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Interaction of soft modes and sound waves in glasses
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The interaction of sound waves with tunneling, relaxational, and resonant vibrational states in
glasses is investigated within the soft-potential model. The same bilinear coupling constant is as-
sumed for all three different kinds of soft modes. The model reproduces the results of the tunneling
model at low temperatures and frequencies. In addition, it explains the fast rise of the relaxational
absorption above 1 K and the plateau in the thermal conductivity around 5 K. The universal features
of the sound absorption in glasses are described with good accuracy up to 20 K.

I. INTRODUCTION

The purpose of this paper is to discuss the interac-
tion of acoustic waves with localized soft modes in glasses
and to investigate how this interaction can in6uence the
transport properties at low temperatures.

Acoustic and dielectric properties of glasses were in-
tensively investigated during the last decades. The most
remarkable result of these investigations was the discov-
ery of a set of universal low-temperature properties that
are only weakly dependent, on the specific chemical com-
position of the glass. These properties are normally not
found in crystals and are often called "anomalous": they
include low-temperature specific heat, thermal conduc-
tivity, propagation of ultrasound, dielectric loss, electric
and acoustic echo, and some other properties governed
by low-frequency modes.

An important progress towards an understanding of
the anomalous properties of glasses was the introduc-
tion of the tunneling model by Phillips2 and Anderson,
Halperin, and Varma. s Acccording to this model there
exist two-level systems associated with local tunneling
states in double-well potentials characterized by an en-

ergy diR'erence 6 between the minima and a tunnel split-
ting Ao ——h~, exp( —A). Here ~, is some crystal-like
vibrational frequency and A is a tunnel integral. The
parameters 6 and A are random; their distribution func-
tion P(A, A) is assumed to be constant. The tunneling
model provides an explanation for the main features of
thermodynamics and kinetics in glasses at very low tem-
peratures.

There are several review articles where experimental
data and their interpretation are given, in particular by
Hunklinger and Arnold, 4 Hunklinger and Raychaudhuri,
Phillips, and those in the book edited by Phillips. A
review of the properties of metallic glasses is given by
Black. The universal features of the thermal conductiv-
ity over a large temperature range have been emphasized

by Freeman and Anderson. s

Above 1 K, the properties of glasses deviate from the
predictions of the tunneling model. The thermal con-
ductivity shows a plateau around 5 K, which cannot
be understood in terms of a constant density of tun-
neling states and is diFicult to understand in terms
of phonon scattering from static disorder. ~~ ~4 Further-
more, there is an additional increase in the specific
heat, indicating the existence of still another kind of
low-frequency mode. Recent neutron measurements
have shown these to be soft, harmonic vibrations with a
crossover to anharmonicity at the low-frequency end (at
frequencies corresponding to several kelvin). Measure-
ments of the specific heat and of the thermal conductiv-
ity of a glassy polymer have shown that the contribution
by these modes decreases with pressure parallel to the
two-level contribution.

There are many confhcting explanations for the univer-
sal anomalous behavior between 1 and 10 K. One possi-
bility is to associate the plateau in the thermal conductiv-
ity to phonon scattering from some kind of disorder (scat-
tering by frozen-in free volume, '" clusters, ~s fractals, 's

and disorder in the force constants, to mention only a
few of the large number of similar proposals) and to ex-
plain the additional vibrational states as a consequence
of phonon localization. These approaches have two weak
points. First, it is difBcult to explain why phonons with a
wavelength scale on which the glass is still practically ho-
mogeneous should be scattered so strongly. Second,
the explanation for the tunneling states is lacking.

Another possibility is to try to extend the tunneling
model to explain the anomalies at higher temperatures.
One of these attempts starts from fundamental consid-
erations on the interaction of the tunneling entities
trying to resolve the resulting many-body problem. At
present, this kind of approach has not gone far beyond
considerations of the tunneling states themselves. Alter-
natively, one can disregard the interaction of these enti-

46 2798 QC1992 The American Physical Society



46 INTERACTION OF SOFT MODES AND SOUND WAVES IN GLASSES 2799

ties and assume a phenomenological single-mode picture.
First steps in this direction were undertaken by Kar-
pov and Parshin~s and by Yu and Freeman. ~7 Both ap-
proaches, though with different assumptions, describe the
plateau in the thermal conductivity in terms of resonant
scattering of sound waves from localized low-frequency
vibrations, thus relating the plat;eau to t;he strong rise
of the specific heat at the same temperature. The spe-
cial case of the mixed cyanides has been analyzed by
Grannan, Randeria, and Sethnazs along similar lines on
a more microscopic basis.

Very recently, Tielburger et al. 9 considered an exten-
sion of the tunneling model toward higher barriers, in
order to explain the strong rise of the sound wave absorp-
tion above 4 K in vitreous silica in terms of the onset of
classical relaxation processes.

A more general approach, proposed by Karpov,
Klinger, and Ignat'ev describes the tunneling, the soft
vibrations, and the low-temperature relaxational mo-
tion in terms of soft anharmonic potentials with lo-
cally varying parameters (see also Ref. 31, where an im-
portant extension of the model has been introduced).
This approach reproduces for low temperatures the re-
sults of the tunneling model and predicts a change of
behavior for higher temperatures. The consequences
of the soft-potential model were investigated in several
papers. A review of the soft-potential model and
its implications is given in Ref. 33. Recently, s4 specific-
heat and neutron data from several glassy materials were
analyzed within the framework of the model and its pa-
rameters were determined.

The results obtained so far encourage the hope for a
unified description of the low-temperature glassy anoma-
lies. This paper intends to undertake the next step in
that direction by assuming a bilinear coupling between
sound waves and soft modes with the same coupling
parameter for t;unneling, vibrational, and relaxational
states.

