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Dielectric response function of small polarons (SP’s) is studied. The Debye radius is small, which
reduces a short-range Coulomb repulsion to the magnitude of the order of the small-polaron (SP) band-
width. Polaron-polaron attraction is enhanced by screening. A critical temperature of the bipolaron
formation is found. The dielectric response becomes dynamic in a very low-frequency region. A multi-
phonon diagram technique is developed to obtain vibration excitations, that are a mixture of phonons
with polaronic plasmons. A microscopic model of the anomalous extra modes, observed in neutron-

scattering experiments in La,CuQ,, is proposed.

Holstein, ! and some other workers (for review, see the
books in Ref. 1) showed in the framework of the one-
electron problem that at some critical value of the cou-
pling with phonons

A>A,, (1)

the electron prefers tunneling in a very narrow polaronic
band, having a half bandwidth

W=D exp(—g?), (2)

which lies well below the bare one, with the half band-
width D. Here

g=22 3)

@q

with w, being the characteristic phonon frequency. It has
now become clear,? that the traditional theory of a
many-electron system® rules out the possibility of the lo-
cal deformation of the lattice, thus preventing the system
from relaxing into the lowest-energy state.

From a more general viewpoint, the instability of a bo-
son vacuum develops in a system of interacting bosons
and electrons under the critical value of A, resulting in a
polaron collapse of the electron band. A simple estima-
tion with the perturbation theory in 1/A shows* a jump-
like transition from wide-band electrons with the power-
law enhanced effective mass® to narrow-band small pola-
rons with an exponentially large effective mass, Eq. (2), at

1
A= (—2;—)17 <1, (4)
which agrees well with some variational>® and Monte
Carlo’ calculations, z being the coordination lattice num-
ber.

This condition demonstrates the necessity of the devel-
opment of a theory for a many-electron system, strongly
coupled to phonons, taking into account the nonadiabatic
character of the carrier motion with the renormalized
Fermi energy:

ep=Epexp(—gl) <W<w, . (5)

Low-temperature properties of a many-polaron system
were first studied in Ref. 8. The ground state of electrons
strongly coupled to phonons occurs as a charged Bose
liquid, consisting of singlet or triplet pairs [small bipola-
rons (SB’s)] with the charge 2e and moving in their nar-
row band with a heavy effective mass m** > m*.

However, not so much was done for the understanding
of many-body effects in the normal state of SP’s at tem-
peratures well above the temperature of SB formation. In
our recent paper’ we developed a multiphonon diagram
technique to obtain renormalized phonons, using the in-
verse coupling constant A~ ! as a small parameter.

In this paper, the dielectric response of a many-polaron
system and the influence of the polaron-polaron interac-
tion on the phonon frequencies are studied. In the first
section, using the familiar Holstein-Lang-Firsov transfor-
mation' I determine a zero-order SP Green function
(GF), which contains the main part of the electron-
phonon interaction in a diagonal form leaving aside the
rest in the form of the polaron-polaron interaction and of
the residual SP-phonon interaction. For those interac-
tions I adopt the ordinary random-phase approximation
(RPA) and the perturbation theory in the inverse cou-
pling A ™!, correspondingly. With RPA the static and the
dynamic response of SP’s are calculated. Because of the
exponentially large mass renormalization, Eq. (2), the De-
bye radius and the plasma frequency are much smaller
than those for a weakly coupled electron-phonon system,
and temperature dependent at 7> W. SP’s screen
effectively the on-site Coulomb repulsion, reducing it to
the value of the order of W. On the contrary the on-site
attraction, if it exists, is enhanced by the many-body
effects. In Sec. II I generalize our expression for the pho-
non self-energy,® taking into account the polaron-polaron
interaction. The SP polarization loop is obtained in a site
representation. The spectrum of vibrational excitations is
found. One of the most interesting results is that pho-
nons are coupled with polaronic plasmons forming a type
of vibration excitations, which are a mixture of the ordi-
nary phonon and the low-frequency plasmon. These vi-
brations are used to explain the extra modes, observed in
neutron-scattering experiments'® in high-T, metal oxides.
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46 MANY-BODY EFFECTS IN THE NORMAL-STATE POLARON SYSTEM

