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Numerous materials with the general formula A2BX4, where A and B are cations and X is the anion,
are isomorphous to Il-K2SO4 (space group Pnam) at high temperatures. A considerable number of them
exhibit a structural instability leading to an incommensurately modulated phase with identical super-
space symmetry. K&Se04 is the archetypical example. From the analysis of the incommensurate struc-
tures, the polarization vector of the unstable frozen mode can be determined, being similar in all investi-

gated compounds. We report here a comparative energetic study and lattice-dynamics analysis of a set
of compounds in this family. The set of materials K2SO4, R12Se04, Cs2Se04, Cs2ZnC14, Cs2ZnBr4,
K2Cr04, K2Se04, K~ZnC14, Rb&ZnC14, and Rb~ZnBr4, includes compounds with and without an incom-
mensurate phase. An empirical rigid-ion force model has been used with only three adjustable parame-
ters, the tetrahedral BX4 groups being reduced to rigid bodies. The adjusted force model, optimized for
each compound with use of only static structural data, is sufficient to explain the eventual presence of an

incommensurate lattice instability at lower temperatures. The calculated phonon dispersion curves of
those compounds with an incommensurate phase include an unstable X2 phonon branch with a
minimum close to —,

' a*. In the simulations, the unstable or soft-mode branch is always an optical branch

in the extended zone scheme or the consequence of an anticrossing of an optical branch with the X3 X2

acoustic branch; this result discredits any attempt to explain the soft-mode mechanism in terms of a
one-dimensional model with an acoustic soft branch. The polarization vectors of the soft or unstable

modes obtained in the simulations fairly agree with the experimental ones. They are rather insensitive to
the details of the interactions, explaining their strong similarities. On the other hand, the form of the
soft branch depends strongly on the material, and clearly distinguishes those materials having the BX4
groups disordered in the normal phase, from those having a soft-mode mechanism. The simulations in-

dicate that the static and dynamic features of potassium chromate are similar to those of potassium

selenate, raising the possibility that potassium chromate could exhibit a similar mode softening at low

temperatures. The existence of an incommensurate lattice instability in these compounds depends basi-

cally on the effective volume of the A cations compared with the size of the BX4 tetrahedra. The charge
distribution within the tetrahedral anion groups also plays a significant secondary role; smaller values of
the charge of B tend to stabilize the Pnam structure. The static energy of some of the compounds has

been investigated in a restricted configuration subspace, which includes the order-parameter distortion.
The energy maps obtained show a clear "multiple-well" structure, that can be quantitatively related with

the transition temperatures by means of a local-mode model.

I. INTRODUCTION

Many materials of the type A2BX4, isomorphous with

P EzSO4 (space g-roup Pnam), transform at lower tem-
peratures into an incommensurately modulated (IC)
phase with the modulation wave vector along the a axis.
In most cases the modulation wave vector is close to the
value —,'a*. The symmetry of the distorting mode (order
parameter) is X2 (antisymmetric for the a and m symme-

try planes). If the temperature is further decreased, a
second phase transition into a commensurate phase takes
place and the modulation wave vector locks into a com-
mensurate value, which is —,

'a* in many materials. This
general scheme is reproduced in most of the compounds,
but particular features vary considerably. The com-
pounds of Zn (RbzZnC14, Rb2ZnBr4, and KzZnC14) do not
exhibit a proper soft-phonon branch, and the tetrahedral
groups BX4 seem to be disordered in two equivalent posi-

tions in the Pnam normal phase. ' In contrast, a clear X2
soft mode has been observed in K2Se04, and for this
compound x-ray structural analyses of the normal phase
have been successful using nondisordered models. ' For
a general review see Refs. 5 and 6.

The incommensurate instability observed in these corn-
pounds has an essentially common origin. This is shown,
for instance, by the similarity of the polarization vectors
describing the primary distorting mode in the IC phase.
The static displacement of each atom or atomic group
with respect to its position in the average commensurate
structure is given in the sinusoidal regime by

u(p, I ) =—,
'

I Qe(p) expr iq. (1+r„)j+c.c.),
where (p, I ) labels the atom at I +r„ in the average struc-
ture, I being the lattice vectors of the average structure,
while q is the modulation wave vector and Q is a global
complex amplitude, with arbitrary phase if q is incom-
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mensurate. The actual structure of the modulation is
then essentially given by the complex polarization vector
or "eigenvector" e(p). The complex normal coordinate

Q can be identified with the order parameter of the
normal-IC phase transition. In accordance with this
description, it is normally observed that the modulation
polarization vector e(p) is approximately constant as the
temperature is lowered, the temperature variation of the
modulation being restricted to the order parameter Q and
the modulation wave vector q. A comparison of the ex-
perimental value of the polarization vector e(p) in a
series of A28X4 compounds ' with IC phases showed
striking similarities among the different structural modu-
lations, specially with respect to the relative phase shifts
of the different structural modulations. Only in the case
of potassium selenate, some significant differences with
respect to the other materials can be observed, especially
in the ratio of the amplitudes of the rotations around the
a and b axes. Hence, the structure of the IC modulation
is not very sensitive to the details of interatomic interac-
tions and seems to depend essentially on some of the
common static features of these materials.