II. THE SOFT-POTENTIAL MODEL

A. Definitions

To begin with, we recall the main concepts of the soft-
potential model. ss It assumes the existence of soft lo-
calized modes in glasses. Since the average square dis-
placement in such a mode is relatively large, one should
take anharmonicity into account. Strong anharmonicity
of soft potentials leads to a number of nontrivial features
for the corresponding localized excitations.

The anharmonic soft potential of a single mode can be
written as

V(*) = ~[a(~/a)'+ ((~/a)'+ (~/a)'l.
E' is an energy of atomic scale, z is the displacement of
the atom with the largest amplitude in the mode, while a
is a distance of the order of the interatomic spacing. At
the distance a the fourth-order term in the potential (1)
is as high as the harmonic term for an unsoftened mode
(g = 1) at a crystal-like frequency ~, with E = Mu, a2/2.

The definition of the coordinate z implicitly defines an
effective mass M via the kinetic energy and the eigen-
vector of the modes4 [see also Sec. III A, where this def-
inition is given explicitly in Eq. (19)j. Comparison with
experiment and numerical work on a model glass
have shown independently that this effective mass M is
at least a factor of 10 higher than the atomic mass rn.
The coefficients il and ( are random parameters. Depend-
ing on the values of g and (, Eq. (1) describes single- or
double-well potentials. In the double-well case the same
potential can be described by three sets of parameters,
corresponding to expansions around the three extrema.
In that case we restrict the possible values of g and ( to
the expansion around the maximum. g ) 0 then always
gives one-well potentials and g ( 0 double-well poten-
tials. In the latter case the two minima are separated
by a distance d = 2a/9(z/64 —g/2 ay 2

I g I
and a

barrier of height E'g /4 (in the symmetric case ( = 0).
To derive an energy scale for Eq. (1) let us consider

the Schrodinger equation for the purely quartic potential
(n=(= o):

h d
Q„+Z(z/a)~g„= E„g„. (2)

The spacing between the ground (n = 0) and the first
excited state (n = 1) is of the orderso

W = E'gg,

where the notation

« —(g'/2Ma2g) its

(3)

(4)

has been introduced. The energy 6' is related to the
crystal-like frequency v, by h~, = 2WgL ~ . The char-
acteristic scale of the displacement is a(«)i~ .

Both the effective mass M and the energy 8 will in-
crease proportional to the number of atoms participating
in the soft mode, while the frequency u, is independent
of that number. The energy W scales with M i~, giv-
ing a relatively low value if many atoms participate in
the mode.

The energy levels are dependent on the ratios il/«and
(/(«)i~z and can be expressed in the form

P(~, () = PO I n I, (6)

where Po is a slowly varying function of i1 and (, which
in the following will be taken as a constant.

The vanishing of P(g, g) as g ~ 0 was justified on
the basis of the destruction of very soft potentials as a
result of small linear perturbations. Experimentally, it is

& = W+ (v/vi &/vg ).

For
I &/g&" I=I pig~ I= 1 and n 1, F„ 1.

The soft modes are assumed to be randomly dis-
tributed in the glass. The parameters g and ( charac-
terizing the single soft mode are random. Generally, the
distribution has to obey P(g, () = P(g, —(). For small
values of il and ( the distribution is dominated by the
seagull singularity
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confirmed by the rapid rise of the specific heat at several
degrees kelvin, which cannot be described quantitatively
without this so-called "seagull singularity" assumption.

So far, our definitions stick to the usual convention of
the soft-potential model. In the following, we add a new
definition, namely, the definition of coupling constant(s)
for the bilinear interaction between soft modes and sound
waves. As shown in Sec. III, the leading term of that
interaction can be written as

bV(z, r~) = A~r, —, (7)

where rz is the strain deformation by a sound wave. One
has to define two such coupling constants, Ai and Ai, for
the strain deformations by longitudinal and transverse
sound waves, respectively.

As noted above, in a symmetric double-well poten-
tial with negative g one has the two-well minima at
+apl il I

/2. If the potential barrier in between is high
enough, the wave functions of the lowest levels (or, in
a classical treatment, the probability distribution func-
tion) will be centered around these minima. In such a
case, one can describe the interaction between the soft
mode and the strain of a sound wave in terms of a de-
formation potential between the two minima. With the
bilinear coupling (7), the deformation potentials pi, pi are
given by

pi = Ai(l g I
/2)"' vi = Ai(l n I

/2)"' (8)

Instead of working with the two coupling constants At
and At or the deformation potentials p~ and pt of the
double-well case, it is often convenient to use the two
dimensionless constants C~ and Ci,

2Ppr/i A& 2Ppill A&
7/2 7/2

W pvt2
' W pvi~

' (9)

where p is the mass density of the glass and vt, vt are the
longitudinal and transverse sound velocities, respectively.
As will be seen, the two constants C~ and Ci can be
consistently defined in both the tunneling5 and the soft-
potential model. With these definitions, the predictions
of the soft-potential model for the sound absorption at
temperatures between 1 and 20 K can be expressed by the
two parameters Ci and Ci, known for many glasses from
experiments below 1 K, plus one additional parameter,
the energy W.

B. Assumptions

The soft-potential model makes two assumptions: (i)
The soft modes can on average be characterized by the
parameters E', M, and a as defined in the preceding sub-
section. (ii) The distribution function for the small ran-
dom parameters il and ( is proportional to

I il I
around

the origin in the (r/, () planesi corresponding to Eq. (6)
in the preceding subsection. Equation (6) is expected to
hold up to values

I r/ I /rll. » 1 and
I ( I /ilL » 1.

In this paper we add a third assumption: (iii) The
interaction between the sound waves and the three dif-

ferent kinds of soft modes can be described in terms of
the same bilinear coupling constants Ci and Ci defined
above in Eq. (9).