1. GREEN FUNCTION AND DIELECTRIC
RESPONSE OF SP’s

After the familiar Holstein-Lang-Firsov transforma-
tion' and averaging with the phonon density matrix one
obtains the free-polaron GF in the form (see for details
Ref. 9)

Gk(wn)z(iwn_8k+€F)_l (6)

with o, =7T(2n + 1), which corresponds in the site rep-
resentation to

G;ilw, )=% > exp[ —ik-(m—n)](iw, —g tep)h.
k
(7
Here
e(k)= 3 o(m)exp(ik-m) (8)

is the SP energy dispersion in a narrow polaronic band,
o(m—n)=¢t(m—n)exp[ —g*m—n)] 9)

is the SP hopping integral, averaged with the density ma-
trix, 0 ={(&

ij?s
2 =L 2 w(g) _ .
g%(m) N %y (q)coth 5T [1—cos(q'm)], (10)

with T being the lattice temperature, ¢(m) is a bare hop-
ping integral in a rigid lattice, and N is the number of lat-
tice sites. The normalization of electron energies is
chosen in such a way that the atomic level with the pola-
ronic shift,

-1 5.2
E, N §q‘,7 (qQw(q) , (11)

corresponds to zero energy with y(q) and w(q) being the
matrix element of the electron- phonon Frohlich interac-
tion and phonon frequencies respectively.
The residual interaction, which remains after this pro-
cedure, is a polaron-phonon one:’
H, =3 [6;—o(m—n)lc]c; , (12)

ij
with

G;=t(m—mn)exp (¥ dg[u;(q)—u;(q)]—h.c. |,
q

u;(qQ)=(1/V2N )y(qexp(iq'm) ,

and the direct (density-density) polaron-polaron interac-
tion (see, for example, Ref. 8),

1

H,,= D)

S v(m—n)c,-chchc,- , (13)
LJ
where i =(m,s), j=(n,s), c,-T(c,-) and d;(dq) are electron
and phonon operators, and m and s are a lattice vector
and spin, respectively.

As opposed to the usual Frohlich interaction the
polaron-phonon one, Eq. (12), contains multiphonon ver-
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tices which are dominant. We further show, that this in-
teraction may be treated as perturbation at A > 1 both for
phonon and polaron GF’s (see, also Ref. 11). At large
distances the polaron-polaron interaction, Eq. (13), is an
effective Coulomb repulsion, e2/|m—nle, with € being a
dielectric constant. This fact makes it possible to treat
H, , with the usual RPA at least for long-wave excita-
tions. At short distances the polaron-polaron interaction
may be attractive, which leads to instability versus SB
formation at a low enough temperature. 3

We consider the polaron-polaron and the polaron-
phonon correlations only in the normal state, assuming
that the temperature is above the critical temperature of
SB’s formation (see below), which, in turn, is higher than
the critical temperature of the superconducting
(superfluid) transition.

Taking into account the exponential smallness of the
polaron bandwidth one can obtain the “total localization
approximation” (TLA) for the polaron GF:

G(w,)=8,iw,+ep) !, (14)

which is useful in calculations in the temperature range
T>W. In TLA:

v
2—v

erp=Tln : (15)

where v is the atomic concentration of carriers, and the
SP distribution function:

—1

E,—Efp §(2—wv)

2T

ne= |exp +1 2% 1 (16)

If one takes into account the finite polaronic bandwidth
€~ W one obtains corrections of the order of
A" lexp(—g?). They are exponentially small compared to
the m?in power-law contribution from H,_;, proportional
to A%

This contribution of the second and highest orders & in
H,_;, to the polaron self-energy 25 comes from multipho-
non virtual processes (for details see Refs. 4 and 11):

Dk
zE[f‘_1 |

~

k
217

(17)

The second-order contribution lowers the energy and in-
creases the SP effective mass, while the third-order one
diminishes it.

Comparing this contribution with the polaronic shift
E,, Eq. (11), one obtains the criterion of the SP’s ex-
istence, Eq. (4), with A=E,/D. For a smoothly varying
electron density of states (DOS) this definition of the
electron-phonon coupling constant is identical to the usu-
al one.'? Thus I conclude once more (see Ref. 2) that, at
least for the Frohlich interaction the usual strong-
coupling theory, 2 which does not take into account the
polaron collapse of the electron band, is unacceptable.