The microscopic mechanism of the incommensurate
structural instability in these compounds has been inves-
tigated by studying the lattice dynamics of rigid-ion mod-
els. ' These models were quite successful in reproduc-
ing the essential features of the observed behavior, and
were mostly based on "ab initio" interatomic potentials.
Recently, we have performed an analysis of the lattice dy-
namics of K2Se04 within an empirical rigid-ion model.
The model was extremely simplified, with two to five ad-
justable parameters, the BX4 anions being reduced to rig-
id bodies. The models parameters were adjusted using a
systematic minimization procedure of the differences be-
tween the calculated equilibrium atomic configuration
(restricted to Pnam symmetry) and the experimental
Pnam normal structure. The results of this work indicat-
ed that an empirical rigid-ion force model consistent with
the static structural data was enough to reproduce the
basic features of the incommensurate structural instabili-
ty, predicting an unstable soft mode with the characteris-
tics observed experimentally. The effective size of the po-
tassium atoms in comparison with the size of the selenate
tetrahedra and some particular interacting K-0 pairs
played a fundamental role in the mode softening mecha-
nism.

The success of the simulation in potassium selenate
suggested that a similar procedure could be applied to a
whole set of A28X4 materials (with and without IC
phases). A comparative study along similar lines for a
significant number of compounds can clarify the condi-
tions leading to the eventual existence of an IC phase,
and the predictive power of the method in accounting for
the differences and similarities between the materials.
We report here the results of a study of this type. The set
of compounds investigated are K2S04, Rb2Se04, Cs2Se04,
CszZnC14, Cs2ZnBr4, K2Cr04, K2Se04, K2ZnC14,
Rb2ZnC14, and Rb2ZnBr4. For the first six ones there is
no contrasted evidence of any instability of the Pnam
phase up to very low temperatures, while the last four ex-
hibit the mentioned normal-IC phase transition at 130 K,

553 K, 303 K, and 347 K, respectively. For each of these
compounds, the knowledge of the static structure at the
Pnam phase has been used to optimize a rigid-ion force
model with only three adjustable parameters. The lattice
dynamics corresponding to the optimized model has been
investigated. In particular, the phonon branches along
the a* direction have been calculated. The results for the
different materials can be related in a direct and simple
manner with their structural thermal properties and the
eventual presence of an incommensurate structural insta-
bility.

In order to obtain more quantitative predictions, the
double-well structure of the configurational energy of
some of the compounds has been investigated in a re-
stricted subspace related with the order parameter of the
tripled ferroelectric phase. Then, a local-mode approxi-
mation can be introduced. The energetics of the materi-
als can be parametrized in terms of an effective Hamil-
tonian representing a chain of coupled double wells. An
estimation of the transition temperatures can then be de-
rived, which agrees fairly well with the available experi-
mental data. Part of the present work was presented in a
preliminary form in Ref. 14.

The contents of the paper are as follows: in Sec. II, the
characteristics of the force model used and its adjustment
procedure for each compound are discussed. The
lattice-dynamics calculations are presented in Sec. III.
In Sec. IV the energetics of the different systems is inves-
tigated within the subspace of distortions associated to
the order parameter of the commensurate lock-in phase.
The parametrization of the energetics of the materials in
terms of an effective local-mode Hamiltonian is discussed
in Sec. V. Section VI is finally devoted to some conclud-
ing remarks.

II. INTERATOMIC FORCE MODEL

As interatomic interactions, only point-charge
Coulombic and short-range repulsive Born-Mayer forces
are considered. The point charge of A cations has been
taken as +le, the net charge in the BX4 groups being re-
stricted to —2e. Following Chaplot and Rao, ' ' the
Born-Mayer potentials were introduced in the form

V„(r, )= A exp( brj l[R;"+R—.]), (2)

where 3 = 1822 eV and b = 12.364 A ' are common for
all atoms, the parameters R; being some effective radius
associated to each atom type. Repulsive forces between
8 atoms and atoms out of the BX4 anions can be neglect-
ed. The tetrahedra BX4 are considered rigid bodies, hav-
ing the configuration observed at the Pnam phase. The
adjustable model parameters are then limited to R ~, Rz,
and the point charge of atom 8, Q~.

The optimization of the force model was done for each
compound using the fitting procedure described in Ref.
7. The model parameters were adjusted so that they min-
imize a numerical factor measuring the structural
differences, with respect to atomic positions and lattice
parameters, between the calculated equilibrium
configuration and the observed normal Pnam structure.

For some compounds, the results of structural analyses
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of the normal phase situate the positions of the BX4
groups split between two different configurations related
by the mirror plane perpendicular to the c axis. In these
cases, we have taken as "observed" configuration of the
tetrahedra that obtained by closing together (perpendicu-
larly to the mirror plane) the splitted configurations so
that the central atom lies on the mirror plane and then
rotating both configurations up to the disappearance of
the splitting of the oxygen atoms.

The minimization process is done using a simplex algo-
rithm, ' while the "equilibrium" or "relaxed" structure
for a given set of model parameters is calculated by
means of the program %'MIN. For more details we refer
the reader to Ref. 7. The calculation of the "equilibri-
um" configuration is done under the symmetry restric-
tions of space group Pnam. The stability of the calculat-
ed structure is therefore not guaranteed, and the
configuration may be unstable with respect to symmetry-
breaking distortions. However, in the cases we have
studied, the condition is restrictive enough to obtain a
unique set of energetic model parameters consistent with
the basic features of the observed static structure. The
eventual existence of unstable symmetry-breaking modes
can then be related to intrinsic instabilities of the struc-
ture. These instabilities are susceptible of being thermal-
ly deactivated at high temperatures by anharmonic renor-
malization effects, explaining the existence of a structural
phase transition at lower temperatures.

As the effect of the short-range repulsive interactions
A -A on the calculated phonon branches was practically
negligible in all cases, a second fitting process was done
setting to zero this interaction. The values of Rx
changed drastically with respect to the first adjustment,
but R„+Rx, which determines the repulsive A-X in-

teraction, and the charge Qii are essentially maintained.
This second fitting is systematically better than the first
one, indicating that the X-X interaction can be better
simulated in this form. By neglecting the A-A repulsive
forces of the form (2), the Born-Mayer A-X and X-X in-

teractions become in fact uncorrelated and the X-X in-

teraction is significantly reduced. In the fo11owing, the
results presented refer to this second model that neglects
A - A short-range repulsive interactions.

