallel to the direction of the flux-flow
velocity VL. After solving Eq. (2.32) by choosing VT
along the x direction, we obtain x and y components of
VL as

F»'=a(Ne/c)v'b» X/0, (2.28)
vL„=(—I/a4) [ [1—y+H Ih, 2+5(1—y H lb, 2)]uT—

and set F'"=aoF, where vbn is the velocity of the
backflow current due to the pinning force inside the nor-
mal core. F is the pinning force acting on a flux. a and
ao are coefficients to be determined in accordance with
certain physical considerations which will be presented
below. %'hen the intrinsic backflow current with velocity
vbo induced by the other vortices is taken into account,
the total backflow-current velocity is written as

D„F~"/(a/ON—e lc)],
uL =(I/a4P)[(1 5)vT DF'"/—(agoNe—/c)],
where

D„=sin8& IP+cos8~(2a —1+y+H/h, 2),
D» =cos8~+P sin8&(2a 1+y+H lh, 2) .—

(3.1)

The longitudinal resistivity in the flux-flow region has the
form

in in in
Vb —

Vb& +Vbo
—VNg Vy (2.29)

Pxx
P„(T)

(1+H/2H, 2)H, 2

Fp"=a(Ne/c)[VNc (1—5)vT] X—go . (2.30)

For simplicity, the backflow current due to the other vor-
tices is assumed to be uniform. It should be smaller than
Jz- and in the opposite direction of the applied current in
ordinary cases, i.e., vbo= —5VT (0~5 & 1, and 5 is not
close to 1). Thus Eq. (2.28) becomes

D» (@oaolgoa )F
X B(1—5)—

s~/c
(3.2)

where F» =(B/40) ~F» ~
is the average pinning-force den-

sity. Considering the fact 0& &( 1, we neglect the
higher-order term in 8& (i.e., sin8~ —8~, cos8~-—1) and
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have D =1. From the physical consideration that flux

lines will flow (p„~0) when the average driving
Lorentz-force density exceeds the pinning-force density

[JrB (1—5)/c ~ F ], we obtain the relation between a
and o.o:

By setting y=( /a, Eq. (3.2) can be rewritten as

B ( 1 —5)—
F» l( JT lc)

p„=p„(r)
yH, 2+H /2

(3.4)

4o

4O

H (3.3}
Here the longitudinal resistivity is independent of the pa-
rameter y. Meanwhile, the Hall angle satisfies the equa-
tion

Pxy
gH

pxx

ULx

ULy

=@[ [1—y+Hlh, 2+5(1—
y

—H/h, 2)]—[F /(JTB/c)](8»1/p)
—

( 2a —1 +y +H /h, 2 )F /( JTB /c ) ] /[ 1 —5 F l( J—TB /c ) ] .

Therefore the Hall resistivity is derived as

p„=p„„Po( [y H /2H—,2)(1—y )(1+5)/(1 —5)+ (H /H, 2) ] [ 1 F /[ Jz—B (1—5 ) lc) ] I

—2y(1 H/2H—,2)[a —(1—y)/(1 —5)]F /[JTB (1—5)/c]),

(3.&)

(3.6)

(Nm/r)na vNc+F„„„+F„„+fd„, =0, (3.7)

where fd„ is the viscous-drag force acting on the flux

with Po=p H, 2. Now let us examine the asymptotic be-
haviors of p„„and p„. When B~H, 2 (F~~O, 5~0),
the normal cores of the flux lines will touch each other
and B=+o/m. a =H„, which leads to y= —,'. Conse-

quently, both the longitudinal and Hall resistivities
in Eqs. (3.4) and (3.6) will reduce to their normal-
state values as B~H, 2, i.e., p„~p„and
Pxy ~PnPmHc2 —Hc2l + '

Next, from Eq. (3.6), it is apparent that there exists a
region near B-F /[J&(1 5)/c—] in which p„» /Po &0 so
long as [a—(1—y)/(1 —5)]&0. Intuitively, the pinning
force should almost totally act on the bulk of the flux
core, i.e., ao=1. Therefore, so long as y is close to
1(T- To ) and the effect of the pinning force on p„ is not
negligible, the negative Hall resistivity (p,» /Po & 0)
should be observable in experiments.