In RPA the effect of the polaron-polaron interaction
may be described by the dielectric “constant” e(w,q),
which gives the response of SP’s to longitudinal electric
fields of the arbitrary wave vector q and the frequency w.
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From this the screening behavior of the system and the
plasmon frequency can be calculated:

€(0,q)=1=20(q) 3 (ny g~ N 0—g te ),
k

(18)

where v(q)=N"!3_v(m)exp(—iq-m) is the Fourier
component of the polaron-polaron interaction. First I
consider the static dielectric constant. For 7=0 in the
long-wave limit, ¢ —0, we obtain the usual Debye screen-
ing:

€(0,q)=1+(gry;)"? (19)

with the Debye radius
172

£ : (20)

4me’N,(0)

rq

where Np(O)=N(O)exp(g2) is the DOS in the polaronic
band on the Fermi level, which is exponentially enhanced
compared to the bare DOS N(0). One can see from Eq.
(20) that the Debye radius of SP’s is much smaller than
that of bare electrons due to the strong enhancement of
their effective mass.

Now I obtain the temperature behavior of the SP
response and show that the correlation effect enhances
the short-range attraction opposite to the short-range
repulsion.

At temperatures 7 >>W one can use TLA, Eq. (16),
with the following result:

e(O,q)=1+V(2—;;)( N 1)

The screened short-range interaction is given by

g=-YL_ | (22)
T+T*
where
T*= [Uv(2—w) 23)

2

is the characteristic temperature, the upper sign (+) cor-
responds to the repulsion and the lower one (—) to the
attraction. One can see from Eq. (22) that in the temper-
ature region T <T* the short-range Coulomb repulsion
U is sufficiently suppressed by the screening. The two-
body collisions reduce the intraatomic Coulomb self-
energy to a magnitude of the order of the polaronic band-
width for T S W (see, also, Ref. 13). In the case of attrac-
tion the singularity in the two-particle correlator, Eq.
(22), occurs at T=T*. Thus T* is the critical tempera-
ture of the SB’s formation. The short-range attraction is
enhanced near T*.

One can estimate T* at which SB’s may be formed in
metal oxides wusing the assumption that a large
temperature-independent gap observed in YBa,Cu;0,,
Ay, =8kpT,, is of the order of the attraction of two pola-
rons |U|.'* Thus one can estimate,

|U| =720 K ,
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and using Eq. (23) obtain for v=1
T*~360K .

The SP response becomes dynamic for a rather low fre-
quency o > W:

e

2
elw,q)=1——> (24)
(0]

with the temperature-dependent plasma frequency

wg(q)=2u(q)znk(ek+q—£k) , (25)
k

which is proportional to 1/7 in the temperature range
T>>W. For low temperatures T <W the long-wave
plasmon has the frequency

47 Ne’v

m*e

wf, = , (26)
which is much lower than the usual one due to the mass
enhancement:

m*/m=exp(g?) . 27)

The small concentration is assumed in Eq. (26), v << 1.

Thus compared with the bare electrons response the
simple RPA shows a rather unusual response of SP’s with
a small temperature-dependent Debye radius and plasma
frequency. In the case of repulsion the polaronic
plasmon has a well-defined dispersion for the whole re-
gion of wave vectors with a zero damping, Eq. (25). If
v(gq) <O for some g, the plasmon disappears in this region
of g space.

II. PHONON SELF-ENERGY

Polaron-phonon and polaron-polaron interactions
change the phonon propagation. The second order in
H,_,, phonon self-energy 2, is given by the sum of dia-
grams, Fig. 1, which can be expressed in terms of the
multiphonon correlator:’

@/ (r)=(T,6,(r)8,0)) , (28)
where
6 j(T)=exp(Hy7)8 ;;exp(—H,yT) , 29

(a)

P ol P
(b)

FIG. 1. Phonon self-energy (a) and SP polarization loop (b).
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and —1/T <7<1/T. The first order in H, ; diagrams
as well as the second-order terms, containing two polar-
ization loops, are exponentially small, proportional to

exp(—g?).° |

1 r*(q)
tJ = -
®;/(r)=0(a)o(blexp N 2 sinhl(q) /2T]f cosh

where
fq=%{cos(q-[c—a])+cos(q:[c+b])

—cos(q-c)—cos(q-[c—a+b])} (3D

with a=m—n, b=m’'—n’, c=n'—n. The sum of dia-

grams, Fig. 1(a) gives

)==T3 3 (uf —ufNu,—
o, ii'J

XLl @,

Zon(g,0, u; )@ (w,)

(32)

—w,),

w(q)
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For the real time ¢ the correlator, Eq. (28), was calcu-
lated by Lang and Firsov.!> To obtain ®(7) one has to
make the substitution 7— —i|7| with the following re-

sult:
] a0

(33)

——|7-|

o}/ (@,)=1 [ dr{®f (Nexplia, )} ,

and v, =2mnT, w, =27n'T.