The structural experimental data necessary for the
fitting of the force model of K2S04, K2Cr04, K2Se04,
Rb2Se04, Cs2Se04, Cs2ZnC14, Cs2ZnBr4, K2ZnC14,
Rb2ZnC14, and Rb2ZnBr4 were taken from Refs. 19, 5, 20,
21, 22, 23, 24, 25, and 26, respectively. The optimized
model parameters are shown in Table I. The F factor is
the minimized parameter, defined in Ref. 7, measuring
the difference of the calculated equilibrium structure with
respect to the experimental one. Roughly, the value
F =1 implies a mean deviation of 0.1 A in atomic posi-
tions and l%%uo deviation in lattice parameters.

The parameter RT shown in Table I is the average
value of the experimental B-X interatomic distances in-
side tetrahedra. The last column in this table lists the ra-
tio Rr /(R z +Rx ) obtained for each compound as a rela-

tive measure of the free space left to the BX4 groups in-

side the crystal. It will be shown below that, for a given
BX4 group, this value —which decreases when increasing
the size of the cation A —can be correlated with the IC
phase transition temperature or the lack of a phase tran-
sition at all.

The charge distribution obtained for the BX4 anions
in the oxygen compounds is rather different from the one
in the chlorine and bromine compounds, while having
similar values within the two groups. Only potassium
chromate seems to be an exceptional intermediate case.
It is interesting to notice that the charge obtained for Se
and S atoms (around 1.25e) in the oxygen compounds is
similar to the value 1.15e recently derived from quantum
chemistry calculations' for the ion Se04, but differs
considerably from the result (1.64e) of a similar calcula-
tion reported for S04 . It is also quite different from
the one proposed (2e) in Refs. 9 and 19 for the groups
Se04 and SO4, respectively. The charge values ob-
tained for Zn (around 0.5e) differ considerably from the
hypothesis of fully ionized halogen atoms (gz„=+2e) as

TABLE I. Fitted model parameters (R„,RX, Qii) for each compound. F is the minimized parameter

measuring the deviation of the experimental Pnam structure from that predicted by the force model.

Some relevant quantities [R„+R~,RT,RT/(R& +Rr )] involved in the stability of these compounds,

as cited in the text, are also listed.

Rq (A) Rx (A) Qii (e) R „+Rx (A) R T (A) R T/(R ~ +Rx )

K2Cr04

KqSO4

2.8754

2.8691

0.7063

0.6999 1.272 0.092

0.977 0.142 3 ~ 5817

3.5690

1.6433

1.4691

0.4588

0.4116

K.,seo4
RbqSe04
Cs~Se04

2.8148
3.0687
3.1331

0.7924
0.6754
0.8176

1.215
1.177
1.330

0.156
0.147
0.109

3.6072
3.7441
3.9507

1.6260
1.6404
1.6366

0.4508
0.4382
0.4143

K2ZnC14
RbzZnC14
Cs~ZnC14

3.1869
3.5082
3.8116

0.8726
0.6538
0.5327

0.733
0.518
0.309

0.067
0.063
0.195

4.0595
4.1620
4.3443

2.2217
2.2425
2.2589

0.5473
0.5388
0.5200

Rb2ZnBr4
Cs2ZnBr„

3.5294
3.6647

0.8155
0.8480

0.484
0.282

0.105
0.212

4.3449
4.5127

2.3772
2.3874

0.5471
0.5290
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FIG. 1. Four lowest X3-X2 phonon branches for K&Se04, Rb2Se04, and Cs2Se04 calculated according to the force models of Table
I, and plotted in the extended zone scheme. In the case of "unstable" imaginary frequencies, their moduli with negative sign are
represented.

considered in Refs. 10-12. They are closer to the value
of le proposed in Refs. 22 and 28, and fairly agree with
the value of 0.6e for Cu in Cs2CuC14 proposed in Ref. 29.

III. LATTICE DYNAMICS

Phonon dispersion curves have been calculated for all
the materials using the force models reported in the pre-
vious section and the program DYN described in Ref. 30.
The BX4 groups were taken as rigid units, and only exter-
nal vibrational dispersion branches were considered.

The obtained four lowest X3-X2 phonon branches are
shown in the extended zone scheme in Fig. 1 for the three
selenium compounds. In the case of Cs2Se04, the pro-
longation of the acoustic branch has its minimum at
q=a', while in Rb2Se04 a strong softening of the branch
can be seen close to 0.7a'. In K2Se04, the lowest branch
is unstable as obtained in Ref. 7, with imaginary frequen-
cies for a significant range of wave vectors, while the
minimum of the squared frequency is also close to 0.7a*.
This last result does not discredit the force model em-
ployed. On the contrary, it can be interpreted as a pre-
diction of the observed low-temperature instability.
Indeed, recent molecular-dynamics calculations ' using
the same force model have shown that thermal effects are
sufficient to renormalize the mentioned unstable frequen-
cies into real values and thermally stabilize the mechani-
cally unstable branch of Fig. 1. The effective frequency
values of the lowest X3-X2 branch obtained in the
molecular-dynamics simulation at 250 K are not only
real, but in fair agreement with the experimental ones. '

Both in the cases of Rb2Se04 and K2Se04, the conspi-
cuous softening of the lowest X2 branch is the result of
the "anticrossing" of the acoustic branch with an optic
one, the unstable or soft branch being essentially the pro-
longation of the lowest X3-X2 optic branch.

