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Phase transition in a U(1)-lattice-gauge system derived from a weakly three-dimensional t-J model
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We numerically study a U(1)-lattice-gauge system, which is an effective model of the Ginzburg-

Landau-type obtained from the t-J model of electrons. The model, which we call the "GL" model for

short, is composed of link variables interpreted as a nearest-neighbor hole-pair field bounded by the sing-

let spin pairs. We concentrate our attention on the weakly three-dimensional case in which the electron

hopping in the third direction is suppressed compared to other directions. When we simulate the model

on an L lattice, we therefore actually treat a system of L loosely coupled layers each of which is of size

L . Monte Carlo simulations are done on 12', 20, and 30' lattices with the electron density slightly less

than the half-filled one (the doping parameter 5 is mostly 0.06) and with the ratio of the interlayer-to-

intralayer hopping parameter ranging between 0.1 and 0.9. We observe cusplike behavior of the specific

heat, which indicates a phase transition due to the spontaneous breaking of a global symmetry of the GL
model. An average link variable in one direction within the layers turns out to serve as a nice order pa-

rameter of the transition. The transition temperature T, decreases as the interlayer hopping of the elec-

trons increases. Results on some expectation values, which indicate strong correlations between link

variables below T„are also presented.

In the study of systems of strongly correlated electrons,
the t-J model, ' which originates from the Hubbard model
with strong on-site Coulomb repulsion, is expected to
shed light on the high-temperature superconducting phe-
nomena. Several years ago it was pointed out in Refs. 2
and 3 that from the t-J model with small doping one can
obtain a model of the Ginzburg-Landau-type (GL) model
in terms of resonating valence bonds (RVB). This GL
model, being constructed by a bounded scalar hole-pair
field, may be categorized as a kind of U(1)-lattice-gauge-
Higgs theory, although it is somewhat different from the
conventional one studied in particle physics. Since its
form on a lattice is suitable for Monte Carlo simulations
the GL model enables us to investigate the system beyond
mean-field treatments. Numerical study along this line
has been made by Nakamura and Matsui on a square lat-
tice with simplified version of the model, namely, with
the amplitudes of the hole-pair field frozen to a mean-
field value. Nakajima and Hori also numerically studied
the simplified model in two and weakly three dimensions
including more interaction terms. In our previous study
we carried out simulations in two space dimensions tak-
ing full dynamical degrees of freedom of the model into
account and found an outstanding peak in the specific
heat, which we expect to be a precursor of a genuine
transition that would emerge when a weak three dimen-
sionality is included.

In this present work we show Monte Carlo results on
the weakly three-dimensional GL model with full dynam-
ical degrees of freedom.

Let us first briefly describe the model we study. We
start from the t-J Hamiltonian

8( J = —g t„e;&,+p8; e,.+p . p,, g (&—8 );

+ g "[(ot oa);(8 oct), +& (tt &. );(8—it),. +&],
l)P

which we expect keeps essentials of Hubbard Hamiltoni-
an with strong Coulomb repulsion and small doping;

C; C.+ + U g 6', ,n, 2
—

(tt, g tt;

(2)

where the position index i runs all sites of three-
dimensional lattice with unit lattice spacing, the direction
index p from 1 to 3, the spin index o from 1 to 2 and p
stands for unit vector in p direction. In the Hamiltonian
we denote annihilation operator of electron by C' andl CT

the number operator C,. C, by 6', . Parameters t, U,pP
and p, represent nearest-neighbor hopping in p direction,
on-site Coulomb repulsion and chemical potential, re-
spectively. In this work we always keep t, =t2=—t and
0&t, &t «U.

In the t-J Hamiltonian in (1) the antiferromagnetic
coupling in the p direction, J„, is defined as J„=4t„lU. —
As we assign e, to a canonical boson operator, which
creates the charged hole state, and 8; to a canonical fer-
mion operator to create the neutral spin state, the elec-
tron operator C, in (2) is expressed as e, a, (Here we
neglect double occupancy. ) Having integrated over fer-
mion fields in the same manner as in Ref. 6 we obtain the
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path-integral expression of the partition function Z =Tr[exp( —P8)] of the GL model with nearest-neighbor interac-

tions between complex link variables M;„=—p,„.e '", which represents a charge 2e hole-pair field divided by the doping
parameter 5:

Z = dM, „exp A«, A« ——A, + A~,

A0 =2', V(1 —5)+2 g ln 1+exp P 25 g t„cosp„—p,
P P (3)

AM = g cp„M;qM;„+
l, PWV

o,„~,+~ M;„+ goq„M;„M,.