C. Approximations

The tunneling model as a limiting ease

The level splitting in the soft potent, ials is ordinarily
of the order of the energy W or greater (see Sec. II A).
The only exception from this rule is for double-well po-
tentials, g & 0, where one can have tunneling. In fact,
the soft-potential model reproduces for low temperatures
the results of the tunneling model with small logarithmic
corrections. The parameters b, , A of the tunneling model
can be expressed in terms of the quantities g, ( assP

w lg I l~ I'/'
21/2 1/2 3/2 )

"lL ~L
(10)

4P "'
(12)

In this approximation, P(A, A) is not a constant as as-
sumed in the tunneling model, but varies with 1/ I il I

(inversely proportional to the square root of the barrier
height). Since the tunnel splitting changes exponentially
with barrier height, the predictions of the two models do
not differ significantly in the temperature and frequency
region of the tunneling states. In the dimensionless pa-
rameter combination5 of the tunneling model

Ppi Pp,
t — 2) t — 2)

pvt pvt

one even has a cancellation of the two g dependencies, if
one inserts for P the expression (12) and for pi (or yi)
the definition (8) of the soft-potential model. Ci and Ci
as defined in (13) then turn out to be equivalent to their
definition (9) in the soft potential model in Sec. II A.

2. Soft vibrations: Another limiting case

If 1 » g » gL the anharmonicity of the motion is rela-
tively weak. In this situation Eq. (1) describes soft quasi-

harmonic excitations with frequencies u, » u » W/h.
The integration over ( leads to a density of quasiharmonic
states

1 Ppr/I/ t'h~ )
nH(h~) =

W iW) (14)

This strongly rising density of soft localized vibrational

A=ln ' =ln '+
60 W 3 gL

Calculating the transformation Jacobian and taking into
account that the density of states P of the tunneling
model is only defined for positive asymmetries b, (this is
not stated explicitly in the treatments of the tunneling
model, s s but can be seen from their following equations),
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states is an important common feature of glasses. It ex-
plains the strong rise of the specific heat at a few degrees
kelvin and the high density of soft vibrational states ob-
served in neutron scattering. 4

8. Classical relaxation as a third limiting case

At higher temperatures, a particle (or an ensemble of
particles in a configurational coordinate) will no longer
tunnel through a potential barrier but will begin to hop
over it as a consequence of classical activated. relaxation.
Following Gilroy and Phillips, 7 we describe the activated
process in terms of a relaxation time r given by

v~1 (elT:Tp exp (

—
/

cosh
k~T) t 2k&T&

'

Here 70 is an attempt frequency of the order of the
crystallike frequency ~, . V~ is the barrier height that
can be expressed through the parameter g as

region.
In this paper, the energy 2W is chosen as the limit be-

tween the different extrapolations. At frequencies below
2W/h, the sound waves are assumed to interact only with
tunneling and relaxational modes; above 2W/h they are
assumed to interact only with the soft vibrations. The
limit is chosen in such a way that the mean free path
at low temperatures joins continuously at the crossover
frequency (see Fig. 1).

In the low-frequency domain, we further assume a
crossover temperature W/k~. Below that temperature,
the low-frequency sound absorption is ascribed to the in-
teraction with the tunneling states. Above W/k~, the
sound absorption is assumed to be due to classical re-
laxation. Again, the crossover temperature is chosen in
such a way that the mean free paths join continuously
(see Fig. 2).

III. COUPLING BETWEEN SOFT MODES
AND SOUND WAVES

A. Soft vibrations

Crossover region

All the preceding approximations break down as one
approaches the origin of the (rI, () plane, the pure quartic
potential. The energy splittings of these potentials are
of the order of W. At present, there is no simple ana-
lytic description for these configurations. Therefore, if
one wants to avoid lengthy numerical calculations, one is
forced to use the asymptotic expressions for the three re-
gions of tunneling, vibration, and classical relaxation dis-
cussed above and to extrapolate them into the crossover
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FIG. 1. Measured [circles: data by Dietsche and Kinder
(Ref. 44); dashed lines denote f and f: data by Long,
Hanna, and MacLeod (Ref. 45)] and calculated (continuous
lines) inverse mean free path at low temperatures for sound
waves in vitreous silica as a function of frequency.

A soft-mode as given by the model potential (1), is not
an exact eigenstate of the glass. It will interact with the
extended modes of similar energy, the long-wavelength
phonons. This interaction affects both the soft mode it-
self and the phonons, which are, for the same reasons,
also not exact eigenstates. The sharp energy levels given
by (1) will be broadened and shifted. The bulk of the
energy shift is of course incorporated in (1), which rep-
resents an effective potential for a soft mode in the lat-
tice. The width on the other hand is a measure of the
scattering between the phonons and the soft modes and
is, as such, not included in (1). Since we are consider-
ing soft modes of comparatively low frequencies ( 100
GHz) there is a low density of phonons of the same fre-
quencies and hence a low damping of the soft mode —the
soft mode is still well defined. Let us consider first the
case of quasiharmonic soft vibrations in one well (g ) 0).
This problem can be treated analogously to the one of
scattering of phonons by resonant vibrations in lattices
which has been studied extensively. ss 4

The soft vibrations are caused by a local deviation of
the force constant matrix from the average one of the
glass and, possibly, also a local change of mass. These
we denote together as h'E(u). The soft-mode —phonon-
scattering problem can then be formulated in terms of a
defect t matrix,

t(ur) = bE(~) + bE(~) PE(~),

(17)
where

l
s ) denotes the normalized state vector of the

soft mode, and ~, and p, are its frequency and width,
respectively. For u u, the second term, the resonant
contribution, dominates. The Green's function G for the
soft mode for cu u, follows from (17) by the equation
G = Gp + GptGO with Go the ideal (average) lattice
Green's function,
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G, ( ) m((u2 —~2) —2i~p, (ur )
(18)

M=m ) &s ~s' ),

Since (1) was written in terms of the amplitudes z of one
atom, we have to take the projection of (17) onto this
atom, say atom one, and obtain thus an effective mode
mass

where s denotes the o, component of the eigenvector on
atom one with mass m. The definition of an effective
mass by Eq. (19) is valid strictly only for a finite system
but can, for low-lying resonant modes, be extrapolated
to infinite systems. This definition of the effective mass
was alluded to in Sec. IIA.