The form of the lowest X3-X2 branch for Rb2Se04 is
similar to the experimental one for K2Se04 at tempera-
tures above the normal-IC phase transition. This sug-
gests that the thermal effect on the form of the phonon

30
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0.2 0.4 0.6
mave vector

0.8

FIG. 2. Lowest X3-X2 phonon branch in the extended zone
scheme of Rb2Se04 calculated according to the corresponding
force model in Table I (solid line), and also for stronger (dashed
line) and weaker (point line) Rb-0 interactions by an amount of
0.5%.

branch can be attributed in a qualitative form to an in-
crease of the elective size of the A cations as a result of
the thermal vibrations. The critical role played by the
effective size of the A ions and the resulting repulsive
A-X interaction on the X2 branch softening can be seen
in Fig. 2, where the changes in the calculated lowest-
energy branch of Rb2Se04 are shown as the Rb effective
radius is increased and decreased in an amount of 0.5%.
It would be interesting to check experimentally if this
compound, for which there is no evidence of a phase
transition at low temperatures, exhibits at least a partial
softening of the branch, as suggested by these results.

The calculated lowest X3-X2 branches corresponding to
KzS04 and KzCr04 are shown in Fig. 3. Again, the an-
ticrossing between the acoustic branch and the first opti-
cal one is a basic feature. Comparing with Fig. 1, K2S04
can be considered from the dynamical point of view an
intermediate case between RbzSe04 and CszSe04. The
smaller size of the tetrahedral anions SO4 (see Table I)
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FIG. 3. Four lowest X3-X& phonon branches in the extended
zone scheme for K2SO4 and K2Cr04 calculated according to the
corresponding force models in Table I. In the case of "unsta-
ble" imaginary frequencies, their moduli with negative sign are
represented.

makes the relative size of potassium ions large enough in
this case to stabilize the structure, in a similar form as it
happens in selenate compounds when larger alkaline
atoms as Rb or Cs are considered Icompare the value of
RT/(R„+R~) for K2SO4 and CszSe04 in Table I]. On
the other hand, the lowest branch of KzCr04 looks very
similar to that of KzSe04, being clearly unstable with a
minimum at about 0.7a*. Although the charge distribu-
tion inside the tetrahedral groups is quite different, the
comparable size of selenate and cromate groups (see
Table I) must be the essential factor that determines this
strong similarity, not restricted to the lowest X3-Xz pho-
non branch but also present in the other three branches.
The results above suggest that a phase transition of the
type observed in potassium selenate is likely to happen in
KzCr04 at low temperatures.

In contrast with the oxygen compounds, the calculated
branches obtained for KzZnC14, RbzZnC14, and RbzZnBr4

include in the three cases a rather flat unstable optical
branch. This can be related to the experimental fact that
in these compounds the BX4 anions are disordered in the
Pnam phase. As shown in Fig. 4, for KzZnC14,
RbzZnC14, and in Fig. 5 for RbzZnBr4, this branch has
also a minimum around 0.6—0.7a*, but very weak. A
second X3-Xz optical branch is also completely unstable
in KzZnC14, but, in contrast with the results in Refs. 10
and 11 no further unstable branches are obtained. The
very different size ratio between the BX4 anions and the
A cations, compared with the one in the oxygen com-
pounds (see Table I), is surely one of the main reasons for
the stronger instability of the Zn compounds.

In the cases of CszZnC14 and CszZnBr4, which are re-
ported not having phase transition at lower temperatures,
the calculated spectra is also unstable, but the imaginary
values of the single unstable branch are very close to zero
and very sensitive to pressure and stresses. It is reason-
able to assume that thermal renormalization effects will
be able to stabilize these branches even at very low tem-
peratures. Again, in this case, the larger size of the Cs
cations is the main responsible of the stability of the
structures compared with the compounds of rubidium.
Preliminary results presented in Ref. 14 for CszZnC14 us-

ing the same force model differ from those presented here
because the calculations in the previous work were done
fixing the lattice parameters to the experimental values.
The main effect of relaxing lattice parameters consists of
a small expansion of the cell. Thus, frequencies obtained
in Ref. 14 formally correspond to crystals under a slight
external stress, which in the case of CszZnC14 is enough
to stabilize the scarcely unstable optical branch. As
shown below, a pressure of 5 Kbar is also suScient to sta-
bilize the whole spectrum of this compound. The
differences of the phonon branches calculated with the
lattice parameters fixed to the experimental values or
with the relaxed values were not significant for the other
materials.

The mode polarization vectors at the minimum of the
Xz branch (or at the largest imaginary value in the

4 0 I
I

I

I
I I

I
I

I
I

I
I

I
I

0

8

Q

0

O' K Zn
Q — 2

-20

Rb ZnCl
2 4

Cs ZnCl
2 4

20

--20

-40
0

I I i I

0.2 0.4 0.6 0 F 8 1 0 0.2 0.4

I i I I I I I I & I & 4 0
0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

wave vector wave vector wave vector

FIG. 4. Four lowest X3-X2 phonon branches in the extended zone scheme for K,ZnC14, Rb&ZnC14, and Cs&ZnC14 calculated ac-
cording to the corresponding force models in Table I. In the case of "unstable" imaginary frequencies, their moduli with negative
sign are represented.
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different materials are very similar especially with respect
to the phases. The most significant differences can be ob-
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FIG. 5. Four lowest X3-X2 phonon branches in the extended
zone scheme for Rb&ZnBr4 and Cs&ZnBr4 calculated according
to the corresponding force models in Table I. In the case of
"unstable" imaginary frequencies, their moduli with negative
sign are represented.

