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Enhanced Raman scattering by fractal clusters: Scale-invariant theory
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A scale-invariant theory of Raman scattering of light by fractal clusters is developed. The enhance-

ment factor G of Raman scattering is shown to scale in terms of a properly chosen spectral variable X.
The critical indices of the enhancement factor are found to be determined by the optical spectral dimen-

sion of the fractal. Numerical modeling is carried out and shown to support the analytical results ob-

tained. The theory, which does not contain any adjustable parameters, agrees well with experimental
data on surface-enhanced Raman scattering over a wide spectral range.

I. INTRODUCTION

Surface-enhanced Raman scattering (SERS) is one of
the most intriguing optical effects discovered' in the
past 15 years. Its manifestation is a very great increase,
often as large as a 10 -fold, in the Raman-scattering in-
tensity of molecules absorbed on the surfaces of special
metallic structures, as compared to the intensity of an
equivalent number of molecules in solution or the gas
phase. The special metallic structures that display SERS
normally involve small metal features such as those found
on microrough metal surfaces and in aggregated colloidal
particles, whose dimensions are much smaller than wave-
length k. The major contribution to the enhancement is
understood to originate from the large local electromag-
netic fields that arise from resonant optical excitation of
surface plasmons. Because these plasmons are both in-
tense (i.e., possessing great dipole moments and low de-
cay rates) and easily excitable with commonly available
laser sources for the alkali and coinage metals, the SERS
effect is largely restricted to these metals.

Theory shows that field enhancement can be great at
the points of high curvature (the so-called lightning rod
effect). However, the most effective SERS systems are
collections of interacting particles. The reason for this is
understood to be even greater field enhancement that re-
sults from electromagnetic interactions among the con-
stituent small metal particles. Models have been reported
that account for these interactions in terms of the
modifications of the Lorentz local field operating on a
particle due to the presence of neighboring particles.
However, the mean concentration of metal needed in
these treatments to achieve the red shifts observed experi-
mentally is much too high. Additionally, Aravind, Nit-

zan, and Metiu have calculated the magnitude of the

electromagnetic field at various locations in the vicinity
of two interacting particles invoking very high rnul-

tipoles. Also, Liver, Nitzan, and Gersten have reported
the results of a calculation among several metal particles,
but restricting the interaction to dipole-dipole. These
calculations demonstrate that, in addition to a further in-
crease in the local field magnitude, the interaction among
particles also results in a red shift of the maximum
enhancement wavelength from the surface plasrnon reso-
nance positioned in the near uv. However, none of the
above-mentioned theories can satisfactorily explain the
form of the spectral contour of SERS, which is very wide
with the maximum enhancement in the red region.

Although the precise structure of roughened metal sur-
faces is not known with certainty, the structure of colloid
aggregates has been investigated by various methods and
shown to be fractal (see, e.g. , the electron microscopy
study of Ref. 7). The Hausdorff dimension D of such ag-
gregates is consistent with that characteristic of cluster-
cluster aggregation. For the sake of brevity, we will
refer to fractal clusters simply as fractals. This should
not cause confusion because no other physical realiza-
tions of fractals will be discussed.

A tentative theory of enhanced Raman scattering by
fractals has already been considered. ' Because it is based
on a binary approximation, this treatment is only applic-
able to diluted fractals, making it unable to account for
the form of either the absorption spectrum or the Rarnan
excitation contour. A scale-invariant theory has been
developed in Ref. 11 to describe the linear optical polari-
zability of fractals. It demonstrates the scaling properties
of the absorption and determines the dispersion relation
for the dipolar excitation modes of the fractal (see also
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Ref. 12). The important qualitative features of scaling are
the dominance of the strong fluctuations of local fields at
all scales and a significant restriction in the spatial extent
of the eigenmodes to small regions within the cluster.
Such localization for the fractal vibrations ("fractons")
has been predicted' by Alexander and Orbach, and ex-
perimentally observed' recently by Sapoval, Gobron,
and Margolina for acoustic excitation of fractal drums.

A scale-invariant theory developed by Alexander' de-
scribes Raman scattering from vibration modes of frac-
tals. However, this theory does not include dipolar exci-
tations (plasmons) and, therefore, cannot describe the
phenomenon of SERS. In the present paper, we develop
a scale-invariant theory of SERS from fractals which is
insensitive to details of the cluster structure providing
universal description of this phenomenon in terms of a
few critical exponents. The present theory fully takes
into account the strong spatial fluctuations of local fields
characteristic of fractals and their excitations. It is cap-
able of explaining both the magnitude and spectral con-
tour of the enhancement.