If one takes for the SP polarization IT a simple loop
% (the product of two polaron GF’s), one obtains our
previous result.” Now I take into account polaron-
polaron correlations to obtain in RPA, Fig. 1(b),

_H(O)

’J’ j' iji'j’ + 2 Hlj[lv( 1 _—p)nppi’j’ ’ (34)

where the Matsubara frequency w,, which is the same in
all terms, is omitted. To solve Eq. (34) one can take the

where Fourier transformation of I1:
J
niji'j";# > I(k,k’,glexp[ —ik-(m'—n)+ik’-(n'—m)+ig-(m'—n’')] (35)
kk,g
with the Fourier component, which can be derived from the following equation:
(k,k’,g)=I"k,k’) N&, o tv(k—k') 3 II(k+g'—g,k'+g'—g,8') |, (36)

g

where

ny —ny

nokk')=2—————
( ) iw, e, —¢&p

(37)

One can change in Eq. (36) k,k’ in k+g,k’+g, respec-

tively, to obtain

Mk+gk'+g,g)=M%k+g,k'+g)
X[N&go+v(k—k')A(k,k')] (38)

with 4(k,k')=3 II(k+g,k'+g’,g'). Taking the sum in

[

To calculate the sum in Eq. (32) one can express ®(7)
in the form

®(1)=0(a)o(b)+d(7) . (41)
The function ®(7), defined by Eq. (41), behaves like
®(r)~exp(2gZe @) —1, 42)

changing very quickly with the characteristic time

Eq. (38) over g one finds 7<E, '. Thus its Fourier component ®(w, ) weakly de-
A(k,K)=NTTVk,k')e i, k—k') . (39) pend's on Fhe frequen.cy for the entire. range of w, under
consideration. Substituting Eq. (42) in Egs. (33,32) one
Substituting Eq. (39) in Eq. (38), one obtains obtains
M(k,k’,g)=NIT'Yk,k’) .
3on(q,0,)=25(q,0,)—Aq) , 43)
X[8g0+v(k—k)M'(k—g,k' —g)
Xe Yiw, k—k')] . (40) where
J
2n@o,)=— 3 (u*—uf)up—uy)o(m—n)o(m' —n ) (—w,) (44)
Lj it
is a frequency-dependent resonance contribution and
MO=T 3 (uf—ufNu,—y )z¢ (0 + 0, M0 plery) @3

L0
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is a softening. The Fourier transformation in Egs. (44) and (45) gives

2
re _ Z (q)
phs(q’w )= N2 kz(ekek—q~g+£k—q£k—g_8k—g8k—q—g_skgk—g)n(k’k—q’g;wn) ’ (46)
34

Ma=LY § SFkk+q—gNkK, —g—q

2N2 k,gk' o .
+®(k—q,k’, —g)[II(k,k’, —g+q;0,)—II(k
with
&=L
N7 g

To calculate the frequency-dependent contribution =3
small parameter:

ne—np  (ne—n g —g)

T > & (k,k’,g)exp[ —ik-(m’—n)+ik’-(n’' —

o,)—I(kkK', —g;0,)]

, —go,)], 47)

m)+ig-(m’'—n’')] (48)

one can expand the simple polarization loop, using W/w as a

Mk, k")=2
( ) io, 603, (49)
Substitution of Eq. (49) in Eq. (40) and in Eq. (46) gives
B(Qlwi(q)
rCS(q’ )= — P ,
h o(q)[w +0i(q)] 50
where
)y*(q)
Blq)=247r1(q) (51)
v(q)
is a dimensionless plasmon-phonon coupling constant.
To obtain the full expression for A(q) one should use TLA, which gives for the polarization
(2—w) v(k—k'W(2—v)
H k; I’ ; = _v_——~ - ’
(k,k',g;0,) N§, o T 8.0 2Te0.k—K) (52)

and also takes into account the diagrams with two external phonon lines attached to the same vertex of 2. The
second term in Eq. (52) does not depend on g. Thus one can see that a direct polaron-polaron interaction does not con-

tribute to the softening of phonons:
2
_ — -
Alq)=Y2=Vra) Vz) 9 513,

where

b, =3 .