branch, in the case of the unstable compounds) were cal-
culated for all the A2BX4 compounds investigated. In
Table II, those corresponding to materials without unsta-
ble branches, K2SO4, Rb2Se04, and Cs2Se04, are sho~n.
The table lists the values of the nonzero components of
e(p) [see Eq. (I)] for the ions and rigid-ionic groups in an
asymmetric unit. The vector components for the rest of
the atomic units in the unit cell are related to those given
in the table by the symmetry properties associated to the
irreducible representation X2. It should be noted that the
absolute values of the atomic modulation amplitudes
have in this case no significance, as an arbitrary normali-
zation of the polarization vectors is used; only their rela-
tive values within a given polarization vector are
relevant. The obtained polarization vectors for the

IV. ENERGY FUNCTION IN THE X~{T'a ) SUBSPACE

The existence in some compounds of imaginary fre-
quencies reQects the instability of these systems with
respect to some symmetry-breaking distortions of X3 Xp
symmetry. The energy minima must correspond to
configurations with space groups of lower symmetry than
Pnam; this latter is then a saddle point of the energy
function in the configuration space. As typically the
minimum of the most unstable phonon branch (the most
negative curvature of the energy function in the
configuration space) is situated close to —', a ( —,

'a' in the re-
duced zone scheme and symmetry X2) and the lock-in
commensurate phase following the IC phase is usually a
structure with a tripled cell along the a axis, it is especial-
ly interesting to investigate the energy function in the
configuration subspace corresponding to distortions of
symmetry X2 and wave vector —,'a*. %e have searched
the minima of the system energy in this restricted
configuration space, i.e., we have determined the distor-
tions of the type given by Eq. (1) that minimize the ener-

gy, with the constraints that q= —,
'a* and the polarization

vector e(p) has symmetry X2.
The polarization vectors obtained for these energy

minimizing distortions are listed in Table II. Not surpris-
ingly, they essentially coincided with those calculated for
the unstable normal mode at q= —,'a'. Consequently, for
the "unstable compounds, "we have included in Table II
only the polarization vectors obtained by the energy
minimization procedure. The normalization of the polar-

TABLE II. Displacements (10 relative units) and/or rotations (deg), followed by the corresponding
phases (in units of 2m), for the asymmetric unit of the Pnam structure (chosen as in Ref. 7) describing
the predicted polarization vector of either the phonon mode of the lowest X2 branch at k=

3
a* (K2S04,

Rb2Se04, Cs2Ce04), or, for the rest of the compounds, the X2 distortion with k= —,'a minimizing the
energy, as explained in the text.

K2S04

79.8,0.094

103.0,0.316

Rb,Se04

58.1,0.114

71.7,0.311

Cs2Se04

66.2,0.100

84.2,0.313

K,se04

120.9,0.114

149.1,0.321

K2Cr04

81.1,0.127

93.8,0.302

BX4 T.
R
Ry

57.8,0.824
2.86,0.009
3.96,0.612

38.4,0.804
3.12,0.016
2.82,0.614

40.8,0.858
1.03,—0.012
2.49,0.601

87.9,0.823
7.08,0.025
6.33,0.601

57.9,0.787
5.34,0.016
3.60,0.614

A

BX4 T.
R„
R~

K2ZnC14

291.3,0.185

260.7,0.300

201.4,0.788
13.87,0.035
9.48,0.609

Rb2ZnC14

167.5,0.192

159.0,0.271

149.6,0.742
10.51,0.023
4.97,0.625

Cs2ZnC14

58.0,0.167

47.0,0.207

45.9,0.730
4.78,0.008
1.34,0.628

Rb2ZnBr4

177.2,0.137

173.2,0.263

145.8,0.751
11.24,0.015
5.23,0.625

Cs2ZnBr4

68.7,0.163

59.6,0.210

57.8,0.722
5.94,0.008
1.70,0.626
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TABLE III. Displacements (10 relative units) and/or rota-
tions (deg), followed by the corresponding phases (in units of
2~), for the asymmetric unit of the Pnam structure (chosen as in
Ref. 7) describing the polarization vector corresponding to the
observed X2 static modulation in the IC phase exhibited by
some A&BX4 compounds. F indicates the degree of fitting of
the BX4 atomic modulations to rigid-body displacements.

K,SeO4 K2ZnC14 Rb2ZnC14 Rb2ZnBr4

T, 138,0.102 407,0.112 138,0.101

A 0 T, 184,0.321 391,0.312 160,0.231

143,0.110

147,0.238

BX4 T,
R
R

116,0.825
4.54,0.036
7.36,0.643

237,0.819 122,0.771
14.10,0.033 10.60,0.024
12.94,0.626 5.10,0.654

118,0.778
9.66,0.025
4.27,0.654

92% 88% 89%%uo 92%

ization vector has been chosen in this case so that the am-
plitude of the distortion is one [~g~ =1 in (I)] at the ener-

gy minimum. The amplitudes listed in Table II represent
therefore the actual complex amplitude of the modula-
tion for each independent atom or atomic group at the
energy minimum. The phase of the "normal" coordinate
Q is also determined in the minimization procedure; in all
cases, its value resulted to be m. /2 or its symmetry related
ones (vrl2+nvrl3) Th. ey are associated to six equivalent
minima corresponding to the three different choices of
the first subcell within the tripled cell and to the two
equivalent configurations associated to opposite atomic
displacements. This particular value obtained for the
phase of the mode coordinate Q is especially significant,
since a straightforward group-theoretical calculation
shows that for this particular phase (or its symmetry re-
lated) the energy minimizing distortion transforms the
Pnam phase into a structure of symmetry Pna 2„which is
in fact the symmetry of the tripled lock-in phase observed
in all the compounds having the IC phase.