In Sec. II we formulate the model and basic equations
governing linear response of the fractal. In Sec. III gen-
eral expressions for the enhancement factor 6 are ob-
tained, and self-similarity is invoked to derive the scaling
expressions for G . Numerical simulation with the use
of the Monte Carlo method in Sec. IV confirms the pre-
dictions of the scaling theory. The results are discussed
and shown to be in a good agreement with experimental
data in Sec. V.

II. FORMULATION OF THE MODEL
AND LINEAR RESPONSE OF A CLUSTER

Let us very briefly recapitulate the formulation of the
model and the results for the linear optical response of
fractals (Ref. 11), which are necessary for the present pa-
per. A fractal is considered as a system of N polarizable
particles (monomers) with dipole-dipole interaction be-
tween them at optical frequencies. The monomers are
positioned at points r, , i =1, . . . , N. The number N of
monomers in a fractal scales as

N-(R, /RQ)

where D is an index called the Hausdor6'dimension, R, is

a characteristic total size of the fractal, and Rp is a con-
stant equal to a typical separation between monomers. A
fractal is called nontrivial if D & 3. The length Rp plays
the role of a minimum scale of the fractal, and the depen-
dence on RQ is of principal importance to the theory (see

Ref. 11 and below).
Since Raman scattering is accompanied by a Stokes

frequency shift, the linear response of the cluster at the
frequency co of the exciting radiation can be found in-

dependently from its Raman response at the shifted fre-
quency co, . Experimentally, most fractal clusters are
larger than the exciting wavelength k. However, the lo-
calization (coherence) length of fractal excitations can be
much smaller than k. Also, under certain conditions, the
interaction of monomers at distances greater than k can
be neglected. We will find qualitative conditions for the

validity of the two assumptions at the end of the next sec-
tion [see Eqs. (39) and (40)].

Accepting these assumptions, one can neglect the spa-
tial variation of the electric field E' ' of the exciting opti-
cal wave and obtain the well-known system of equations
describing the transitional dipole moment d, , induced on
the ith monomer (oscillating with frequency co),

N

Zd;, =E' ' —g (ia~ Wj~p)d {3, (2)

where i =1, . . . , N. Here Z =yp ', yp is the linear polar-
izability of a monomer at the light frequency m, and W is
the dipole interaction tensor,

(ia~ W~ jP)= (3)

y;,&=+A„(ia~n)(jP~n) .
n,j

The local field E; acting on the ith monomer can easily be
expressed as

—1 (pjEi a +0 +i aPE/3

After averaging over the orientation of a cluster as a
whole, the polarizability tensor is reduced to a scalar

where ( ) indicates averaging over the ensemble of clus-
ters. The total absorption cross section o, of the cluster
is proportional to Imp, namely, o, =4vrkN Imp, where k
is the light wave vector. Below we will refer to Imp sim-

ply as the absorption.
The exciting light frequency co enters Eq. C,

'4) and subse-
quent expressions implicitly, via the complex variable Z.

The Greek indices label tensor components, summation
over repeated Greek indices is implied, r; =r, —r, and
n'~'=r, , /r, , Of course, Eq. (2) is quantitatively applic-
able to small clusters (R, «A, ) without invoking addi-
tional assumptions discussed above.

We shall reformulate the system (2) as an equation in
3N-dimensional linear space, introducing the vector ~d)
with components (ia~d)=d, , and similarly for other
vectors. In this way, we obtain

Z/d) = /E' ') —W/d),

where W is the operator determined by its matrix ele-
ments (3).

Let us introduce the eigenvectors ~n) of the W operator
and the corresponding eigenvalues w„: (n~ W~m)

=w„5„,where n, m =1,2, . . . , 3N. Note that the ei-
genvalues w„and components of the eigenvectors (i a

~
n )

are all real due to the symmetry of W. The solution of
Eq. (4) in the n) basis has the form

(n~d)=(n~E' )A„, A„=(Z+w„)
From Eq. (5), the expression of Ref. 11 for the polariza-
bility tensor y; of the ith monomer in the cluster can be
obtained as'
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v(x)=N 'tx5(x —w„)
n

(9)

The absorption and eigenmode density satisfy the exact
sum rules"

Also, all material and geometrical properties of mono-
mers affect the problem only through Z. Let us isolate
the real and imaginary parts of Z in the form X = —ReZ,
5= —ImZ. The quantity X plays the role of a spectral
variable in place of co, and the parameter 5&0 describes
the dissipation in a monomer. The dependence of both X
and 5 on co for real systems is discussed in Sec. V.

Another quantity of fundamental importance for the
theory is the density v(X) of fractal eigenmodes per
monomer defined as

III. ENHANCED RAMAN SCATTERING
BY CLUSTERS

We assume that each monomer of the cluster apart
from the linear polarizability gp possesses also Raman po-
larizability ~. The exciting field E applied to an isolated
monomer, therefore, induces a dynamic dipole moment
d' oscillating with the Stokes-shifted frequency co, . In or-
der to avoid unnecessary complications, ~ will be as-
sumed to be scalar. Accordingly, we have d'=xE. The
Raman polarizability may be either the polarizability of a
monomer itself or that of adsorbed molecules bound to
the monomer.

