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Spin-lattice relaxation due to sliding of the modulation wave
in incommensurate systems with impurities
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A theory of spin-lattice relaxation via large-scale fluctuations of the modulation wave in incommensu-
rate systems is developed for the case of impurity pinning. For a simple model used for the description
of such fluctuations, the motionally averaged spectrum and the positional dependence of T& in the slow-
motion regime are calculated and illustrated graphically. In the thermally depinned regime close to the
paraelectric-incommensurate transition temperature TI, an anomalous temperature and Larmor-
frequency dependence of the spin-lattice relaxation rate T, is predicted. It is shown that, on crossing
TI from above, T, continues to decrease with decreasing temperature until it reaches a shallow
minimum in the thermally depinned incommensurate phase.

I. INTRODUCTION

The continuum theory of incommensurate (I) systems
predicts the existence of a gapless sliding mode in the I
phase. ' This is the Goldstone mode which recovers the
broken continuous phase symmetry of the incomrnensu-
rate phase. The above result does not correspond to
physical reality because of the presence of impurities and
discrete lattice effects" which are responsible for the pin-
ning of the modulation wave to the underlying lattice.
The theory of spin-lattice ( T, ) relaxation in incommensu-
rate systems has been therefore developed for the case of
small fluctuations of the modulation wave which can be
decomposed into phason and amplitudon modes. ' We
consider possible occurrence of spin-lattice relaxation via
large-scale fluctuations of the modulation wave in the
presence of impurity pinning.

Recent NQR, NMR, ' and EPR experiments have
shown that thermal depinning of the modulation wave
may take place in the high-temperature part of the I
phase close to the incommensurate-paraelectric transition
temperature T&. Electric-field-induced depinning has
been observed in charge density wave (CDW) systems
and the effect of a uniform sliding of the modulation

wave on T& has been evaluated. ' Theories for the
motional narrowing of the NMR line shape due to sliding
and large-scale phase fluctuations of the completely" or
partially depinned' modulation wave have been
developed. Here in Sec. II the behavior of the pinned
modulation wave system is modeled by fluctuations of the
modulation wave in a coherence volume of a square box
shape. Theoretical expressions for the NMR spectrum
and spin-lattice relaxation are developed in Sec. III. Re-
sults for a simplified one-dimensional case are presented
graphically.

II. PHASE FLUCTUATIONS IN
INCOMMENSURATE SYSTEMS

In the case of a pinned one-dimensional modulation
wave we can divide the displacement u of the jth nucleus
from its position in the paraelectric phase into a large
static (or slowly moving) part ujo and a small rapidly fluc-
tuating part 5u(t):

u (t)=ujo+5uj(t) .

The rapidly fluctuating part can be in the harmonic ap-
proximation decomposed' into phason and amplitudon
modes:

e&(j) —ik.r. —ik r
5u, (t) = g [ cos(q, r,. +tbo)(e 'P„&+c.c. )+sin(q, .r, +tbo)(e 'P &+c.c. )] .

+2Nm,

Here Pzk and P k represent the normal coordinates for the amplitudon and phason modes, q, is the wave vector of the
incommensurate modulation, k =q —q„ek is the polarization vector, m. the mass of the jth nucleus and N the number
of unit cells which are coherently moving.

The mean-square displacement is now obtained as

5u = g [cos (q, .r +go)~P„k~ +sin (q, rj+$0)~P k~ ] .
1
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Here N0 is the number of nuclei in the unit cell. Equa-
tion (3) leads to the familiar expression for the spin-
lattice relaxation rate in I systems:

co&~
~ Tj —T~~"exp[ —Cl(Tt —T) ~) . (9b)

Here P- —,
' is the critical exponent for the amplitude of

the incommensurate modulation wave
T, ' ~ J„cos $0~+J sin $0 (4)

ujo~ (Tl —T)~, (9c}
where J~ and J are the local spectral densities of the
amplitudon and phason modes and po. =q, r. +$0. P„k
and P & are oscillating with normal mode frequencies

co g k
—6) g 0+Kk (5a)

and

co+k =co~+%k (5b)