The polarization vectors in Table II for those materials
exhibiting an IC phase can be compared with those corre-
sponding to the experimental modulation in the IC phase,
which are listed in Table III. The data used in this table
has been taken from Refs. 32, 33, 34, and 35, for K2Se04,
Rb2ZnC14, Rb2ZnBr4, and K2ZnC14 respectively. The
atomic modulations for the atoms in the tetrahedral
groups have been fitted to rigid-body displacements and
rotations. The differences in this table with respect to
those published in previous works ' are due to the fact
that different sets of experimental data have been used

and the atomic and ionic modulation amplitudes in
Table III correspond to the actual absolute values ob-
served in the experimental IC distortion; i.e., the polar-
ization vectors in Table III correspond to ionic displace-
ments of type (1) with

~ Q ~

= 1 describing the IC distor-
tion. The coincidence of the predicted distortions and
those observed is excellent. Typically the phases coincide
within a few percent, except for the phase of the transla-
tion of one of the cations A, which attains deviations up
to 10%. The amplitudes have similar relative values but
the discrepancies are somehow larger; see, for instance,

the amplitudes of the 3 ions in K2ZnC14. However, as
observed experimentally, the amplitude of the rotation of
the tetrahedral groups around the x axis in Rb2ZnC14 and
Rb2ZnBr4 is approximately twice as large as the one
around the y axis, while in K2ZnC14, also in accord with
experiment, this ratio decreases to 1.5. For potassium
selenate, this ratio significantly decreases, both rotations
having comparable amplitudes, but it does not attain the
extreme value of 0.6 observed experimentally.

The absolute values of the modulation amplitudes in
the theoretical polarization vectors of Table II are also
physically significant, as they correspond to the energy
minima. It can be seen that Rb2ZnC14 and Rb2ZnBr4
have very similar minima and the IC modulation in these
two compounds approaches from lower values this pre-
dicted minimum. In the case of potassium selenate, on
the other hand, the experimental modulation amplitudes
in the IC phase are a little larger than those of the pre-
dicted energy minimum, except for the rotations of the
tetrahedra. Therefore, the energy minimum of the force
models are in excellent agreement with the observations,
the experimental atomic displacernents and group rota-
tions in the IC phase in the four compounds being close
to the predicted "saturation" point.

The energy difference (per tripled cell), Eo, between the
Pnam configuration and the distorted X2( —,'a')
configuration that minimizes the energy are listed in
Table IV for all the "unstable" compounds. The form of
the energy function as a function of

~ Q~ (with the orienta-
tion of Q in the complex plane fixed along one of the
minimizing directions) was also determined. The result
for KzSe04 and Rb2ZnC14 is shown in Fig. 6. The form
of the curves can be well fitted to a double-well function
a~g~ +b~g~ (a (0). It can be seen in Table IV that the
deepness of the energy well varies extremely among the
different compounds. The wells of the cesium com-
pounds are very shallow, the value of Fo being one or
two orders of magnitude smaller than in the compounds
with IC phase transition. The reported stability of the
Pnam phase up to the low temperatures in the former
materials is consistent with this result.

Potassium selenate is an intermediate case, the energy
barrier is ten to three times smaller than in the Zn com-
pounds. This is coherent with the much lower transition
temperatures and the absence of positional disorder in

the Pnam phase of potassium selenate. The depth of the
energy well in potassium chromate is very small, four
times smaller than that of potassium selenate and compa-
rable to that of CszZnBr4. This result raises doubt about
the possibility of having a structural instability at low
temperatures in this compound, in contrast with the con-
clusion which could be derived from a direct comparison
between the strong unstable phonon branch in Fig. 3 for
potassium chromate and the one obtained for potassium
selenate in Fig. 1.

Similar calculations have been performed for crystals
under a pressure of 5 kbar. Pressure effects are intro-
duced by adding to the system energy (in the calculations
done with use of wMIN) a term pb, V, where p is the-
pressure and b V is the volume change with respect to the
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TABLE IV. Energy barrier (Eo) and harmonic coupling between consecutive tripled cells (C) for different applied pressures, calcu-

lated as explained in the text [see Eqs. (3) and (4)]. C/Eo can indicate the character of the transition (displacive or order disorder).

Td and T, d are the transition temperatures (K) calculated following Ref. 37 for the displacive and order-disorder cases, respectively.

For Cs2ZnC14 and P =5 Kbar the Pnam structure is not unstable. T; and T, are the experimental transition temperatures (if existing)

limiting the normal-IC and IC-ferroelectric phases, respectively.

K2Cr04 K2Se04 K~ZnC14 R12ZnC14 Cs2ZnC14 Rb2ZnBr4 Cs2ZnBr4

Press. (Kbar)
Eo (meV)
C (meV)
C/Eo
Td

To-d

T
T.

0 5
6.66 3.00
7.43 5.16
1.12 1.72

33 18
73 51

0
26.61
16.97
0.64

99
166
130
93

5

20.23
15.00
0.74

81
147

0
347.89

57.67
0.17

657
565
553
403

5

329.45
53.54
0.16

617
524

0
82.86
25.25
0.30

204
247
303
192

5 0
71.64 2.60
20.71 2.84
0.29 1.09

179 13
203 28

0
105.97
28.91
0.27

257
283
347
192

5 0
84.23 6.01
22.24 4.29
0.26 0.71

201 24
218 42

5

1.20
1.64
1.37
7

16

20 ! !
l

!