For spontaneous Rarnan scattering, which is an in-
coherent optical process, the Raman polarizabilities ~, of
different monomers (i =1,2, . . . , N) contain uncorrelated
random phases. This can be expressed as

f Imp(X)dX =rr, f v(X)dX =3 . (10) (~;)~, ) =I I)('5,, (15)

Imp(X)-v(X)-R()(R()IXI) '

Here d, is a critical index introduced in Ref. 11, which
governs the properties of optical responses of fractals and
is called the optical spectral dimension. It plays a similar
role for polar excitations of fractals as Alexander and

Orbach's index, ' fracton dimension d, does for vibration-

al excitation. However, in contrast to d, the physical
range for d, is 0 & d, & 1. The condition of scaling has
the form"

5R, 'N ' &IXI«R, '. (12)

The principal advantage of using X is shown in Ref. 11
to be due to the fact that optical responses scale with X
but not with co. In particular, ImX(X) and v(X) have
identical scaling,

d,' =a, E, y'Og(ia—
l Wlj P)d'&,

jp
(16)

where yp is the linear polarizability of an isolated mono-
mer at the Stokes-shifted frequency co, . Equations (16}
can be rewritten as a vector equation in 3N-dimensional
space

This feature constitutes the principal difference between a.

and the linear polarizability gp, ensuring that there will
be no interference between the Stokes waves generated by
different monomers.

The field acting upon an ith monomer in a cluster is
the local field E, rather than the external field E' '. Like-
wise, it is the dipole interactions of the monomers at the
Stokes-shifted frequency co, that should be considered.
The components of d' obey, therefore, the following sys-
tern of equations:

For X in this region, the light excites collective modes of
the fractal, i.e., modes delocalized over many monomers.
However, these modes are still well localized within the
whole fractal. In other words, the coherence length L~
of the excitations, "

Id') =&I&)—Xo'Wld'),

where 0'is an operator defined by its matrix elements

(ialkjlp)=a, 5;,5 p . .

The formal solution to Eq. (17) has the form

(17)

L~ —R()(R(') IXI) (13)
(19)

( ", )/(', )

0 (14)

conforms to the inequality Ap «Lz «R, . Due to this,
the optical responses of the fractal per monomer do not
depend either on the fractal fine structure or on the total
number of rnonomers N.

Since there is no dependence on the fraetal fine struc-
ture in the range given by Eq. (12), we can always unify
some number of nearest monomers into a composite par-
ticle and call it a new (renormalized) monomer. Such a
renormalization transformation changes only the fraetal
structure on a minimum scale; in particular, the length
8 0 is changed. The total absorption of the fractal should
not change under the renormalization transformation,
which means that o, ~Ra. From this and Eq. (11), a
transformation law" follows,

where Z, —:(Xo) '. Combining Eqs. (4) and (19), one ob-
tains

Z. (0)

Z, +W Z+W (20)

x(jpln')(j 'p'In')E)(( ) . (21)

Using Eq. (6) to clear the matrix elements from (21), we
obtain the following expressions for the total Stokes di-
pole moment D' of the cluster:

Using the completeness of vector sets
I
n } and

I i), we
rewrite (20) in the form

d,' =Z,Z g )r, &'„A„(ialn)(jPln)
n, n, j,j
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D' =gd =Z,Zg~, X,'p~, ppEp ',
J

(22) satisfies the sum rule

K„„=3N. (29)

6Rs (23)

This factor expresses increase in the Raman intensity of
light scattered by a fractal cluster consisting of N mono-
mers with respect to the integral Raman intensity of light
scattered by N separate (nonaggregated) monomers.

Expressions (16)—(23) are valid for clusters of any
geometry, fractal or not. To find a closed-form expres-
sion for G, we must invoke the concept of scaling as
well as some approximations. First, we consider the case
of the Stokes shift so large that the Raman-scattered light
is well out of the absorption band of the fractal. This re-
quires, in particular, that Rolx —X, l

))1. In this case,
the polarizability (6) at frequency co, is expressed as

&=Z, 5 &. Substituting this into Eq. (22), after
averaging over all orientations, we obtain from Eq. (23)

where X' =X (X, ), as given by Eq. (6) with substitution of
L, = —ReZ, for X, is the polarizability of the jth mono-
mer in the cluster at frequency cu, .