The broadening, 7(u, z), of a phonon
~

k, j & with
wave vector k, polarization j, and frequency up(k, j) =
v&k u, by a concentration g(s) of soft modes can be
expressed in terms of the t matrix (17) as

~ 1
p(~p, j) = —g(s) Im & k, j ~

t(u))
~
k,j & /m~p(k, j)

1 f& k, j f
|tE(cu)

/
s &f' 1~ —g S Im

2 m~p(k, j) m[~p(k, j ) —~z] —2i~p(k, j )p, (u), )
' (2o)

To obtain the total broadening this expression has to be
averaged over all soft-mode orientations and integrated
over all soft modes with frequencies approximately equal
to up. This integration simplifies (20) considerably. First
it is a basic assumption that the structure of the soft
mode does not strongly depend on its frequency. The
matrix element in (20) will therefore depend on k and
the phonon polarization, but not on ~, . Furthermore,
the distribution of soft modes is smooth on a scale of
their width, and we can therefore replace the imaginary
part by its 6-function limit z b(up —u, ) and so finally
get

Av ~& k, j ~
bI(u)p)

~

s ))z
OLN-, g)

(21)

Here we denote with Av the orientational averaging.
nH(u) is the density of soft vibrations of Eq. (14).

To get an estimate for 7((k)p, j) we expand (21) for small
k. The coupling change bE(u) consists of two parts. The
first one, Arne, is due to a possible change in mass.
The second one is due to a change in force constants
by. The latter would be proportional to mu2 if we were
considering an atom weakly coupled to the rest of the
glass. Here the soft mode is due to a cancellation of the
average force constants of the glass. Hence, by will be of
order m~, in order to cancel the average force constants
of the glass in the soft mode. The phonon wave function

~
kj & can be expanded in powers of k,

~
k, j &" = e (k, j)e'"

1=e (k, )) 1+ek R" ——(k R") + ).2

(22)

The constant term in the expansion contributes for the
mass term, resulting in p k, but not for the force

constant term due to the translational invariance condi-
tion on by. From the linear term we obtain together
with by a contribution to the inverse mean free path
t '=2y/mv, -k4:

I
—1
vib, res

A2', n~(~p(k, j)) + O(k'),
2pv3 Ma& (23)

where we have introduced the abbreviation

A, =Av A (k, j)
Ma2 . kp

Av e (k, j)—R bp p ~s)p
m

(24)

and used the long-wavelength limit for the phonon fre-
quency ap(k, j) = v& k with v& the transversal or longi-
tudinal sound velocity, respectively. The term y k
vanishes in crystals for defects with odd symmetry. It
therefore might also be small in a glass if the symmetry
of the soft mode is approximately odd. This argument
also shows that it is impossible to give an absolute mag-
nitude without specifying the nature of the soft mode.

Equation (23) can be derived alternatively by intro-
ducing an effective interaction term in the soft-mode po-
tential (1)

M z
bV(z) = uy ~ & k, j ~

6p
~

s & a (25)

e p(k, j) = '
[k ep(k, j)+ kp e (k, j)].

The interaction term thus becomes, to lowest order,

where uy &
is the phonon amplitude and the factor

gM/m is present, since z is an atomic amplitude rather
than the total mode amplitude. Equation (23) is ob-
tained by calculating the absorption and emission prob-
abilities for a phonon by the golden rule. In the long-
wavelength limit it is often convenient to describe the
phonon by its strain tensor
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6V(~) = ' p(k, &)& p —, (27)

P p= ) R bgp" is&" —a.
m

(28)

where p p x z/a is the change of the soft-mode dipole
tensor with displacement z:

tances than the ones relevant for our investigations, it
was found that, even though no lowest-order resonance
absorption occurs, not all models give a nonvanishing de-
formation potential. Equation (8), therefore, represents
an estimate that will become less accurate for the larger
two-well systems (larger distances between the minima
and higher barriers).

Averaging over orientations in the strain Geld rz ——uy zk
of a long-wavelength sound wave gives together with (24)
the definition (7) introduced in Sec. II.

B. Tunneling and relaxational states

In the case of two-well potentials the interaction with
the phonons can modulate the energy difference, 6, be-
tween the two minima. Depending on the conditions
this can cause resonant absorption of two-level states-
if 6 0 and the phonon frequency equals the tunnel
splitting —or relaxation processes if the transition prob-
ability from one well to the other (tunneling or classical)
is small within the period of the vibration within a well.
As in the case of one-well potentials symmetry can, in
principle, preclude the lowest-order interaction term. In
an actual glass a total suppression is, however, unlikely,
and we will restrict the discussion to this lowest order.

As noted in Sec. II, in a symmetric double-well po-
tential with negative g one has the two well minima at
+a/i g i /2. With the bilinear coupling (7), the defor-
mation potentials y~, pi are given by (8) of Sec. II A.

It should be noted that we have estimated the deforma-
tion potential by extrapolation from the harmonic limit
of the one-well potential. More accurately the deforma-
tion potential should be determined from the difference of
the elastic dipole tensors for the soft mode in its left and
right well, respectively. This could introduce substantial
corrections due to anharmonicity. In numeric simulations
of self interstitials in fcc metals, which show resonant
modes and two-well configurations, albeit with larger dis-

C. Resonant absorption

In order to calculate the resonant absorption of sound
waves from the interaction with soft modes, it is again
useful to consider the asymptotic cases of tunneling on
one side and vibration on the other. The tunneling case
has been treated in the context of the tunneling model.
Here we follow the treatment given by Phillips, which
yields for the mean free path of a phonon

7-1
'res, tun

n~C~ h~

v~ 2k~ T

where j stands for 1 or t in the longitudinal or transverse
case, respectively, and C&, Ci are given by the definition
Eq. (13). Since the same constants can be defined in
the soft-potential model, Eq. (9), the same relation holds
for the soft-potential model in the range where tunneling
states are relevant.