0

relaxed structure at zero pressure. ' The phonon disper-
sion branches are calculated with the program DYN; pres-
sure effects enter only through the modified mean atomic
positions corresponding to the relaxed Pnam structure.
The main pressure efFect in the potential-energy surface is
a decrease of the amplitude of the distortion correspond-
ing to the energy minimima, with the structure of the po-
larization vectors e(p) essentially unchanged, and a
smaller depth Eo of the energy wells (see Table IV). The
energy well in the case of Cs2ZnC14 is so low that the ap-
plication of the mentioned pressure is enough to make it
disappear and the structure Pnam is stabilized. In accord
with this general behavior, the moduli of the imaginary
frequencies in the unstable phonon branches decrease in
all compounds when pressure is applied. Hence, pressure
seems to favor the Pnam structure and should in general
shift the structural instabilities to lower temperatures.
This qualitative general conclusion agrees with the be-
havior observed in all compounds with respect to the
phase transition into the threefold commensurate phase.
However, the first structural instability leading to the IC
phase has the opposite pressure dependence in KzZnC14,
R12ZnBr4, and Rb2ZnC14.

V. LOCAL-MODE MODEL

Using the preceding energetic calculations, a simplified
local-mode model can be developed. We can consider as
single local degree of freedom of the system the local
value of the amplitude

~ Q~ of the distortion Xz—,
' a') that

minimizes the energy and was calculated in the preceding
section. In the following we will call this local variable
x;, which represents the value of ~Q~ at the tripled cell i.
The variable x includes also a positive or negative sign
representing the two equivalent orientations of Q,
differing by a phase ~ in the complex plane. Variations
of the mode amplitude along other directions than the a
direction are neglected. The energy as a function of an
homogeneous ~Q~ of the distortion Xz( —,'a') that mini-

mizes the energy and was calculated in the preceding sec-
tion. In the following we will call this local variable x, ,
which represents the value of ~Q~ at the tripled cell i
The variable x includes also a positive or negative sign
representing the two equivalent orientations of Q,
differing by a phase ~ in the complex plane. Variations
of the mode amplitude along other directions than the a
direction are neglected. The energy as a function of an
homogeneous ~Q~ along the a direction is well described
by a double-well function (see Fig. 6). Hence, we can
consider as an approximation to the energetics of the crit-
ical degrees of freedom of the system, x;, the following
Hamiltonian:

-20

-40
hQ
tD

-60—

-80

-1 00
Rb2ZnC14
! ! ! ! ! ! !

0.5
IQI

1.5

FIG. 6. Lattice energy per tripled cell of Rb2ZnC14 and
KzSe04 as a function of the amplitude ~Q~ of the X2( —,

' )a dis-

tortion that minimizes the energy. The curves have been de-
rived using the corresponding force models in Table I. Ampli-
tude units have been chosen in each case so that the energy
minimum is at

~ Q~ = l.

0 =
—,'$m x; +/V(x;)+ —,'QC(x, . +&

—x, )2,

where m is the effective mass of the mode and the local
potential V(x) is a double well given by

V (x ) =Eo(x I)—
where Eo is the height of the potential barrier and its
value for each compound was calculated and listed in the
preceding section (see Table IV).

The value of x at the bottom of the wells is +1 in the
units chosen. The value of C can be derived for each
compound by calculating the potential energy per tripled
cell of a periodic crystal configuration with the distortion
given by the energy minimizing distortion Xz( —,'a') calcu-
lated in the preceding section and listed in Table II, but
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with the value of the amplitude Q of the mode being op-
posite in two consecutive tripled cells (x;+,= —x; = —I).
According to (3), this energy is given by Eo+2C. The
values of C for each compound calculated in this way are
listed in Table IV.

The model Hamiltonian (3) has two important
shortcomings. The dimension of the local order parame-
ter is reduced to one, while in fact the amplitude Q of the
distorting mode, being a complex number, is two-
dimensional. The incommensurate structures corre-
sponding to space-dependent configurations of the phase
of the complex order parameter Q are therefore disre-
garded in this simplified model.

Secondly, the Hamiltonian (3) reduces the system to a
one-dimensional problem. For the local mode x, the sys-
tern is indeed very anisotropic. This was checked by in-
vestigating the energy of inhomogeneous configurations
of the local mode x along directions perpendicular to the
x direction; the values derived for the associated coupling
constants were typically one order of magnitude stronger
than C. On the other hand, a pure one-dimensional
Hamiltonian such as (3}cannot predict a phase transition
at finite temperatures. Nevertheless, as shown by Au-

bry, even in a one-dimensional Hamiltonian of the type
(3), a temperature can be found that limits two different
thermodynamic regimes with qualitative differences in
the degree of order of the average configuration of the
system. We can interpret this temperature as a broad es-
timation of a transition temperature between the normal
Pnam phase and the tripled ferroelectric phase, disre-
garding any intermediate IC phase, which is excluded
from the model. The value of this "transition" tempera-
ture has been derived in Ref. 37 in the limits C &&Eo
("order-disorder case") and C))EO ("displacive case"),
being approximately 0.844C/ks and 0.4+(CEo), re-

spectively. In Table IV, the ratio C/Eo for each com-

pound is given together with the transition temperatures
(&, d, Td) for the two limits, calculated according to the
expressions above. For comparison, the experimental
transition temperatures T, , T, (if existing} corresponding
to the normal-IC and IC-ferroelectric phase transitions,
respectively, are also listed. The values of C/Eo for
K2ZnC14, Rb2ZnBr4, and Rb2ZnC14 are rather small, in-

creasing in this order from one compound to another and
being in the three cases within the range of the order-
disorder case. Therefore, for them, the transition tem-
perature T, d should be taken as the relevant theoretical
one. In the other materials the values of C/Fo fall in an

intermediate range between both regimes. Accordingly,
the two temperatures Td and T, d can be taken as limits
for a qualitative interpolation between both cases. Com-
paring experimental and theoretica1 transition tempera-
tures, it is clear that despite the rough simplifications of
the model, the theoretical values achieve in general a
correct estimation of the temperature range where the
structural instabilities are actually taking place. Accord-
ing to the model, a phase transition can be expected in
potassium chromate in the range 30—70 K.