—®,(0)][1—cos(q-a)] ,

(53)

(54)

Expanding the exponent in Eq. (30) we find according to the definitions, Egs. (33), (41), and (54) for dispersionless pho-

nons, o(q)= wq:

k
p

sinh{(k —2p)wy /2T
2%k 1sinh*(w,/2T)

2
&)a(wn 20 (a)

©  k
(2] k=1p=0
For the temperature range T <<, the terms with p =0

and p =k dominate. As a result one finds

2
_t(a) (56)

P —®,(0)=~ ,
al@n) = ®,(0) weg’(a)

and (in Ref. 9 A contained g2 instead of the correct g%

v(2—v)7%(q)
2(‘00 a 14

t}(a)[1—cos(q-a)]

(57)
%a)

A(q)=

The estimation of the softening, Eq. (57), shows that it is

_127

(k —2p)wd
)[1—cos(q'-a)] |¥ ZPZ L. (55)
(k—2p)wyto,

f

small compared with the bare frequency o, as 1/A%. At
high concentrations of carriers the screening due to the
exchange polaron-polaron interaction U(m) diminishes
the value of A(q) (for details see the Appendix):

t*(a)[1—cos(q-a)]
~ ¢%a)[1+v(a)m(2—v)/2T]

(58)

v(2—v)y3(q)
2(00

Alq)=

Thus the strong electron-phonon interaction, A>A,,
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results in a rather small plasma frequency, comparable
with the phonon one, Eq. (25), and also in the coupling of
bare phonons with polaronic plasmons, Eq. (51). The real
vibration excitations are a mixture of phonons and
plasmons. To obtain the dispersion relation for the
phonon-plasmon mixture one has to carry out the analyt-
ic continuation of 2 ,(q,®, ) to real frequencies (). Tak-
ing into account that 2’ has only simple poles
o, =:tia)p, Eq. (50), one can obtain this continuation by
a simple substitution in Eq. (50):

iw,—Q (59)

which gives the following equation for the frequency ) of
the plasmon-phonon mixture:

2=0(q)+2,(q, ), (60)
or

Blq)o’(q)
Q—o(q)+Alq)— =0. 61)
T QI =02 (q)]

There are three solutions of Eq. (61):

Ql=-§—)+%cos LA NCET 62

o 2 atw 3. 2
= = —_— -+ s

Q, 3 308 |73 Ve co (63)
o 2

Q3=? 3 c0s T V& +o? +ol, (64)

- 96)(1)2 +27B(o4 /2w
cos(a)= ) (65)

\/( +3a> )3

and ®=w—A. The dependence on q of all parameters is
assumed in Egs. (62)-(65).

Only two solutions, Q; and (,, are real and positive.
The last one, Q; (or ,, depending on the choice of a) is
negative and has no physical meaning.

Thus I conclude that instead of the bare phonon the vi-
bration spectrum of the lattice, strongly coupled to car-
riers, consists of two branches of excitations, which de-
scribe the propagation of the coupled phonon and
plasmon. In the case of weak plasmon-phonon coupling
B <<1 the dispersions have the form

Q,=>{o+w,t[(@—0,)*+2B0) /0]'?} . (66)

1
2
In the limit 8—0 Q,(+) and Q,(—) describe the phonon
with the renormalized frequency @ and the plasmon, re-
spectively. The ratio of weights of two contributions of
the phonon-plasmon mixture to the phonon GF,

D(q,Q)= 3 ——R(—q)— (67)
& £ 2-Q(q)
is given by
Py, (Q%——wg Q3 —Q) 68)

Py (Q}—0l)(Q;—Q,)
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Even for a weak coupling this ratio may be of the order
of unity:

P2 A_AO
P, A+A,

(69)

if the plasmon and phonon frequencies are close enough
to each other. Here Ay=®—w, and A=[(B—w,)
+ZBw /w]'/? are the bare and the renormalized gaps be-
tween two branches of excitations.