The mean free path resulting from the resonant inter-
action between vibrational soft modes and sound waves
can be calculated from Eq. (23) and using Eq. (14) for
the density of vibrational states. One gets

1 x~C, (h~l
v, qWP

(30)

D. Relaxational absorption

The mean free path of a sound wave under the infiuence
of relaxational processes can be writtens s

dE "drP(E, r)'~',
k+Tvz 0 o

'
pv& cosh (E/2k~T) 1 + (ur)2 ' (31)

where r is the relaxation time, E is the energy difference
of the two levels, and pz is the deformation potential of
the relaxing entity. P(E, r) is the distribution function
of these entities, which in the soft-potential model can
be tunneling states or classical relaxors or something in
between, depending on the potential parameters g and (
and on the temperature. The factor (6/E) has to be
taken into account in the quantum regime; in the classical
regime it is unity.

At low temperatures, the relaxational absorption by
the tunneling states dominates. Again, we take over the
equations derived for the tunneling model,

and reproduce again the results of the tunneling model, s

namely, a rise of the inverse relaxational mean free path
l,,&,„„with T at very low temperatures and the plateau
of the inverse mean free path with the height n~Cz/2'
at slightly higher temperatures around 1 K.

At still higher temperatures, one has to add the classi-
cal relaxation effects from potentials with higher barriers.
The relaxation time and the barrier height for this case
are given by Eqs. (15}and (16). The deformation poten-
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tial is given by (8). Neglecting the tunnel splitting 60
for these higher barriers one has E =

~
4 ~. With these

relations, one can calculate the Jacobian

sl2V—~/4Wsl& (33)

and write Eq. (31) in terms of E and V as

rel, class ~3/4I T"2 B

E 5 ~'r
!

x dE cosh
o 0 V~l 2k~T) 1+ (ur)2'

(34)

Integrating over E and replacing the value of V l' in the
integral over V by its value at wr = 1 via Eq. (15), one
gets

Substance
Sound-wave parameters
p (kgm ')
v( (ms ')
vg (ms ')

Vitreous
silica

2200
5800
3800

Amorphous
selenium

4300
2000
1050

Tunneling model parameters
p (J-1 -3)

( (eV)
7~ (e&)
C)
Cg

0.8 x 10
1.04
0.65

3.0 x 10
2.7x10 4

2.0 x 10
0.25
0.14

1.9 x 10
2.2 x 10

Crossover energy
W/kp (K) 3.8

TABLE I. Material parameters of the soft-potential model
for vitreous silica and amorphous selenium.

3/4
In (I/cero).

7I'4)Cl ( T yl4

vl gW
(35) Reference 42.

References 34 and 43.

E. Some remarks concerning microwave absorption

We are not going to provide here a detailed theory of
microwave absorption and its comparison with experi-
mental data. This will be done in a separate publication.
Here we would like to give only a few remarks concerning
this problem.

We can assume basically the same mechanism of cou-
pling of the electric field to the soft modes with the only
diQ'erence being that the soft-mode Hamiltonian is modu-
lated by the external electric field rather than by a strain.
This means that the action of an external ac electric field
can be analyzed in the same way as the action of a strain
using a quite simple correspondence between the two in-
teraction Hamiltonians.

At temperatures and frequencies where activation pro-
cesses in two-well potentials dominate and the (rl, () dis-
tribution is given by the seagull singularity, one gets, for
the loss angle tangent,

tan 6 oc T l ln (I/pro), (36)

which corresponds to Eq. (35). In the same way one can
find that, the coefBcient of resonant microwave absorption
is proportional to u .

IV. COMPARISON TO EXPERIMENT

A. Choice of parameters

In the formulation of the soft-potential model given
here, one needs four material parameters for a compari-
son to experimental data. Three of these, namely, P, C~,
and Cq (or, alternatively, instead of the last two, p~ and
pq), can be taken from fits of low temperature data in
terms of the tunneling model. We chose the recent data
collection of Berret and Meissner as the basis of the
comparison (the values C~, Cq differ slightly from those
in the reference because they were directly calculated

from P, y~, and yq). The missing fourth parameter is
the crossover energy W. It can be determined from
specific-heat data. s4 4s Here we chose the values from an
unpublished numerical fit, 4s which agree within 10% with
our previously published datas4 [this paper contains two
errors in the determination of the density of tunneling
states, Eq. (39) of Ref. 34, which, fortunately, happen to
cancel].

The comparison concentrates on data of vitreous silica,
the most intensively studied case, and includes thermal
conductivity data of amorphous selenium. The material
parameters of these two glasses are compiled in Table I.
Note that, none of these parameters is adapted to sound-
wave absorption data above 1 K.

B. Resonant absorption

The resonant absorption of sound waves below 1 K
is well described in terms of the tunneling model. Its
temperature, frequency, and sound-wave intensity depen-
dence are discussed in detail in the literature and need
not be discussed here. Instead, we focus on the behav-
ior at higher temperatures and/or higher frequencies. In
the resonant case, Eq. (29) for the tunneling states has
to be taken together with Eq. (30), which describes the
onset of the resonant absorption by the quasiharmonic
vibrations. The two expressions join continuously at
hw„= (6~2) l W ~ 2W in the low-temperature limit
(compare Sec. IIC4). If the temperature is low enough
relaxations need not be considered, and the sound-wave

absorption should change at u„ from the linear tunnel-

ing model dependence to an u4 dependence at higher fre-

quencies, as shown in a double-logarithmic plot in Fig. 1.
The figure compares the prediction with experimental
data of Dietsche and Kinder and of Long, Hanna, and
MacLeod. The strong rise of the inverse mean free path
with increasing frequency is seen both in experiment and
model calculation.
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C. Relaxational absorption 0.2
(a)

Figure 2 shows a comparison of calculated and
measured4s internal friction, again for vitreous silica.
The internal friction Q

~ is related to the mean free
path by I ~ = ~Q ~/nz. The experimental conditions
were such that the resonant contributions discussed in
the preceding subsection should be negligible.