Furthermore, we shall show F0=1 from the considera-
tion of energy conservation. Since the flux flows steadily,
the force-balance equation for a flux can be written as

I

due to the surrounding superfluid and F„„,is the total
momentum dissipated in the transition layer
(a & r &a ) per unit time,

F„„„=Nm f f v, (vL —v, } ds

VNC VL VNC

=Nm f f [vo(vz —vT) —vov'„"'] ds . (3.8)

In the above derivation, Eq. (2.1) has been employed. Us-
ing formulas (B7) and (B8) in Appendix B, the integra-
tions in Eq. (3.8) can be carried out; F„„„becomes

F,»,= (Ne/2c)(vNc —
vL ) X Po . (3.9)

Since the effective frictional force acting on the flux is
fd g

+Fp the total power dissipated to the lattice is
w = —

( fd„+F ) vL and it should be equal to
wNc+ wTL, where wNc =FNc.vNc is the Joule power dis-
sipated in the bulk of the normal core and wT„ is the
power dissipated in the transition layer, which is obtained
as

wTL=(Nm/2) f f v, (vL —v, ).ds —f f vNc(vL —vNc) ds

=Nm J J vo. [v&(vt —vr)+vrvb"'+vb"'(vt vr)] ds-
=(Ne/2c)[[(vNc —vI ) X4'ol'vNc+2[(vNc vz-) Xko] (vNc "I.)] . (3.10)

In the third step of the above derivation, Eqs. (B7), (B8), and (B6) in Appendix B have been employed. From Eqs.
(2.27), (3.9), and (3.10) and after some algebra, we obtain

(FNc+F +F „).vL =wTL+wNc —y(Ne/c)[(vNc "r)Xko] vT]

=wTL+ wNc y( 1 —H /2H p)F vr (3.11)



46 THEORY OF FLUX MOTION WITH BACKFLOW CURRENT IN. . . 289

On the other hand, from Eqs. (3.7) and (2.8) and by requiring w =wNc+ wrL, we should have

(FNc+F,»„+F,»).vt = —(f«,s+F&") vL wTL+wwc+(1 —ap)F» vL . (3.12)

Since F .vz =F uTsin8& (where 8& «1 and P«1), F vL = F»—uL, and vz -PvL [see Eq. (3.1)] and comparing Eq.
(3.12) and Eq. (3.11},we obtain the relation up= 1. The Hall resistivity then becomes

p =p,„Pp[ [(y—H/2H, z)(1 —y)(1+5)/(1 —5)+(H/H, z)](1 Hp
—IB)

—[(1—y)HIH, z+2y(y —5)][H /B(1 —5))], (3.13)

The above equation is valid only for
8 & H~ =F~ I[JT(1 5) l—c], where F and 5 depend on 8
and temperature T. From Eq. (3.4), it shows p„» =0 at
B =H . It also indicates clearly that there is a region in
which Hall resistivity has its sign reversed in the
Bardeen-Stephen limit (y =1), when 8 is slightly larger
than H . Moreover, the value of the Hall angle is of the
same order of magnitude as (or less than) that of the
normal-state Hall angle H„=tan '[(erlmc)H], and it is
certainly very small as a result of H„being very small.

In experimental measurements the negative Hall signal
could only be observed for both y and F /(Jz Ic) being
not too small. It should be noted that we will recover the
Bardeen-Stephen result by setting 5=0, y = 1, and F =0
and recover Nozieres-Vinen result by setting 5=0, y =0,
Fz =0, and neglecting the term H /H, z. '

A physical picture for the negative Hall effect can be
understood as follows: As y=1, FNc in Eq. (2.27) be-
comes

8sR H 3H
x+ —x

2Hc2 BsR 2Hc2
(3.14)

FNc- (Ne/2c)vL —X@p+(Ne/2c)(HIH, z)vNc X@p,

the charge carrier feels the Lorentz-like force density
fI-BI@a times the second term in the above equation,
and the pinning-force density fp-j'byXB/c, with
jb" =Nevb" So long as. H/H, z is small enough to enable
the inequality i f~» i

&
i fi» ~

to hold, the charge carrier will
have a tendency to move along the y direction. In order
to balance the above tendency, a macroscopic electric
field ( ~ the first term of the above equation) will have to
be induced along the negative-y direction (i.e., p„» & 0) by
flux motion with vL (0. In Fig. 2 we show all the
effective forces acting on the charge carrier for both the
negative Hall effect ( f ~

&
~ fi i) and positive Hall effect

(~f»»~ & ~fi»~). In other words, if the pinning effect is
neglected, the Hall resistivity should always be positive.