Here co&0 and co& are the arnplitudon and the impurity-
induced phason gap, respectively. We have co&0)&~&
(except for T~Tt) and Q&k,„))to&0,to&, as well as

co&~ QRk;„. Here k,„ is determined by the size of
the unit cell and k;„by the crystal size in the defect
(pinning center) free case and by the size of the defect free
regions in real crystals. From the equipartition theorem
we find

—2~'Ak~PAk~'= 2~',k~P,k I-'=
2
kT . (Sc)

The largest phason contribution to the mean-square
displacement is given by the k;„mode:

1 /2

singoj (6)"y 5u
min N0Nm .

and is inversely proportional to the phason gap. Here

4((4i —Nideal crystal &

V0
(7a)

Vcryst

Nd, f
n

—1/3—ng) (7b)

which is inversely proportional to the cube root of the
pinning defect density. So the mean-square displacement
corresponding to k;„mode in the coherence volume l
can be written as

kTV0
+5u,

N m.0 j

' 1/2
1

sinpoj. .
CO

The phason gap co is close to TI proportional to a rel-
atively high power of the amplitude of the modulation
wave both for impurity' and for discrete lattice pin-
ning. ' In the first case one finds, for instance, '

where Vo is the unit cell volume,
g~~

the coherence length
along q, and gz the coherence length perpendicular to q, .
Both

g~~
and gj are k dependent in the case of impurity

pinning.
We assume that /1 =AD~= l where l is the mean distance

between pinning defects
1/3

whereas the commensurability index n equals 6 for
Rb2ZnC14. Since co decreases on approaching TI one
may expect a thermal depinning of the modulation wave
below the incommensurate-paraelectric transition, i.e.,
above a certain temperature thermal fluctuations should
become large enough to overcome the pinning energy.
For the case of a nearly free sliding of the modulation
wave, co&—+0, 5u. ~& becomes very large, and the am-

min

plitudon and phason description of the elementary excita-
tions breaks down. The same is true for the spin-lattice
relaxation rate —expression (4)—which diverges for
co&—+0 when the nuclear Larmor frequency cuL ~0.

For the above case of large phase fluctuations we have
to use the complete expression for the nuclear displace-
ment

u, (t)= [u,o+5u, o(t)]cos[P(r, , t)] (loa)

(pk(r, t) =yoksin(cokt+ak)s (k r},
where

(1 la)

s(k.r) =sin(k„x )sin(k~y)sin(k, z) . (1 lb)

So we have (k„);„=(k );„=(k,);„=n./l. Instead of
the symbol co k introduced for phason frequency, from
now on ~k will be used for the frequency of the large
phase fluctuation modes. In the random phase approxi-
mation the phases ak are randomly distributed in the in-
terval ak E [0,2~]. Similarly we may assume that the dis-
tribution of the phase fluctuation amplitudes qv0k in the
interval 0 ~ y0k & ao is Gaussian:

and abandon the linearized description of the phase fluc-
tuations as used in expressions (1) and (2).

Instead of expanding the nuclear displacement uj(r, t)
into a large quasistatic and a small rapidly fluctuating
part we shall divide the phase P(r, t} into a time-
independent and a time-dependent part

max

P(r, , t)=P, + g yk(r, , t), (lob)
min

where the time-independent part equals $0 =q, r, +$0
and the time-dependent part is—for the case of partial
pinning —expressed in terms of standing phase waves
yak(r, t}.

For the case of impurity pinning the k;„ is roughly
determined by the inverse average distance between de-
fects. For simplicity we assume that the whole crystal
can be viewed as a sum of coherence volumes of equal
size l and further that the tpk(r, t) can be represented by
standing waves in a single square box (coherence volume):

T~P(n
—2) (9a)

whereas one gets in the second of the above two cases':

2f(mok)=, exp( —mok~2mok) .
~f'ok

(12)
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The second moment of this distribution ypk can be ob-
tained from

=—kT1

I&

as the gpk are not normal modes. With

k 0 ok&kcos(&kt +Rk )s (k'r)

and Eq. (10a) we find pok as

32kT 1
foj =—

2 2NpNm @peak

(13a)

(13b)

(13c)

where m and u p stand for averages over the nuclei in the
unit cell and the average of s (lc r) over the coherence
volume has been taken to be equal to —,'.