The calculated curves in Fig. 2 were obtained from the
tunneling model for temperatures below W/k~ and from
Eq. (35) with ro —10 s above that temperature. Their
good fit below 2 K is not surprising, but rather empha-
sizes the good agreement between two measurements (the
tunneling model parameters in Table I were determined
from a similar measurement on vitreous silica by a dif-
ferent group4 ). The difference between the predictions
of the tunneling model and the soft-potential model is
clearly seen above 4 K, where the classical relaxation con-
tribution begins to appear. The experimental data show
the predicted rise, though with a smaller slope. Above
30 K they begin to deviate strongly from the theoretical
prediction, indicating a cutoff in the distribution func-
tion for higher barriers. z The crossover region between
tunneling and classical relaxation is not well reproduced.
In particular, the experimental data at 45 MHz exceed
the calculated data by a factor of nearly 2.

Figure 3 compares the prediction of Eq. (35) with Bril-
louin data4s at higher temperatures. The frequency is al-
ready a sizeable fraction of the crossover frequency, but
the resonant contribution from the soft vibrations should
still be negligible. The agreement is surprisingly good up
to temperatures of 50 K, where again the absorption be-
gins to become smaller than the calculated values, possi-
bly again due to the same high barrier cutoff. The Bril-
louin scattering in this cutoff region and its pressure de-

pendence have been investigated in detail very recently. zs

The interpretation of these results was similar to the one
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FIG. 3. Measured [full circles: Brillouin data by Uacher et
al (Ref. 48.)] and calculated (continuous lines) inverse mean
free path in vitreous silica as a function of temperature (a)
for longitudinal sound waves at the frequency 35 GHz (b) for
transverse sound waves at 16 GHz.
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FIG. 2. Measured [open circles and squares: data by Ray-
chaudhuri and Hunklinger (Ref. 46)] and calculated (contin-
uous and dashed lines) values of internal friction for vitreous
silica at two different frequencies as a function of temperature.

given here. It assumed a distribution of barriers able
to explain the relaxation phenomena by tunneling states
at very low temperatures and by classical relaxation at
higher temperatures.

D. Thermal conductivity

The thermal conductivity between 0.1 and 10 K is
dominated by sound waves with frequencies between 10'o
and 10~z Hz. The crossover frequency u„2W/h be-
tween resonant tunneling and resonant vibrations lies in
the middle of this range. In order to calculate the ther-
mal conductivity, we chose

(37)

according to Eqs. (29) and (35) for frequencies below u„
and

res vib (38)

according to Eq. (30) for frequencies above the crossover.
Here we consider Eq. (35) as a good interpolation in the
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temperature and frequency range relevant for the ther-
mal conductivity. As one can see in Fig. 3, this interpo-
lation gives an adequate description of the experimental
data for frequencies of the order of W/h (16 and 35 GHz).
Processes that we do not consider explicitly in this paper,
such as relaxational absorption by the quasilocalized har-
monic vibrations, can make a substantial contribution to
the absorption in this frequency interval. Here we shall,
however, limit ourselves to this comment, leaving a de-
tailed analysis of it for a separate paper.

The thermal conductivity z was calculated using the
standard expression
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FIG. 5. Measured [triangles: data from Zeller and Pohl
(Ref. 1)j and calculated (continuous line) thermal conductiv-
ity of amorphous selenium as a function of temperature.
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The open and full circles are experimental data reported by
Cahill and Pohl (Ref. 49); the line marked "T " was calcu-
lated from standard expressions for crystalline samples, and
the second line was calculated as indicated in the text.

where CD,by, j(~, T)da is the specific heat contributed
by longitudinal (j = l) and transverse (j = t) sound
waves within the frequency interval d~, and l& is the cor-
responding mean free path calculated as indicated above.

The result of these calculations, using the parameters
in Table I, is compared with experimental data in vitre-
ous silica s in Fig. 4 and with experimental data in arnor-
phous selenium in Fig. 5. As can be seen, the model cal-
culations reproduce the plateau in the thermal conduc-
tivity with good accuracy. At still higher temperatures
there is a second rise of the experimental data, which
is not reproduced by the calculations and is outside the
scope of the present model.

V. DISCUSSION

The comparison with experiment in the preceding sec-
tion shows that the soft-potential model is able to explain
the main features of the anomalous sound-wave absorp-
tion in glasses up to temperatures of 20 K and up to fre-
quencies approaching 1 THz. The tunneling model, valid
below 1 K and below 10 Hz, is contained as a limiting
case. For higher temperatures, one has to include classi-
cal relaxation, and for higher frequencies, quasiharmonic
vibrations become important. The soft-potential model
enables a unified description with only one additional pa-
rameter, the crossover energy W, added to those of the
tunneling model ~

While the main features of the experiment are de-
scribed, there are also marked deviat;ions. If one looks
for the source of the difFerence in the theoretical calcu-
lation, one could name several possible reasons. At the
present stage, however, the quality of the approximations
discussed in Sec. II C does not warrant speculation about
the validity of the assumptions. This is especially true in
the crossover region around W. The deviations between
theory and experiment in that region (for instance, in the
45 MHz data in Fig. 2 around 4 K) could easily be due
to the inaccurate description of the transition between
the limiting cases.