Based upon Eq. (3.13), by solving the equations p„=0
and dp„ /dB =0, we can obtain the sign-reversal point
BsR and minimum point B for p „vs B, respectively.
However, the quantitative results should depend on the
form of H (8) and 5(8). In the following we shall dis-
cuss some simple cases by setting 6=0 within the approx-
imation K-8 and the assumption that H is indepen-
dent of 8 in the negative-Hall-effect region.

(i) When T is well below Tp (y —1, y =0) and
8 & Bp =H& (Bp ), the equation for solving BsR is

Hence

yH 3H
BsR= —— 1+ H3' /—(2H, z ) 2', z

(3.15)

Since H &&H, 2, there exists a narrow region
Bp(B &BsR, in which the Hall resistivity is negative,
but its magnitude is estimated to be very small
[-p„P(H/2H, z) ). Meanwhile, p„» has an approximate-
ly linear 8 dependence with slope 1/Nec as 8 & BsR.

(ii) T- Tp (g= lp, y = 1) and Tp is not very close to T, ;
we have the following two equations to determine BsR
and B

BsR H H—2y =0
H2 H2 BsR

HHp B
H, 2 H B

—1 —X =0.

(3.16)

(3.17)

In obtaining Eq. (3.17), we have approximated
(y+ 8 /2H, z ) as y in the denominator of p„„because
8 l2H, z « 1. Bsa and 8 can be solved as

BsR—-—,'(I+gl+2yH, z/H )H
' 1/3

Hp .
yH, 2

m

P

(3.18)

(3.19)

X

(E)
X

(E)

VL

(a} (b)

FIG. 2. Effective forces on the charge carriers (a) for the pos-
itive Hall effect (the Hall angle 0& )0) and (b) for the negative
Hall effect (8& (0).

Meanwhile, the maximum negative Hall signal is estimat-
ed to be p ——2p„p Bp= 2Bp/Nec, which is in the
same order of magnitude as the normal Hall signal and is
in the observable region for experimental rneasure-
ments. ' It is worthwhile to point out here that even if
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the pinning-force density depends on the magnetic field,
formula (3.18) still holds so long as I is represented as a

0 f BsR i.e., H~(BsR )

(iii) For fixed B and when T is well below To, we expect
g « lo and y =0; the Hall resistivity as a function of tem-
perature is mainly affected by the factor-B [1 F~—/(JrB/c)] /Nec, and it will increase as T in-
creases because the value of F~ decreases. When T- To,
y increases rapidly from 0 to —1; therefore there is an
apparent reduction of p near To. '

(iv) When B»F„/( Jr /e), we always have
p„-B/Nec.

All these results are in qualitative agreement with re-
cent experimental measurements" ' on p y A
schematic diagram for p as function of B is shown in
Fig. 3.

It is interesting to note that, prior to Aux flow
(B &Bo), the longitudinal resistivity may become finite
because of flux creep at finite temperature, while the Hall
resistivity p, is still zero and not observable. This is be-
cause the flux lines are pinned, and they are only able to
creep along the direction (Jr X B} assisted by the thermal
activation. This process only induces the longitudinal
resistivity. Thus t98=0 and p =0 for B &Bo. Conse-
quently, the magnetic field for the observed longitudinal
resistivity starting to become finite is always lower than
that for the Hall resistivity. This phenomenon is also
consistent with the experimental observation. ' ' More-
over, measuring the threshold field Bo provides a direct
method to probe the pinning force for experiment. Here
we wish to emphasize that the experimentally measured
resistivity p„„doe snot equal p„„ in Eq. (3.13) near the
Aux-creep —to —Aux-flow transition region. However, we
may expect that p -p, when the system is well inside
the flux-flow region.

We also would like to point out that in the present pa-
per only the cases g & lo and g= lo are considered. How-
ever, the negative Hall resistivity was also observed a
long time ago in some conventional low-temperature dir-

I 1

[
I ) I I

ty superconductors (lo «g). We speculate that there
may exist some kind of link between negative p„ in the
dirty case and the present work. This point can be seen
from the physical picture for negative Hall resistivity
given earlier. Qualitatively speaking, the dirty supercon-
ductors might also be roughly described by a BS normal-
core model to some extent. Thus the negative Hall effect
observed in some dirty superconductors (y=1) should
originate from the existence of large pinning forces in
those samples.

Finally, it is worthwhile to point out that, when To is
very close to T, and (y —5) has significant positive value
only in a very narrow temperature region

~
T —

To~ /To &&1, there should be no observable sign re-
versal of the Hall effect in experimental measurements.
This may be the case for some superconductors.