+ g o3„„(M;„M, ~„+. M,. ~ M,. q +M,„M;,+M, pM. ;,)+c.c.
i,p&v

X pp 2pip Pi —ti, pip) g ~pv(piypiv+pi p, ijpiv+—plop& —y ~+pi —p /; —q „)
l,p(v

Ap„(M~~M~+~ M,. +q M;„+c.c. ),
i,p(v

where P is the inverse temperature (P:—1/ks T with tem-
perature T and the Boltzmann constant ks), V:I. is th—e
number of lattice sites, and M;„denotes a complex conju-
gate of M;„. It should be noted that both radial and
phase degrees of freedom of M;„are active.

The GL coefficients

cq„=J„(Goo+G„„)—P,
01„=J„G

2u= ' .~+ 0,.+.»
o 3„,=QJ„J„(G„,+Go „+„),
A,„=—,'J„J 644

(4)

G„,=-,' g [g„(P)g„(&)'+g„(P)'g.(~)],
(5)

Go „+,=—,
' g [g„(0)g„(P+V)'+g„(0)'g„(P+0)],

G„=g [g„(0)g„(0)']',

where

b,P exp(ipx )g„(x)=
V z exp(ice„) —1 BP[25g t„co—sp„—p, ]

are defined in terms of the thermal Green's functions 6 I

given by

Goo = g g„(0)g„(0)",

I

2x 21 22& 2z 23& &1xy +112 +1 21& 0 1xz

1 13 1 23& 1zx +1 31 +1 32& +2x +2 1 +2 2~

+2z +2, 3& +3xy +3, 12& +3xz +3,13 +3,23& ~xx ~11 ~22
—113 ~23 and A,„=X33.

When t3=0 the action in (3) reduces to the two-
dimensional one except for an extra term —Pg;p;3.
This extra term decouples from the rest of the action in
the partition function so that the model essentially de-
scribes two-dimensional physics. If we set t3=t we ob-
tain (symmetric) three-dimensional GL action.

For any t3 the GL action is locally gauge invariant
when 5=0 (half filled), for which all o, 's, i72's, and cr3's

vanish, while for positive 5 it is invariant only under glo-
bal gauge transformation

M;„~e' M;„.

In Monte Carlo simulations using a Metropolis algo-
rithm we measured the number of electrons N, internal
energy E, and specific heat C„:

l a lnZ,
i' Bp,

E= — lnZ+p, X,a

C.=dE kP, dE k—P, ~+ ~.a

dT dP BP BP Bp,

We also measured average links in each direction

co„= (n =1,2, . . . , X),(2n —1)vr
b,P= —,

N
'

(9)

2+k„
K

(k„=l, . . . ,K) .

As some of the GL coefficients become equal by
definition we actually have twelve different coefficients
for positive 6 and t 3 between 0 and t. They are

where ( ) stands for the ensemble average, average
squared amplitudes

2=—— 2l
Pi.= V Xpii

average bond-hopping terms
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H, „„:—Re —XM, +„M;„),
1

H2p
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+M;„M;„+M,. s„M„)), (11)

and average plaquettes including (excluding) radial de-
grees of freedom

1
P„,:Re ——gM, „M, +& M, +~ M, ,

(12)

8s„„= —Xccs(8s—8,. +S +8,. +s
—8,„)) .1

1

In a previous work we learned that Monte Carlo re-
sults depend much on the value of the doping parameter
5. In this work we make most numerical studies at
5=0.06 for which a mild peak of the specific heat has
been observed at T=40 K in the two-dimensional case.
Some simulations are also carried out at 5=0.04 and 0.08
for comparison. Fixing U =3.6 eV and t =0.3 eV
throughout this work, we widely change the ratio r = t3/t-
between 0 and 1 so that we can examine relations be-
tween weakly three-dimensional features and two- or
three-dimensional ones. We also made several simula-
tions with r =0 to ensure that present model reproduces
two-dimensional results. Simulations with r =1 could
not been performed for technical reasons stated below.

We find that some of the GL coefficients and their
derivatives, especially p, derivatives, are quite sensitive
to the lattice size used to calculate them. This may bring
serious size dependence of the adjusted chemical poten-
tial, which is numerically determined so that the mea-
sured average electron density N/V equals 1 —5 within
1% accuracy. We therefore calculate the chemical po-
tential and the GL coefficients on EC lattices with E ~ 30
to obtain stable values.