It should be noticed that in the case of an ideal, defect
free crystal the sum over k would contain also the term
k=0 describing uniform sliding of the modulation wave.
In such a case we would have

0'k=o= +t (14a)

with 0=q, .v being the harmonic-oscillation frequency of
the jth nucleus induced by the motion of the modulation
wave and v the uniform sliding velocity. The corre-
sponding contribution to the spin-lattice relaxation rate is
just a 5 function at Q

where the summation goes over all nuclei which are mov-
ing coherently.

In the slow motion regime this formula gives a well-
known static spectrum with two edge singularities. "
With increasing frequencies cok (speed of fluctuations) the
spectrum becomes more and more motionally averaged.
The spectrum gradually transforms from a two peak
spectrum to a three peak spectrum and finally to a spec-
trum with a single central peak. In Fig. 1 this transition
is illustrated for a simplified one-dimensional case where
100 nuclei are uniformly distributed in the interval [O, t]
on g axis. Equation (lib) is here reduced to s =sink(
with k =~/1, 2~/1, . . . , 100~/I. The amplitude of the
phase fluctuations (yk )'~ corresponding to the wave

min

vector m/I is here chosen to be 1.8 while the ratio of the
corresponding frequency ~k to the frequency shift mp is

min

varied. The specific shape of the partially motionally
averaged spectrum in the transition region [Figs. 1(b) and
1(c)] is model dependent.

The nuclear spin-lattice relaxation is here determined
by the spectral density of the correlation function of
u~( t), i.e., by

(18)

1

T I.~5(co —0) .
1

(14b)

III. SPIN-LATTICE RELAXATION DUE TO
LARGE PHASE FLUCTUATIONS IN THE

PRESENCE OF IMPURITY PINNING

Let us now assume that we deal with nuclei with a
nonzero quadrupole moment as well as that the wave-
length of the incommensurate modulation is much larger
than the radius of the region from which important con-
tributions to the electric field gradient (EFG) tensor at
the nuclear site come from. Expanding the EFG tensor
at the 1th nuclear site in powers of nuclear displacements
we find in the local approximation

T,'"'(t) = T,'"'+u, (t) T(P, '(l)+

Here To", '(1) represents the change in the )ctth component
of the EFG tensor at the 1th nuclear site due to the nu-
clear displacements u&(t) induced by the motion of the
modulation wave.

The resulting frequency shift can be to the first order in
displacements written as

(16)

3 1—

I

-2
I

0

~«~o

Ib)

(c)

(d)

F(co)= g f exp i f co&(t')dt' e' 'dt,
00 p

(17)

where cop is the amplitude of the frequency shift. The
corresponding spectrum can be calculated using the
well-known relation:"

FIG. 1. Motional averaging of incommensurate NMR line

shape for large-scale phase fluctuations with ~p k =1.8 and
min

cc)0/~k =21.6 (a), 10.8 (b), 5.4 (c), 1.35 (d). Here coo measures
min

the incommensurate frequency shift and cok the fluctuation
min

rate.
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Gl(t)=G„l(t)+G l(t) (19a)

which can be written as a sum of amplitude and phase
terms,

and

G~l( t) =u pl cos[p(rl, 0) ]cos[p(rl, t) ] (19b)

if amplitude fluctuations are much faster than the large-
scale phase fluctuations so that the two modes are essen-

tially uncoupled. Here

GAl(t)=fiupl(0) 5upl(t)G~l(0)/upi . (19c}

Using Eq. (10b) the autocorrelation function G l(t) can
be in the random phase approximation expressed as