IV. DRAG FORCE AND MAGNUS FORCE

The viscous-drag force acting on a flux line is a very
important physical quantity for describing flux Aow in
type-II superconductors. However, there seems to exist a
controversy about this problem. Two different
viewpoints have existed so far. One of them is the drag
force proportional to the applied current, i.e.,
fd„~= —azvv~, which was proposed by Nozieres and
Vinen with azv as a constant. By neglecting the second
term [(Ne/c}(vzc vL )XH]—on the right-hand side of
Eq. (2.13) and replacing Po by 4O, the authors in Ref. 8
showed that the Aux line is subjected to a similar Magnus
force found in liquid helium, which should be balanced
by the viscous-drag force. The other viewpoint is the
drag force proportional to the velocity of flux flow, for
example, fd„g= —gvL, with g as the coefficient of viscos-
ity. However, if the applied force on the flux line is still a
Magnus force, it should lead to the Hall angle approach-
ing ~/2, in sharp disagreement with experimental obser-
vations. ' In view of this difficulty, Bardeen argued that
the applied force should be Lorentz force
(¹/c)vr X4o. ' In this section we shall present a
unified treatment and description for this problem.

We shall show below that the applied force acting on
the flux line is exactly the Magnus force in the absence of
the backflow current. The applied force should be equal
to

F=Fee+F„„„+F„„. (4. 1)

Substituting Eqs. (2.27) and (3.9) with the condition
vz- =v~c into the above equation, we easily obtain

NeF= (vr —
vL ) X@o,

C
(4.2)

I ) I l I

50 100

FIG. 3. Schematic drawings for p„~ as a function of B at four
typical temperatures (choosing gH, &-10Bo). (1) T = T, . (2)
T =To, y=1. (3) T& To, y=0.6. (4) T«T„y=0. In draw-
ing, the measured data for (1/Nec), Bo, and p „(B&BsR) in
Ref. 14 are employed approximately.

vz =P(1+H/h, 2)(vz. —vi ) Xk . (4.3)

Combining the above equation with Eqs. (2.8), (3.7), (4.1),
and (4.2), we immediately obtain the drag force in the NV
approximation,

which is exactly the Magnus force. Next, let us discuss
the drag force in the absence of the backflow.

In the NV limit, y =0. From Eq. (2.31}we can write
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40Ne /c 40Ne /c
vr (4.4)

p(1+H/h, 2) pa(y+H/2H, 2)

(N—e 40p„/H, z)vr (H/H, 2 «1) . (4.5)

(ii) In the BS limit, y= 1. Also, from Eq. (2.31), we
have

vr =p(H/h, 2)vr Xk —p(1+H/h, 2)vL Xk; (4.6)

therefore the drag force in the BS approximation be-
comes

fdas, =(Ne@0/c)[vL Xk po(g—+H/2H, 2)vz

two limiting cases.
(i) y=0,

¹40/c
VZ-

p0(y+ H /2H, 2 )

H—/2H, 2+ (H /2', ~) F~y+H /2H, 2

F, xk
+

po(y+ H /2H, 2)

(ii) y= 1,

(4.12)

+Pa(H /H, z )v r ] (4.7)

=(Ne/c)vL X@o (Ne@—cpa/c)vL (H/H, «1) .

(4.8)

The real drag force here is not proportional to VL, and
the additional part (Ne/c}vL X@0 should be included
even in the case H/H, 2«1. However, this additional
force has no contribution to the power dissipation
—fd„vL. It is interesting to note that, if we set
fd„s= —gvL, with q=Ne@cp0=@0H,2/p„c, we can
rewrite the force-balance equation F+ fd„=0 for the
flux line as

¹ ABs
vy X4p+ fdrgg

C
(4.9}

So long as we refer to fd„g as the "effective force" for
balancing the Lorentz force, we recover Bardeen's argu-
ment mentioned before.

(iii) In general case 0 & y & 1, the drag force takes the
form

fd„=—
( Ne+0/c)

X yPvL +
1 —yP (1—y+H/h, q)

p(1+H/h, 2)

(4.10}

When y= 1, the above equation reduces to Eq. (4.8} in
consideration of Eq. (4.6) and neglecting the term
(H/h, 2). The form of fd„ is similar to the expression
proposed in Ref. 15 except for the prefactor of vz. and
vL . However, it should be emphasized here that no nega-
tive Hall effect can be obtained in the absence of pinning
forces.