Using these coefficients Monte Carlo simulations of the
system are then performed on an L lattice with periodic
boundary conditions, where we mostly use the L =12 lat-
tice. We also carried out some simulations on L =20 and
30 lattices to examine finite-size effects. On each lattice
typically 1000 sweeps with six hits at every sweep are
done for the thermalization and 10000 configurations
after the thermalization divided into ten bins are used for
the measurement. Statistical errors are estimated by the
deviation among those bins.

Now we present our results. We made measurements
on 12, 20, and 30 lattices for 5=0.06 and r =0.5 and
0.1. For either r we did not observe any serious size
dependence of the data. Other measurements are done
on a 12 lattice.

In Fig. 1 specific heat per unit volume (with unit lattice
spacing), c, =C, /V, with 5=0.06 is plotted as a function
of T for several values of r. We see for each r the specific
heat has a maximum, whose location shifts toward lower
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FIG. 1. Specific heat per unit volume (with unit lattice spac-
ing) with 5=0.06 vs temperature. Asterisks are data for
r =0.1, plusses for r =0.3, squares for r =0.5, crosses for
r =0.7, and triangles for r =0.9. Data for r =0. 1 and 0.5 are
measured on a 20 lattice, while other data are measured on a
12' lattice. Statistical errors of are within marks if not shown

explicitly.
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FIG. 2. Absolute value of the average link in p=1 direction
for 5=0.06 on a 30 lattice as a function of temperature. Cir-
cles are data for r =0.5 and squares are for r =0.1. Statistical
errors are within circles or squares if not shown explicitly.

T as r increases. Location of the maximum with r =0. 1

is almost the same as two-dimensional one. The value of
the maximum increases when we change r =0. 1 to 0.3
and then becomes smaller for larger r. Shape of the
specific-heat curve is cusplike for r 0.3, while a mild
bump is observed for r =0.1.

Figure 2 shows the absolute value of the average link in
tu=l direction, ~Mi~, versus T on a 30 lattice with
r =0. 1 and 0.5. The results clearly prove this quantity
nicely serves as an order parameter of the phase transi-
tion. Above the transition temperature, T„~M, ~

is con-
sistent with zero, while below T, it rapidly becomes
finite. One can see such behavior of ~Mi~ even on a 12
lattice, but measurements on a large lattice are needed to
decide T, with satisfying accuracy. From results in Figs.
1 and 2 we see the location of the specific-heat maximum
is only slightly lower than T, for r =0.5, while the form-
er is much greater than the latter when r =0.1.

Data on ~Mi ~
with r =0.3, 0.7, and 0.9 measured on a

12 lattice are all similar to those with r =0.5. For
r ~0.3, therefore, we can say that a drastic change of
specific heat as well as ~Mi ~

signals the occurrence of the
transition. For all r we also observe that ~M2 ~

= ~M, ~
and
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~M3 ~

=0 within errors. One unexpected result we find is
that ~M, +M2 ~

=0 holds to quite good accuracy for any r
and any T.

In Figs. 3(a), 3(b), and 3(c) we plot several expectation
values measured in simulations with r =0.5 and 5=0.06.
Figure 3(a) presents average squared amplitude p, and p3
versus T. We see data on p3 are in good agreement with

straight line k&T. This indicates that amplitudes in the

p =3 direction scarcely correlate with each others as they
do in the high-T limit. On the other hand pi (as well as

p2) shows kinklike behavior, which is almost constant
below T, and rises linearly above T, . These results sug-
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FIG. 3. Expectation values on a 12' lattice measured for
5=0.06 and r =0.5. Statistical errors are within the marks. (a)

Average squared amplitude in the p=1 direction (crosses) and

p=3 direction (circles) with straight line representing k& T. (b)

Average plaquette excluding radial degrees of freedom. Crosses
are data in the (p = 1, v =2) plane and circles in the (p = 1, v = 3)

plane. (c) Parallel bond hopping terms within and across layers

H, &z (plusses) and H»3 (triangles), the collinear bond-hopping
term H» (asterisks), and the perpendicular bond-hopping term

H»2 {squares).

gest it would not be appropriate to fix the amplitude of
M;„by its mean-field value.