The enhancement factor of SERS is given by

n, n', m, m'

Expression (27) cannot be evaluated analytically in a
general form. Instead, we will consider the limiting case
of an extremely small Stokes shift, IX —X, I «5, which is

experimentally satisfied for most Raman bands. Then the
Stokes shift can be neglected in Eq. (27), and one can set
Z =Z„A=A'. In the scaling region (12), we can set
IZI = IX to a high degree of accuracy. Taking this into
account, we obtain from Eq. (27)

G»'= X»g(X(, g(X)—:
( g K„„„A„A„A'A" ).RS

I I
n, n, m, m

(30)

To further evaluate G, we will invoke scale invari-
ance and employ the sum rule approach. An exact sum
rule for the function g (X) (30) has the form

f g (Xldz = —2» Im(2 X K„„R„„R„
I I

n, n, m, m

X(R„+R„),(31)

G"=Izl'2K (glx;,.Il'
I

(24) where

R„=(w„—w —2i5} (32}
The exact relation g,X, ~; =5 'g;ImX; &

has been
proved in Ref. 11, based on the completeness of the
eigenvector set (ialn). Substituting this into Eq. (24) and
taking account of Eq. (7), we finally obtain

The sum rules (10) are satisfied, on the order of magni-
tude, if we use ImX(x) and v(X) in the scaling approxi-
mation (11) and expand the integrals over the scaling re-
gion, IXI &Ro . This means that the number of eigen-
modes contained in the scaling region (12) is on the order
of the total number 3N of eigenmodes. Because the in-
tegral in Eq. (31} is rapidly converging, it is plausible
that the integration over the scaling region gives the ma-
jor contribution to it. In that case, fg(X)dX would be

scale invariant. This is what we will assume. The scale
invariance assumption is strongly supported by numerical
results (see below). The integral fg(X)dX must be pro-
portional to N, in order to yield 6 independent of N
[see Eq. (30)]. Therefore its scale invariance means that
N ' fg (X)dX depends on neither Ro nor R, and can be

expressed in terms of 5 only. Taking the dimensionality
into account, we obtain the simple estimate

fg (X)dX-N5 '. Comparing this relation with Eq.
(31), we arrive at the conclusion that in Eq. (32)
Iw —w„l«5 in the essential region of integration in

Eq. (31). In this case, neglecting the difference of eigen-
values in Eq. (32) and taking Eq. (29) into account, we ob-
tain from Eq. (31) the sum rule

GRs —5(1+X2y52)lmX (25)

This expression for 6 coincides exactly with the ex-
pression found previously [see Eq. (20) in Ref. 11] for the
enhancement factor G of the local field fluctuations. This
is expected, because in the limiting case considered, the
Raman-scattered light does not interact with the fractal,
and the Raman-scattering intensity is simply proportion-
al to the mean square of the local fields. The exact ex-
pression (25) reduces in the scaling region to the form

G"=x'5-'lmx-Q(R'lxl) (26)

where Q=(RO5) ' is a large dimensionless parameter
[cf. Eq. (12)] which plays the role of the resonance quality
factor for the monomer.

If the Stokes shift is not very large, the general expres-
sion for G is needed, which follows from Eqs. (6), (22),
and (23) after averaging over the orientations,

~ Xdr=" —,
oo 2

(33)
where the kernel K is defined as

G"'= Iz,zl* X K„„A'„"A„A'„'"A'), (27(.
3N

Knn 'mm ' a n I»an pm (Xa m 'g' Considering the dimensionality arguments, the scaling
expression for g (X) follows from Eq. (33),

x&(j yln)(j yln')(j5lm)(j5lm'} (28}
g(x)-NR,'5 '(R,'Ixl)', (34)

with a„=g, (iuln). The completeness and orthogonali-
ty of the eigenvectors

I
n ) ensures that the kernel K

where 0 is an index. The scale invariance of g (X) implies
that under the renormalization transformation
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g(X) ~R0. From this requirement and taking into ac-
count transformation law (14) and Eq. (1), we immediate-
ly obtain O=d, —1. This gives us the scaling form

G '-Q'(Roixi) (35}

The coeScient of the asymptotic dependence in Eq.
(35) can be estimated using sum rules (10) and (33). Tak-
ing account of the scaling relation (11), we can rewrite
Eq. (34) as g(X)-NRO5 Imp(X). As comparison with
Eq. (10) shows, sum rule (33) is satisfied if the coefficient
in this relation is chosen to equal —„yielding

GRs I Q3(R+3)41mX(X) (36)

6 s- X a Im
1

6N5
(38)

Taking Eqs. (6) and (8) into account, we see that Eq. (38)
is equivalent to Eq. (36).

Let us emphasize that in the case of a large Stokes
shift, expression (26) for G" is asymptotically exact, i.e.,
both the scaling index d, +1 and the proportionality
coeScient are correct. In the case of a small Stokes shift,
we believe that the index d, +3 in Eq. (35) is also asymp-
totically exact because it is derived from the general re-
quirements of scale invariance. Unlike it, the numerical
coefficient —,

' in Eq. (36) is only an estimate, its accuracy
depending on what fractions of the sum rules (10) and
(33) are saturated in the scaling region (12).