The point illustrates the general present situation of
the soft-potential model. It attempts to describe uni-
versally anomalous low-temperature glass properties in
terms of a single picture for three difFerent kinds of soft
modes. At the origin of the potential parameter distri-
bution (rj = ( = 0) one has the pure quartic potential,
where the used asymptotic approximations break down.
Further away from the origin, these approximations be-

gin to be valid, but deviations from the simple assump-
tion about the potential parameter distribution (assump-
tion (ii) of Sec. II B concerning the seagull singularity)
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may become noticeable. This makes it difficult to distin-
guish between the deviations from the assumptions and
the errors due to the approximations. The good general
agreement with experiment found so far is encouraging.
However, if one wants to judge the limits of applicability
of the model, one needs either numerical calculations or
better approximations.

The explanation of the plateau in the thermal conduc-
tivity given here is similar to the ones given earlier by
Karpov and Parshin, zs Yu and Freeman, z7 and Grannan,
Randeria, and Sethna. zs Here we will not give a detailed
comparison to that older work but merely note that our
assumptions are simpler, more general, and allow us to
describe the experimental data with a smaller number of
parameters.

In the same way, our explanation of the rise of the
relaxational absorption above 1 K is similar to the one
proposed by Tielburger et aL In that approach, a differ-
ent form of the double-well potential and the assumption
of a barrier-independent coupling lead to l,,~,i„, T
instead of the T ~ dependence of Eq. (35). Neverthe-
less, the basic idea is the same, though the extension to
soft vibrations and the connection to the plateau in the
thermal conductivity is missing.

It is interesting to compare the results of the present
work with the universal description of the thermal con-
ductivity of amorphous solids given by Freeman and
Anderson. s Their first rule for the mean free path I
is I 150%, where A is the wavelength of the sound
waves. The rule holds for sound frequencies below 100
GHz. This is the region where the predictions of the
soft-potential model coincide with those of the tunnel-
ing model. s s That first rule implies Ci 3.3 x 10
in Eq. (29) (this universality has recently been stressed
againz~). Their second rule is I (4 x 10z4 m s)A4, which
describes the universality of the plateau region. The
A4 dependence is reproduced by Eq. (30) of the present
work. The numerical prefactor can be translated into
the condition 2W hv~/A«with a universal crossover
wavelength Agp of about 34 nm. From the experimen-
tal low-temperature data of Dietsche and Kinder44 and
Long, Hanna, and MacLeod in Fig. 1, one infers to-
gether with the tunneling model prediction (29) crossover
wavelengths of 23 and 21 nm, respectively, for vitreous
silica. Numerical fits4s of the specific heat in terms of
the soft-potential model give W values corresponding to

crossover wavelengths of 26, 25, 23, and 16 nm in vitre-
ous silica, amorphous selenium, a-BzOs and amorphous
polybutadiene, respectively.

The third rule of Freeman and Anderson, s I A at
still higher frequencies, which describes the second rise
of the thermal conductivity above 20 K, is beyond
the scope of this paper.

VI. CONCLUSIONS

The soft-potential model, a phenomenological model,
which describes tunneling states, classical relaxors, and
soft quasiharmonic vibrations in glasses in terms of one
distribution of anharmonic soft potentials, has been used
to calculate the sound absorption by using the same bi-
linear coupling constant for all three types of excitation.
Good general agreement between measured and calcu-
lated sound-wave absorption up to temperatures of 20 K
and frequencies of 500 GHz has been achieved. Three
of the four required material parameters can be taken
from tunneling model fits (P, pi, and 7t), since the soft-
potential model can be formulated as an extension of the
tunneling model. The fourth, the crossover energy W,
can be taken from fits to specific heat. Without any fur-
ther adaptable parameter, it is possible to describe the
plateau in the thermal conductivity and the strong rise
of the relaxational absorption above 1 K in reasonable
agreement with experiments in vitreous silica and amor-
phous selenium.

our approach does not share the notorious difficulty
of other attemptsi7 zo to explain the plateau in the ther-
mal conductivity of amorphous solids, i.e. , to understand
quantitatively why phonons are scattered so strongly at
long wavelengths of the order of 30 nm. i 's

ACKNOWLEDG MENTS

We are grateful to D. Tielbiirger, R. Merz, R. Ehren-
fels, and S. Hunklinger for communicating their results
prior to publication. V.L.G. and D.A.P. thank the Hum-
boldt foundation and Yu. M.G. and M.A.R. thank the
Forschungszentrum Julich for financial support during
the work on this paper. V.L.G. , D.A.P. , Yu.M.G. , and
M.A.R. gratefully acknowledge the hospitality of the
Forschungszentrum Julich during their stay.

'Permanent address: A. F. Ioffe Institute for Technical
Physics of the Academy of Science, 194021 St. Petersburg,
Russia.

tPermanent address: St. Petersburg State Technical Univer-
sity, St. Petersburg, Politechnicheskaya 29, 195251 Russia.

~Permanent address: Laboratorio de Bajas Temperaturas,
Departamento de Fisica de la Materia Condensada C-III,
Universidad Autonoma de Madrid, 28049 Madrid, Spain.
R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).
W. A. Phillips, J. Low. Temp. Phys. 7, 351 (1972).

P. W. Anderson, B. I. Halperin, C. M. Varma, Philos. Mag.
25, 1 (1972).
S. Hunklinger and W. Arnold, in Physical Acoustics, edited
by W.P. Mason and R.N. Thnrston (Academic, New York,
1976), Vol. XII, p. 155.
S. Hunklinger and A. K. Raychaudhuri, in Progress in Lou
Temperature Physics, edited by D.F. Brewer (Elsevier, Am-
sterdam, 1986), Vol. IX, p. 267.
W. A. Phillips, Rep. Prog. Phys. 50, 1657 (1987).
Amorphous Solids: Lour Temperature Properties, edited by