When the backflow current only due to the pinning
force is taken into account (5=0), the applied force be-
comes

fd„= (Ne/c)vL X@0

(Ne—@apa/c)[(g+H/2H, z)vL +(H/H, 2)vr]

Po(2y—+H/H, 2)Fp Xk (H/2—yH, 2)Fq . (4.13)

Although the term which contains (F Xk}has no con-
tribution to the energy dissipation, it has a significant
effect on the Hall resistivity. Meanwhile, we should keep
in mind that the total friction force acting on a flux
equals the drag force plus the pinning force.

Finally, we would like to point out that since the drag
force cannot naively be written in the form —gvL, the
thermomagnetic effects in most cases will become very in-
teresting. This problem will constitute a subject for fu-
ture study.

V. CONCLUSIONS

Based upon the local normal-core model of Bardeen
and Stephen and in the light of work by Nozieres and
Vinen, a general treatment of flux flow with backflow
current in high-~ superconductors has been developed.
In the calculations presented, we have established the
equation of motion for a flux line moving in the mixed
state of type-II superconductors. The longitudinal and
Hall resistivities have been derived analytically as a func-
tion of the magnetic field in the region of flux flow. The
results qualitatively explain all the essential features of re-
cent experimental measurements on the Hall effect in
high-T, superconductors. In particular, we demonstrat-
ed that the observed negative Hall resistivity at low mag-
netic field in some high-T, superconductors can be ex-
plained in terms of the existence of pinning forces in the
sample, which have solved a controversy about the Hall
effect in the mixed state. Meanwhile, a simple physical
picture for the negative Hall effect was given. We also
calculated the viscous-drag force and elucidated the rela-
tionship between the applied and drag forces acting on a
flux. The correct expressions obtained for all those forces
should be useful for further study on the thermomagnetic
properties in the mixed state of type-II superconductors.

F= (vr vL ) X@0+(H/2', 2)F-
C

(4.11)
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APPENDIX A APPENDIX B

According to the second equation in Eq. (2.6), a scale
potential pb can be introduced to describe the backflow
velocity vb" outside the core:

out
pry (Al)

From the first equation in Eq. (2.6), we obtain the Poisson
equation for tttb ..

V Pb=0. (A2)

+ g [A cos(m8)+B sin(m8)] C r +D 1

m =1 r

(A3)

When r ~ os, tttb should vanish. This boundary condition
leads to C =0 (m =0, 1,2, . . . ) and DO=0. Thus Eq.
(A3) reduces to

ocj
1

t)Itb= g [A cos(m8)+B sin(m8)]
m=1 r

(A4)

On the other hand, considering the condition V.v, =0,
we have the boundary condition at the surface of the
core,

VNc e„=[vT+vb"'(a)+vQ(a)] e„,

The general solution of Eq. (A2) in two dimensions is
given by the expression

Po = Co+ Dain( r)
D X/0 .

2c

In the above derivation, Eq. (2.4) and the following stan-
dard coordinate transformation have been employed:

e, =cosine +sin8e

e= —sin8e +cos8e

ds=r d8e„.

(B2)

(B3)

(B4)

(2) From (A9) and by setting vT vNc=b, v e„—it is
straightforward to show

1 2x

r r

and

Nm f f v 'bvzds=N mb, v f f e„vods

Here we shall derive four formulas which are used in
our text.

(1) Let us assume D to be a constant vector and choose
the unit vector e„along the direction of the vector 0; we
obtain

Nmf f Dvods

= (¹Polc)(D/2')
X J J' ( —sin8)(cos8 e, +sin8 e~ )d 8

where e„ is the unit vector along the r direction. Since
vo e, =0 [see Eq. (2.4)], it follows that

Ne

2c
(VT VNC) XPO (B6)

vb"' e, l. =(VN( v T) (A6)
(3) It is also easy to carry out the following integration

and obtain

This leads to

(vNc VT)

ay,
[ A cos(m 8)

a m=1

+B sin(m 8)] m
am+1 (A7)

NmJ f voDds

= (Ne ttpo/c )(D/2m).
X J f ( —sin8e„+cos8e~)cos8d8

DXPO .
Ne

2c

(4) Finally, we have

(B7}

A, cos8= —a (vNc —vT).e„.
Therefore

(AS)

vb V (vT vNc). r
r 2

(A9)

From the above equation, we easily obtain B =0,
=0(m%1), and Nm v,vb"'-d s

= (Nettio/c)(hv/2m. )

X f f ( —sin8e„+cos8e )( —cos8)d8

Ne
(VT VNC) X4'0

2c
(BS}
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