The scale-invariant theory presented above is
developed based on Eq. (2), where the spatial variation of
the exciting field E' ' is neglected. A necessary condition
for the validity of such neglect and also for the existence
of scaling is L~ &&A,, which, upon taking account of Eq.
(13), acquires the form

(39)

This condition does not contradict Eq. (12), because it is
assumed that Ro «A, , as is the case experimentally (note
that D &3 and d, & 1).

To have the indices of 6 coincide with the values
d, +3 [Eqs. (26) and (35)], one more condition must be
satisfied, namely, that the external field at each monomer
is the same, which is implied in Eq. (2}. This assumption
is rigorously correct only for small clusters (R, «A, ).

Because relations (35) and (36) are the final results and
of principal importance, let us indicate another way of
obtaining them. The product of the A factors in Eq. (27)
can be rewritten identically as

A„A„.A" A* =R„R„[A„A„+A'A*

+R„(A„—A' )

+R*„(A"—A„)]. (37)

To yield the scaling form of 6", the difference of the ei-
genvalues in Eq. (37) should be negligible with respect to
5. Assuming scaling and neglecting this difference, as
was done above, and using the orthonormality relation of
the eigenvectors, we obtain from Eq. (27)

The present theory can be applicable to the clusters with

R, )&A, only if the far-field zone [i.e., monomers posi-
tioned at distances r," ))A, from a given ith one) contrib-
utes negligibly to the local field E;. The condition for
this has been found in Ref. 17 to be

(Ro/A, ) for D &2

(R /A, )N' for D ) 2 . (40)

Note that for the most common case of D & 2, the first of
conditions (40) supersedes (39). If this is met, then the
far-field zone (which might otherwise bring about in-
terference phenomena) can be neglected. In the inter-
mediate zone (r; -A, ) the external field E'0' is, strictly
speaking, not constant, but does not change phase often
enough to cause destructive interference. Therefore, in
the zeroth-order approximation, we may neglect the vari-
ation of E' ' and use Eq. (2).

Let us briefly recapitulate and discuss the analytical re-
sults obtained above. The enhancement factor of Raman
scattering 6 for each of the cases of large and small
Stoke shifts [see Eqs. (26) and (35), (36), respectively] has
the form of a power law in the variable X, with the corre-
sponding index determined by the optical spectral dirnen-
sion d„provided X is within the region given by Eq. (12).
For the case of large shifts, this result is rigorously shown
to be asymptotically exact, with an index equal to 1+d, .
For small Stokes shifts, scale invariance of 6 is as-
sumed [this assumption is strongly supported by the re-
sults of numerical simulation (see below}], and then the
index 3+d, is obtained. Both the indices mentioned
above are positive, implying that the enhancement in-
creases with X. Physically, this property follows from the
decrease of the eigenmode coherence length L» [see Eq.
(13)], which brings about enhancement of the local field
fiuctuations (from one monomer to another) in the frac-
tal.

The Raman-scattering enhancement factor 6" is
found to be large, proportional to large factors, namely Q
for the case of small and Q for large Stokes shifts. Note
that Q is required to be a large quantity as a necessary
condition for the very existence of the scaling region [see
Eq. (12)]. Thus strong enhancement of Raman scattering
is characteristic of scaling and, consequently, of fractals
consisting of rnonomers with high-quality optical reso-
nances (i.e., with Q »1), such as silver and gold fractal
clusters.

The Raman-scattering intensity is proportional to the
intensity (mean-squared magnitude) of the local fields in-
duced on different monomers. Strong fluctuations of the
local fields in fractals bring about an increased local field
intensity and, consequently, enhanced Raman scattering.
In a pure form this mechanism works for large Stokes
shifts, in which case the scattered light does not interact
with the cluster. Therefore the corresponding expression
(25) G simply coincides with the coefficient G of the
enhancement of local fields found in Ref. 11.

Apart from the general mechanism discussed above,
for the case of a small Stokes shift there exists an addi-
tional enhancement. The scattered field is not radiated
freely, but rather interacts with the cluster. More exact-
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ly, the dipole moment d', induced at the shifted frequency
co„induces, in turn, secondary dipole moments at co„and
so on to self-consistency. The Raman radiation is emit-
ted by the integral dipole moment D' (22), resulting in an
additional enhancement as given by Eq. (35). We point
out that for the case of a small Stokes shift, G (35) is
certainly not the square of G given by Eq. (26) for large
Stokes shifts, as is often proposed in the SERS literature.