The anomalous extra branch of high-frequency vibra-
tions, observed in neutron-scattering experiments in
La,CuO, and probably in YBa,Cu;0,,'° was connected
with the strong electron-phonon interaction.

Capellmann'® proposed a phenomenological model of
this phenomenon, in which phonons are coupled to a col-
lective carrier mode with the frequency well below the
one-particle continuous spectrum (see also Ref. 17). I ex-
plain the two high-frequency modes as bound states of
polaronic plasmons with phonons. This assumption al-
lows an estimation of the parameters w, , @, using the
experimental values'® of frequencies Q, and Q, and also
their weight ratio, which is about unity in a certain re-
gion of g space:

P
1 2
S ‘=14 , —~1. 70
5 22 (THz), > (THz) P, 1 (70)

Substituting these figures in Eqs. (66) and (69) one obtains

B 3

()
=34 (THz)? . (71)
a)

P o
£~ 2 =18 (TH
o om (THz),

If one takes the bare phonon frequency of the order of
the renormalized one, w ~@, one finds for the coupling

B=0.1, (72)

which is a lower estimation because in general o > @.

The extra mode disappears in the long-wave limit,
q—>0.!° This is the case for intramolecular and acoustic
phonons with B(q—0)=0, Eq. (51), but is not the case
for long-wave optical phonons, for which B0 in this
limit. The mode also disappears in the short-wave limit.
This fact may be connected with the short-range
polaron-polaron attraction, v(q)<O0, resulting in the
disappearance of the short-wave polaronic plasmon ac-
cording to Eq. (25). The estimation of the plasmon fre-
quency, Eq. (26), with experimental values of e=50,!?
v=1 (half-filled band), and m *=25m, ( Ref. 19) gives for
La,Cu0, »,~=110 (THz), which is surprisingly close to
the value, extracted from the neutron scattering, and sup-
porting the phonon-polaronic-plasmon nature of the ex-
tra mode. The existence of the extra mode strongly de-
pends on the parameters A, and B3, small changes of
which can lead to its disappearance.

To conclude I have shown that the Debye radius and
the plasma frequency of SP’s are small and temperature
dependent, SP’s screen effectively the short-range
Coulomb repulsion, and enhance the short-range
polaron-polaron attraction, the critical temperature of
the SB’s formation exists, Eq. (23), vibration excitations
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of a strongly coupled many-electron-phonon system exist,
which are a mixture of polaronic plasmons and phonons.
The anomalous extra mode, observed in the neutron-
scattering experiments in La,CuO, is explained. Two
high-frequency branches of the vibrational spectrum are
two of these mixtures.

I would also like to remark that the many-body pola-
ronic effects, discussed above, are a result of the polaron
collapse of the bare band, Eq. (2), which is a characteris-
tic feature of the small-polaron theory of metal oxides.?
The renormalized band structure, including the mass re-
normalization, can be detected with low-energy experi-
ments. High-energy experiments with the characteristic
energy of excitations 8€>A,,,~0.1 eV can only detect
the bare band structure with the bare mass m ~m,, and
with the bare plasma frequency a)l(po’ >1eV.

M(k,k',g)=M"%Kk,k') [N§,,+ 3 [v(k—k')+v(g—g)]l(k+g —gk'+g' —g,g) |,
<

with D(g) being the Fourier component of o(m). In TLA
Nn°k,k’)=m, is momentum independent, and
I(k,k',g)=II(k—k’,g). For the Fourier component
II(k —k’,m) defined by

I(k—k’,g)= > II(k—k’,m)exp(ig-m) , (A3)

one obtains from Eq. (A2),
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APPENDIX
The exchange interaction in the form

ex — 1

=5 (A1)

2 v(m_n)cj;,sc;,s’cn,s'cm,s
m*n,s,s’

diminishes A(q). The equation for the polarization is

now

(A2)
f
To
IMN(k—k',m)= . (A4)
1—mo[v(k—k")8, o+ 0(m)]
Thus
7r0 meexp(ig-m)
nk,k',g)=————C s —— (AS)
ke =T =) 2 1—o(m)m,

Substituting the last equation in Eq. (47) one obtains Eq.
(58).
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