Figure 3(b) plots average plaquette without radial de-

grees of freedom, 0 „„defined in (12). The results show

0 &2, namely, 0 in the layer, rapidly increase below T,
and has positive values in spite of the fact that they are
not energetically favored. INote that all A, 's are positive
by definition in (4) and (5).] Across layers, on the other
hand, Opi3 (as well as 8~23) scarcely depends on tempera-

ture, having small but finite negative values.
In Fig. 3(c) we show some average bond-hopping terms

whose value we observe to be nonzero, namely H& &2,

H, ,3, H~ „and H3 i2 defined in (11). We see H3, z is

negative and rapidly decreases when T goes down across
T„while other terms are all positive and rapidly increase
below T, . We also observe H, 2,

——H»z, H, z3
—-H»3,

and H2 2
-—H2 &

as expected.
Results in Figs. 2 and 3 indicate that phases of link

variables strongly correlate in some special manner at
low temperatures. This will be discussed later.

So far we have presented results for 5=0.06 with vari-
ous values of r. Now we comment on some results for
5=0.04 and 0.08 with r =0.5 on a 12 lattice. In the pre-
vious study in two dimensions we observed a sharp peak
of the specific-heat for 5=0.04, while data for 5=0.08
showed a kink only. In contrast to these two-dimensional
results, the shape of the specific heat with r =0.5 does
not drastically change for 5's we study. We see cusplike
behavior even for 5=0.08, the maximum values of the
cusp mildly decreasing as 5 increases from 0.04 to 0.08.
The transition temperature estimated from ~M, ~

data
with 5=0.04 is lower by -5 K than T, for 5=0.06,
while T, for 5=0.08 is only slightly lower than T, for
5=0.06. These results suggest the maximum value of T,
would be observed for some 5 between 0.06 and 0.08.

In the weakly three-dimensional GL model studied we
have observed several interesting features. Remarks on
them are now in order.

First, results on the
~ M„~ 's indicate that the global

symmetry of the GL action (3) spontaneously breaks in
p= 1 and 2 directions. Since such a breakdown is known
to be impossible in two-dimensions (Mermin s theorem),
the dimensionality of the model proves to play a very im-

portant role in this transition even when electron hop-

ping across layers is discouraged. Physically, the fact
that ~M„~ is finite signals hole-pair condensation below

the transition temperature. Another observation that
~Mi+Mz~ =0 holds with good accuracy would mean the

wave function is of the d-wave type. This is an intriguing
mechanism of phase transition in the GL model, as
clarified in this study. Whether such a transition really
takes place in some material is, however, not clear yet
and should be examined in a future study.

The second feature we would like to comment on is the
location of the transition temperature T, . Figure l

roughly shows how T, for 5=0.06 depends on r, since
the specific heat maximizes near T„as we have men-

tioned above. We see that T, decreases as r grows so that
the phase transition in three dimensions (namely, for
r = 1), if any, would take place in a region below 10 K,
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which is too low to study by our present techniques of
numerical calculation. It is a somewhat unexpected ob-
servation that T, becomes lower as coupling between the
layers strengthens. This is in contrast to the results on
the XYmodel, for which T, is reported to increase in the
same situation.

As we have shown in Fig. 1 specific heat with r =0.1

forms a mild bump that resembles the two-dimensional
result rather than cusps as observed for r ~0.3, in spite
of the fact that ~M& ~

behaves similarly for all r It.is not
yet clear what makes such differences nor whether essen-
tial differences exist between the system with r &0.3 and

the system with r =0.1. Further study will be necessary
on this point.

Finally let us discuss, based on results in Figs. 2 and 3,
what configurations prevail below T, . Results on p„ in

Fig. 3(a) suggest that not the radial degrees of freedom
but the phase degrees of freedom are responsible for
spontaneous symmetry breaking shown in Fig. 2. Results
on average plaquette and bond hopping terms in figs. 3(b)
and 3(c) indicate when the system is cool enough several
terms with coefficients cr &, o2, and o 3 dominate in the GL
action so that the phase degrees of freedom strongly
correlate in favor of these terms. Namely, 8;&'s (8;2's) in

each layer tend to align to make H»2 and H2, (H, 2,
and H2 2) positive for positive coefficients a &„and cr2„.
Perpendicular bond-hopping terms H3, z, on the other
hand, are observed to be negative as energetically favored
because of the negativeness of o 3 y This is realized by
8,2's mostly antiparallel to 8, &'s. Positive coefficient 0.,„,
then plays an essential role to bring spontaneous symme-
try breaking by aligning 8;,'s (8;2's) across layers. Direct
scans we made over some typical configurations support
this picture.

In this work we studied cases with r &0.1. If this GL
model has something to do with high-T, superconducting
mechanism, cases with very small r would be realistic and
important. Much larger lattices will be necessary, how-
ever, to observe spontaneous symmetry breaking in such
cases.
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