10

10

Cluster —Cluster Aggregates

IV. NUMERICAL MODELING

%e have examined two types of fractals, the random
walk fractals [fractal dimension D =2 and optical spec-
tral dimension d, =0.4 (Refs. 11 and 17)] and cluster-
cluster aggregates [D=1.7 (Refs. 7 and 9) and 1,=0.3
(Ref. 17)]. The clusters were generated using the Monte
Carlo method and well-known procedures. Then, follow-
ing Ref. 11, the clusters have been subjected to dilution
(decimation), which consists of the following. The ith
(i =1,2, . . . , Ã) monomer is randomly retained in the
cluster with some probability P, or removed with proba-
bility 1 —P. This procedure simplifies the fractal struc-
ture at small scales and reduces the total number N of
monomers in the cluster on average by a factor P, simpli-
fying greatly the numerical calculations. At the same
time, the resulting (diluted) fractal is characterized by the
same Hausdor6' dimension as the original one. In most
cases, 32-fold decimation (@=0.03) has been performed.
Some simulations have been done with P as small as 10
for comparison. The results of the computations clearly
show that the optical properties of fractals in the scaling
region [i.e., for X satisfying Eq. (12)] do not depend on
the dilution, as expected. Finally, averaging over a large
ensemble of fractals (up to 10 ) has been performed.

The enhancement factor G of the cluster-enhanced
Raman scattering is calculated accordingly to the exact
expression (23) with the use of Eqs. (6) and (22). Most in-
teresting from the experimental point of view is the case
of small Stokes shifts, where 6 is greatest. Also, be-
cause expression (26) for G for the case of large Stokes
shift is asymptotically exact, its properties are clear. It is
for this reason that we concentrate below on the numeri-
cal modeling for the case of small Stokes shifts.

The theory [Eqs. (35) or (36)] predicts (i) scaling of G
as a function of the variable X with index d, +3; (ii) pro-
portionality of G to Q; (iii) independence of G s from
N; and (iv) equality of the scaling indices of G for X)0
and X &0. The two last features are not self-evident. In
fact, there are four summations over n =1,2, . . . , 3N in
the exact expression (30), and it is not clear a priori that
these summations mutually cancel to result in the in-
dependence of G from N. The equality of indices for
X )0 and X (0 is not evident because Eqs. (2) and (16),
along with a11 the solutions which follow from them, are
not even with respect to the sign change X~—X. The
numerical computations strongly support these analytical
results.

The normalized enhancement factor G Q for clus-
ters generated assuming the cluster-cluster aggregation is
shown in Fig. 1 as a function of the dimensionless spec-
tral variable R o ~X~ for both positive and negative X (note

0.01
I I I I I I 1

1

A0 IXI

FIG. 1. The normalized enhancement factor for cluster-
cluster aggregates plotted against the dimensionless spectral pa-
rameter (RPX~) in a double-logarithmic scale. The straight
lines represent the best power-law fits to the data (the fit param-
eters are shown in the figure). The parameters used in the com-
putations are f3= —,', , Q =200, and N =64 (for notations see

text). Each point is obtained by averaging over 250 individual
clusters.

the double-logarithmic scale). The calculated points lie
along straight lines, indicating scaling of 6 over seven
decades of its magnitude. The scaling indices found from
these data, 3.30 for X)0 and 3.27 for X &0, are almost
equal and close to the predicted value of d, +3 with the
optica1 spectral dimension found in Ref. 17 of d, =0.3.
The lines for X )0 and X (0 are parallel but not coin-
cident, which shows that the coefficients, unlike the in-
dices, are unequal (they diff'er by nearly a factor of 2).
The last property results from the lack of symmetry with
respect to the sign change of X, emphasizing the nontrivi-
ality of the equality of indices for X & 0 and X & 0.

Further insight into the requirements for scaling and
the test of the proportionality G" ~ Q is provided by
Fig. 2, where G Q is plotted as a function of RoX for

Cluster —Cluster Aggregates

10 . Q=ZOO
o Q

—5O

(t 0

10 G =0. 16Q (R0 X)

I

0.01
I I I I I I I 1

0.1

FIG. 2. The normalized enhancement factor G Q
' as a

function of ROX for two values of the resonance quality factor,
Q =200 and 50. The rest of the parameters are the same as in
Fig. 1 ~
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Cluster —Cluster Aggregates
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FIG. 3. The normalized enhancement factor G Q, com-

puted with the exact formula (23) (circles) and approximation
(36) (diamonds), plotted vs —ROX (for X(0) in a double-
logarithmic scale. The straight lines correspond to the power-
law fits with the parameters indicated in the figure. The clusters
and parameters used in the computations are the same as in
Fig. 1.

two different values of Q. We see that for Q =200 scaling
takes place in the whole region presented in Fig. 2, while
for Q =50 the scaling exists only when R+& 0. 1, where
the two sets of data virtually coincide. This shows the
importance of the scaling condition (12), which requires
XRo »Q '. The independence of G Q from Q in
the region of scaling, clearly seen in Fig. 2, corroborates
the analytical result that G ~ Q in, and only in, this re-
gion.