2808 U. BUCHENAU et al. 46

W. A. Phillips (Springer, Berlin, 1981).
J. L. Black, in Glassy Metals I, edited by H. J. Giinterodt
and H. Beck (Springer, Berlin, 1981), p. 245.
J. J. Freeman and A. C. Anderson, Phys. Rev. B 34, 5684
(1986).
D. P. Jones and W. A. Phillips, Phys. Rev. B 27, 3891
{1983).
M. P. Zaitlin and A. C. Anderson, Phys. Rev. B 12, 4475
(1972).' J. Jackie, in Proceedings of the /th International Confer
ence of Non Cry-stalline Solids, Claasthal Zel-lerfeld, 1976,
edited by G. H. Frischat (Trans Tech, Aedermannsdorf,

1977), p. 568.
D. P. Jones, N. Thomas, and W. A. Phillips, Philos. Mag.
38, 271 (1978).
E. Akkermans and R. Maynard, Phys. Rev. B 32, 7850
{1985).
U. Buchenau, H. M. Zhou, N. Niicker, K. S. Gilroy, and W.
A. Phillips, Phys. Rev. Lett. 60, 1318 (1988).
J. M, Grace and A. C. Anderson, Phys. Rev. B 40, 1901
(1989).
D. Walton, Solid State Commun. 14, 335 (1974).

' J. E. Graebner, B. Golding, and L. C. Allen, Phys. Rev. B
34, 5696 (1986).
R. Orbach, Science 231, 814 (1986).
G. J. Morgan and D. Smith, J. Phys. C 7, 649 (1974); D.
Walton, Phys. Rev. B 16, 3723 (1977); W. Schirmacher and
M. Wagener, in Dynamics of Disordered Materials, edited

by D. Richter, A. J. Dianoux, W. Petry, and J. Teixeira,
(Springer, Berlin, 1989), Vol. 37, p. 231.
W. Arnold and S. Hunklinger, Solid State Commun. 17,
883 (1975).
M. W. Klein, Phys. Rev. B 40, 1918 (1989); Phys. Rev.
Lett. 65, 3017 (1990).
C. C. Yu, Phys. Rev. Lett. 63, 1160 (1989).
A. J. Leggett, Physica B 169, 322 (1991).

2~S. N. Coppersmith, Phys. Rev. Lett. 67, 2315 (1991).
V. G. Karpov and D. A. Parshin, Zh. Eksp. Teor. Fiz. 88,
2212 (1985) [Sov. Phys. JETP 61, 1308 (1985)].
C. C. Yu and J. J. Freeman, Phys. Rev. B 36, 7620 (1987).
E. R. Grannan, M. Randeria, and J. P. Sethna, Phys. Rev.
B 41, 7784 and 7799 (1990); J. P. Sethna, Physica B 169,
316 (1991).
D. Tielbiirger, R. Merz, R. Ehrenfels, and S. Hunklinger,

Phys. Rev. B 45, 2750 (1992).
V. G. Karpov, M. I. Klinger, and F. N. Ignat'ev, Zh. Eksp.
Teor. Fiz. 84,760 (1983) [Sov. Phys. JETP 57, 439 (1983)].

'M. A. Il'in, V. G. Karpov, and D. A. Parshin, Zh. Eksp.

Teor. Fiz. 92, 291 (1987) [Sov. Phys. JETP 65, 165 (1987)].
Yu. M. Galperin, V. L. Gurevich, and D. A. Parshin, Phys,
Rev. B 32, 6873 (1985); Yu. M. Galperin, V. L. Gurevich,
and D. A. Parshin, Zh. Eksp. Teor. Fiz. 92, 2230 (1987)
[Sov. Phys. JETP 65, 1257 (1987)].
Yu. M. Galperin, V. G. Karpov, and V. I. Kozub, Adv.
Phys. 38, 669 (1989).
U. Buchenau, Yu. M. Galperin, V. L. Gurevich, and H. R.
Schober, Phys. Rev. B 43, 5039 (1991).
B. B. Laird and H. R. Schober, Phys. Rev. Lett. 66, 636
(1991).
H. R. Schober and B. B. Laird, Phys. Rev. B 44, 6746
(1991).
K. S. Gilroy and W. A. Phillips, Philos. Mag. 43, 735
(1981).
A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P.
Ipatova, Theory of Lattice Dynamics in the Harmonic Ap-
proximation, Solid State Physics Suppl. 3, 2nd ed. (Aca-
demic, New York, 1971).
G. Leibfried and N. Breuer, Point Defects in Metals I,
Springer Tracts in Modern Physics Vol. 81 (Springer,
Berlin, 1978).
P. H. Dederichs and R. Zeller, Point Defects in Metals
II, Springer Tracts in Modern Physics Vol. 87 (Springer,
Berlin, 1980).
H. R. Schober and A. M. Stoneham, Phys. Rev. B 26, 1819
(1982).
J. F. Berret and M. Meissner, Z. Phys. B 70, 65 (1988).
L. Gil, M. A. Ramos, A. Bringer, and U. Buchenau (un-
published).
W. Dietsche and H. Kinder, Phys. Rev. Lett. 43, 1413
(1979).
A. R. Long, A. C. Hanna, and A. M. MacLeod, J. Phys. C:
Solid State Phys. 19, 467 (1986).
A. K. Raychaudhuri and S. Hunklinger, Z. Phys. B 57,
113 (1984); S. Hunklinger, in Disorder Systems and Net
Materials, edited by M. Borissov, N. Kirov, and A. Vavrek

(World Scientific, Singapore, 1989), p. 113.
P. Doussineau, M. Matecki, and W. Schon, J. Phys. (Paris)
44, 101 (1983).
R. Vacher, J. Pelous, F. Plicque, and A. Zarembowitch, J,
Non-Cryst. Solids 45, 397 (1981).
D. G. Cahill and R. O. Pohl, Phys. Rev. B 35, 4067 (1987);
D. G. Cahill, Ph. D. thesis, Cornell University, 1989.
P. B. Allen and J. L. Feldman, Phys. Rev. Lett. 62, 645

(1989).
M. S. Love and A. C. Anderson, Phys. Rev. B 42, 1845
(1990).