In order to characterize pressure effects, a similar
parallel calculation was performed for a pressure of 5

Kbar. The results are also listed in Table IV. In all
cases, the theoretical transition temperatures decrease, in
accord with the experimental behavior of T, . The
peculiar opposite behavior for the normal-IC transition
temperature T; observed in the Zn compounds cannot be
explained, as the model disregards the IC phase. Howev-
er, the pressure dependence of the model parameters in
potassium selenate (and also in potassium chromate)
differs significantly from the one obtained for the Zn
compounds, in the sense that C/Eo increases with pres-
sure in potassium selenate, while the opposite happens in
the case of the Zn compounds. This significant difference
distinguishes against the two groups which exhibit a very
different phonon dynamics in the simulations.

VI. CONCLUSIONS

The present study and the results in Refs. 7 and 14 in-
dicate that a simple empirical rigid-ion force model only
fitted to static structural data is enough for explaining the
eventual presence of an incommensurate instability at
lower temperatures in the A2BX4 compounds. For all
the materials exhibiting the Pnam-IC phase transition, an
unstable X2 phonon branch with a minimum close to —,

'a*
is obtained. The calculated polarization vector of the soft
or unstable mode, which should determine the structure
of the IC modulation, is rather insensitive to the details
of the interatomic forces. For each compound having an
IC phase, the calculated polarization vector is in excel-
lent agreement with the experimental one determined
from structural data of the IC phase.

The experimental evidence that in the Zn compounds,
in contrast with potassium selenate, the BX4 tetrahedra
are somehow disordered in the normal phase and a soft-
mode mechanism is not present, can be correlated with
the presence in the lattice-dynamics simulations of these
compounds of a rather Rat completely unstable phonon
branch. On the other hand, those compounds with no re-
ported normal-IC phase transition are "well behaved" in
the simulations, the calculated phonon branches being
essentially stable. Only in the case of K2Cr04, the simu-

lations indicate that an incommensurate structural insta-
bility at very low temperatures may exist. It is also im-

portant that the results for Rb2Se04 indicate an incom-
plete softening of the lowest X2 phonon branch.

The actual presence of an incommensurate instability
depends basically on the effective volume of the A cat-
ions. The empirical relation of the effective atomic sizes
with the basic types of commensurate structures observed
in the A28X4 family has been thoroughly discussed in

Refs. 38—40. The present study indicates that the ulti-
mate cause of the incommensurate instability is also a
simple volume effect, as suggested in Refs. 41 and 7.
Indeed, as shown in Fig. 7, the experimental normal-IC
transition temperature is roughly correlated with the ra-
tio between the A ionic radius and the sum of the ionic
radius of X and 8. The existence of an IC phase is limit-

ed to a small range of values for this size ratio
(0.57—0.85), and the normal-IC transition temperature
steadily increases as the size ratio decreases. It is
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FIG. 7. Transition temperature T; limiting the Pnam and IC
phases for a set of A2BX4 compounds as a function of the ratio
r„/(rz+rz), where r; are the ionic radii. In most cases, the
average experimental value for the distance B-X in the BX4
tetrahedral groups (RTj, if known, has been taken as rz+rz.
For comparison, those compounds having no phase transition
have been indicated in the diagram as a point with T; =0.

significant that in this diagram the abscissa values associ-
ated to potassium chromate and potassium selenate are
very close, explaining the similarities of their lattice-
dynamics results. The fact that Cs2ZnC14 and Cs2ZnBr4
are reported to have no phase transition leaves K2Se04 in
Fig. 7 as an isolated case somehow disconnected from the
general trend. This different behavior is probably related
to the very different charge distribution inside the anionic
groups (see Table I). A simple linear fitting of the experi-
mental transition temperatures T; in terms of Qz and
R T/(R & +Rx) (see Table I) has been done using the fol-
lowing expression:

T„,=a+P[RT/(R„+Rx )]+yQ~ .

The results of the fit are shown in Table V. The four ex-
perimental values of T; can be well reproduced and the
adjusted expression predicts the stability or instability of
some of the other compounds in qualitative accord with
the energetic and dynamic models reported in the preced-
ing sections. In broad terms, it can be said that a larger
value of Q~ tends to unstabilize the Pnam structure. On
the other hand, larger A-X distances, or larger sizes of
the cations A, in comparison with the size of the anionic
groups tend to stabilize the Pnam normal phase.

The peculiar pressure dependence of the IC transition
temperature exhibited by the Zn compounds could not be
properly reproduced by the models discussed in the
present work. Probably, the parametrization for each
compound of a more complex model where the two-
dimensional character of the local order parameter is tak-
en into account can be enough to understand this effect.

An important feature of all the simulations is that the
unstable or soft-mode branch is always an optical branch
in the extended zone scheme or the result of an anticross-
ing of an optical branch with the X3-X2 acoustic branch.
Hence, microscopic models, where a single local mode is
considered and the corresponding phonon branch is fitted
to the experimental acoustic branch, as proposed by Iizu-
mi et al. , are inconsistent with the basic mechanism of
the transition. They disregard the important fact that the
part of the acoustic phonon branch, where the softening
takes place (see Figs. 1 and 3) is indeed the continuation
of an optical branch. In this context models with two lo-
cal modes giving place to two phonon branches, as pro-
posed in Ref. 42, are more likely to simulate the rnecha-
nisrn of the transition.
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