2
~OhG, (t)= Icos[/(r„O) —p(r, , t)]+cos[p(r, ,O)+p(rl, t)]]
2

2~ 01 2iPO
e 'p expIi [pk(0)+ pk(t)]]+ g exp[i [yk(0) —p k(t)]]+c c.

k k

(20a)

The amplitude correlation function G„l(t) can be, on the
other hand, expressed as

1
GAl 2

PAk(0)PA'k(t)Gql(0}
ONmI uo(

(20b)

1
l( )= pl o( pp—l)+si pplgqrk(0)grk(t)

k

(21a)

if the normal coordinate expansion, Eq. (2), is used.
In the limit of small phase fluctuations (gk yk ((1)

one finds

This leads —after transforming the yk (t) into the P&k to-
the well-known expression for relaxation via phasons
and amplitudons given by Eq. (4).

For large phase fluctuation the situation is different.
The standing wave approximation [Eq. (11)]enables us to
write

COk t COk t
pk(0) pk(t) =2+pkcos +ak sin s, (22a)

2 2

COk t COk t
yk(0)+pk(t)=2ppksin +ak cos s, (22b)

2 2

1
Al( ) —Xi ~ ~ PAk(0)PAk(t)cos Apl .

NOXm(
(21b)

and to find

2~
exp[i [yk(0) pk(t)]]—= f f f ppk)exp[i [yk(0) —yk(t)]]dqrpkdak, (23a)

where the Gaussian distribution f (ypk ) is given by expression (12). The above expression becomes
' 1/2

00 +Ok +Okexp[i [pk(0) —yk(t)]] = f &p 2ppks sin e
0 2

Z=e 'Ip(z, ) (23b)

with z, =4s ypk sin (cok t /2). The exp [ i [gk (0)+yk ( t) ] ]
term can be treated similarly.

Here Jo is the zeroth order Bessel function whereas
Ip(z} is the zeroth order modified Bessel function defined
by

2

G, (t)= ge 'I (z, )
k

+cos(2/pl) ge 'Ip(zz)
k I

(24)

( / )

=p (m!)

The correlation function (18) now becomes

(23c)
where z2=4s ypkcos (cokt/2) and z, has been defined
above.

Limiting our discussion to the case of large fluctuations

gk s ppk )) 1 we note that G l(t) will decay to zero in a
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2

G &(t)= [exp( p —t /2)+D 2c os(2$ o&)],2

r & co„', (25a)
max

where taking into account Eq. (13c), (I/NNO) gk s =
—,
'

and uo = uoo( TI —T/T~ )~ we have
' 1/2

I T, —T8kT
m

(25b)=10
Qo

and

D z
=exp —+ 4s yak g Io(4s yok ) « 1 .

k k

(25c)

In the long time limit, t ) cok ', on the other hand,
min

G~l(t) becomes a constant:

G I ( t) = u o(D i cos Poi « 1,
where

(26a)

D& =exp —gs tpol, g I (s p „) .
k k

(26b)

Both D& and D2 are zero at TI and increase on going into
the I phase.

The spectral density of the EFG tensor fluctuations in-
duced by large-scale phase fluctuations and small ampli-
tude fluctuations of the modulation wave is now obtained
as

T, '
L,'"'(co)= f b T'"'(0)AT' "'(t)e'"'dt

=[(&()~+(JI)„](T(p)')', (27a)

where

time t «cok ' for all k. Therefore we shall investigate
only the short time behavior of G I(t), i.e., the behavior
for cokt «1. Using sinx =x, cosx =1 for x «1 and as-
suming that z, «1 we get

tion will be motionally averaged out and only a single
homogeneous central line with a single T& will be ob-
served. '" In such a case it will be experimentally impos-
sible to separate ( T, '

) and ( T, „' ) and the effective relax-
ation rate will be determined by the faster process, i.e., by
large-scale phase fluctuations. The resulting spin-lattice
relaxation time T& induced by large-scale phase fluctua-
tions shows —for not too large po values —an exponential
dependence on the square of the nuclear Larmor frequen-
cy. The predicted temperature dependence of T, is also
anomalous: On cooling into the I phase T, first decreases
with increasing TI —T, goes through an asymmetric
minimum and then increases at still larger TI —T values.
The minimum disappears if co/po«1 (Fig. 2). These
predictions are in agreement with the preliminary study
performed by Papavassiliou et al. '