Comparison of the results obtained from approximate
formula (36) with the computations based on the exact
expression (23) is presented in Fig. 3. We can see that the
predictions of Eqs. (23) and (36) do not differ by more

Random —Walk Fractals
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FIG. 4. The normalized enhancement factor G Q for

random walk fractals plotted vs ROX (for X &0) in a double-
logarithmic scale. The total number of monomers in a cluster is
N =128 with averaging over 50 individual clusters (circles) and
N=64 with averaging over 250 clusters (stars). The straight
line corresponds to the best power-law fit with the parameters
shown in the figure.

than a factor of 2 over seven decades, which makes Eq.
(36) a useful approximation. The indices of the two sets
of data are indeed very close, and a very good quantita-
tive agreement is obtained if the numerical coefficient in
Eq. (36) is changed from —,

' to —'. The possible origin of
the difference between the numerical coefficients is dis-
cussed at the end of the preceding section.

The data presented in Fig. 4 demonstrate scaling for
random walk fractals, and also provide a direct test of in-

dependence of the enhancement coefficient 6, as
defined by Eq. (23), from cluster size. The latter property
is evident from Fig. 4, where the points corresponding to
N=64 and 128 coincide within statistical error. The
scaling is as good as for the case of Fig. 1, and the index
found, 3.45, is reasonably close to the predicted value of
3+d, with d, =0.4 as found in Refs. 11 and 17.

V. DISCUSSION

Since the analytical results obtained have been dis-
cussed at the end of Sec. III, we will mainly concentrate
our discussion on the underlying physics and manifesta-
tion of the predicted critical behavior in observable opti-
cal phenomena, including quantitative comparison with
experimental data.

Fractals are self-similar objects, and the general prop-
erty of such objects is such that fluctuations in space on
all scales are of the same relative magnitude. Therefore it
is understandable that a mean-field approach is not appl-
icable, and that the scaling behavior of linear optical
responses takes place, as established in Ref. 11. The
linear optical absorption and density of fractal eigen-
modes scale with the same index d, —1, where d, is called
the optical spectral dimension. This scaling is not
present in terms of the frequency, but rather in terms of a
"natural" spectral variable X—:Redo ', where go is the
optical polarizability of a single monomer. The variable
X can be expressed in terms of light frequency co or wave-
length A, , but in a complicated, nonscaling form given
below. The region of scaling is determined by Eq. (12)
with additional conditions (39) and (40) for large
(R, »k) clusters.

The main goal of this work is to examine how the scal-
ing properties of the fractal, its eigenmodes and linear
responses manifest themselves in the Raman scattering of
light. The major result of this paper is the prediction of
the scaling behavior of the enhancement factor G of
the Raman scattering. Before proceeding, let us recall
that, by definition, the factor G shows how many times
the Raman intensity per monomer is increased upon ag-
gregation of the monomers into a cluster. The Raman
susceptibility of a monomer may represent either its own,
inherent Raman scattering ability, or that of the adsor-
bates bound to it.

Physically, the intensity of Raman scattering is propor-
tional to the averaged intensity of the local fields acting
on the monomers in the cluster. Such a mechanism, act-
ing in a pure form in the case of very large Stokes fre-
quency shifts, predicts G (25) to be equal to the
enhancement factor G of the local fields, which has been
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calculated" exactly earlier. In this case, the scaling of
G in X follows from the scaling of the optical absorp-
tion [Imp(X)j. The magnitude of G is large, propor-
tional to the large parameter Q (quality factor of the opti-
cal resonance of monomers), and the scaling index is
d, +1.

In the case of a small Stokes shift, which is typical for
most experiments (including those discussed below), the
dynamic dipoles oscillating at the Stokes frequency in-
teract with the fractal, resulting in additional enhance-
ment of Raman scattering. In this case, G (35) is much
larger, proportional to Q, and the index is d, +3. We
note that the tentative theory of Raman-scattering
enhancement based on the binary approximation (Ref.
10) predicts correctly the dependence of G on Q, but
fails to give the correct scaling in X.

The results of the numerical simulation presented
above (Sec. IV) strongly support the scaling of G in
terms of X, the independence of G from the number of
monomers in the fractal, and the proportionality of G
to Q . Given the large values of Q characteristic of metal
fractal clusters, the last feature qualitatively explains the
strong enhancement of Raman scattering observed with
aggregated colloidal metal clusters.

Now let us examine how the scaling relations estab-
lished and discussed above translate into experimentally
measurable spectral profiles of SERS, i.e., how G de-
pends on the wavelength A, . To do this, we need to know
the variables X and 6 as functions of k. Let us concen-
trate on metallic fractal clusters. Such a cluster consists
of aggregated spherical colloidal particles as monomers.