The above described behavior is completely different
from the behavior expected in the case of small phase
fluctuations. Here the phason induced T, is essentially T
independent and proportional to the phason gap
whereas the amplitudon induced T, increases with de-
creasing T as the amplitudon gap: co„o~(TI—T)~. The
minimum value of T, is found here at the paraelectric-I
transition temperature TI and not below Tz as in the case
of a floating modulation wave, [Eq. (28b)].

A situation may however arise where some of the slid-
ing motions are too slow to affect the NMR spectrum
(though they may still influence T, ) whereas the high fre-
quency part of sliding motions and the amplitudon modes
have a too small amplitude to be effective in averaging
out the NMR spectrum [see Fig. 1(a)]. In such a case
(J)~ must be directly numerically calculated from Eq.
(24). One observes a variation of T, over the incommen-
surate frequency spectrum which is due to dependence of
the nuclear displacements in the pinned modulation wave
on the distance from the pinning centers. According to
expression (11) these displacements are zero at the pin-
ning centers and reach a maximum in the middle. This
situation is illustrated in Fig. 3 where the spatial depen-
dence of the T

&

' is presented for the same one-

(J, )~= G I(t)e'"'dt= e "~~ uo (27b)

and
+ oo

Gai(r)e' 'dt ~co„o . (27c)

Here p decreases and u o increases on cooling into the I
phase:

4
-'

/
/

/
/

/—=16 ~
(d /
p() /

/
/

/

uo ~ (TJ —T) ~, p =po[(TI —T)/TI]

so that the relaxation rates become

(28a) L

2

( TI —T)
(T, '

) ~ (TI —T) ~exp (28b)
I

P~~~~-tmnsaun~gm. ~~~waar~

5 10 15 20

'f] — 1 Iarbitrar~ units)

(Ti~)"(TI (28c)

As in this case the large-scale sliding motions are fast
enough, the incommensurate NMR frequency distribu-

FIG. 2. Temperature and Larmor-frequency dependence of
the spin-lattice relaxation time Tz induced by large-scale phase
fluctuations of the pinned incommensurate modulation wave.
The curves are calculated for diferent values of co//po.
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to our assumption that the resonant nuclei are uniformly
distributed along this distance the distribution of the re-
laxation rates V( T, ' } is simply obtained from

V( T, ' )dT, ' =p(g)dg, p(g) =const (29)

0
0

I

&/'t" min

1 ( & max

Ttl2kmin

FIG. 3. Variation of T&
' over the incommensurate frequen-

cy distribution for the case of large "slow" phase fluctuations of
the pinned modulation wave. The inset is showing the corre-
sponding distribution of relaxation rates.

by numerically calculating d (T ')/dg. This distribution
is shown in the inset to Fig. 3. It is significantly different
from the one found in conventional incommensurate sys-
tems when small phason and amplitudon fluctuations
determine the relaxation rate. The group of strong
peaks around T, ' /( T, ' ),„=1 is due to the fact that a
large fraction of nuclei situated near the middle of the
line between the two pinning centers move with nearly
the same displacement amplitude, whereas the small peak
near T, '=0 corresponds to nuclei close to the pinning
centers where the displacement amplitude is very small.
P(T, '

) can be directly obtained from the Laplace trans-
form of the magnetization recovery function:

bM(t)/Mo= J P(T, ')e 'dT, ' . (30)

dimensional model used above in the calculation of the
shape of the spectrum. The coordinate g measures the
position and runs from zero to one half of the distance
between two pinning center I/2(=m /2k;„). According

In the intermediate case [Figs. 1(b} and 1(c)j the spec-
trum is partially motional averaged and there is no one-
to-one correspondence between the resonant frequency
and the spin-lattice relaxation rate.
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