The polarizability go of such a monomer is given by the
familiar expression

go=R (e eo)(e+2Eo) (41)

where R is the radius of the spherule, and e and eo are
the dielectric permittivity of the colloidal material (metal)
and embedding medium (usually water). From Eq. (41),
the spectral variable X and the resonance quality factor
Q = 1/R 05 are determined to be

R

Ro 3E' 60
(42)

where e"= Ime.
From Eqs. (35), (41), and (42), we obtain an explicit ex-

pression for G in terms of the metal dielectric permit-
tivity e,

d +3
I I

&+—'&p
I

—&p I

'
GRs (R /R )

o

ie —
eoi '(3e"e,)'

(43)

Colloidal metal particles are known to be fractal clus-
ters with the Hausdorff dimension close to that predict-
ed ' by the cluster-cluster aggregation model, D=1.7.
For such clusters we can expect' d, =0.3 and Ro-R
An electron micrograph of a silver colloidal cluster' is
shown in Fig. 5. The cluster, which contains —10 me-
tallic monomers, was produced as outlined in Ref. 19.

FIG. 5. Electron micrograph of a silver colloidal cluster, adopted from Ref. 18. For details of obtaining this, see Ref. 19.
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One can clearly see in Fig. 5 the main qualitative feature
of a fractal cluster, namely, its self-similarity on all spa-
tial scales between the minimum scale (distance between
monomers) and the maximum scale (total size of the clus-
ter): each fragment after magnification resembles the
whole cluster. Also, the tenuous structure of the cluster
is evident: there are cavities of all sizes up to the total
size of the cluster, and the larger the fragment that is
considered, the lower its density.

In the red region of visible light, the dielectric constant
e'=Re@ is known to be negative and large in magnitude
for most metals, especially the noble metals, i.e.,))E'p E'

~ In this case G becomes very large,
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FIG. 7. Theoretical and experimental enhancement factors
for the silver colloid clusters as functions of wavelength A, .
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For noble metals, the resonance quality factor Q (42) can
be as high as 100, yielding the upper estimate G —10 .
Another role of the fractality is in the formation of the
broad spectral contour of SERS displaying the dramatic
increase from the blue to red region where Q is large.

The model with dipole-dipole interaction considered
above does not include some factors present in real sys-
tems. In colloidal clusters, monomers are touching or a1-
most touching each other (cf. Fig. 5). As a result of this,
there may exist Ohmic conduction between the mono-
mers. However, at high frequencies, the capacitive con-
ductivity (which is taken into account by the dipole cou-
pling) will prevail over the Ohmic conductivity, as argued
in Ref. 11. Another factor is the short-range interactions
of nearest monomers, namely, exchange and higher-
multipole couplings (the exchange coupling is also re-
sponsible for conduction between the monomers). We be-
lieve that the long-range dipole interaction dominates in

determining the collective excitation spectrum of a frac-
tal, i.e., in the scaling region. However, the higher-
multipole interactions may change the local fields acting
on a monomer or on a monomer-adsorbed molecule, as
has been shown for two monomers. This factor can re-
normalize the magnitude of enhancement factor G
but, probably, has lesser effect on its spectrum. We hope
to return to quantitative consideration of these factors
elsewhere.

Let us compare the theory with experimental results
obtained with colloidal silver. Figure 6 shows the spec-
tral dependence of X and 5 for silver calculated with opti-
cal constants adopted from Ref. 20. One can conclude
from these data that the scaling region, where L))5, is
A, )400 nm. Also, in this region Q = 1/R 05 is large.

Experimental SERS enhancement data obtained in Ref.
19 are compared in Fig. 7 with G values calculated
with Eq. (43) as a function of A, . Only the spectral depen-
dence of G is informative in this figure since only rela-
tive values of G" are reported in Ref. 19. The experi-
mental data presented in Fig. 7 are normalized by setting
G =15000 at 460 nm, which is a reasonable value.
Clearly, the present theory accounts successfully for the
dramatic increase in Raman enhancement accompanying
aggregation, and for the observed increase of G to-
wards the red despite the fact that the enhancement for a
single silver colloidal particle is expected to peak in the
near uv. We emphasize that, aside from a single multi-
plicable factor, the calculated enhancement factor con-
tains no adjustable parameters (d, has previously been
found from modeling of linear responses).

0..0 ! I !
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! I ! (
! ! I [ ! I ! ) ! !
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FIG. 6. Spectral parameter X and dissipation parameter 6,
both multiplied by Ro to give dimensionless quantities, plotted
against wavelength A, . Optical constants for silver are taken
from Ref. 20, and the ratio Ro/R =0.7, typical for cluster-
cluster aggregation, is assumed.
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