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FIG. 1. Pro'eojections of the structures of PbS TiS .
circles denote sulfur atom '

lg i p. Lalge
su ur atoms; small circles denote Pb and Ti

atoms. Hatched and o enpen circles represent atoms differing 0.5
along the projection axis (x ox„2 or x, ). {a) Projection along the

a,, l axes of the structure of the monoclinic form. Note that two

unit cells along a are sg 3 are s own. (b) Similar projection of the

structure of the orthorhornbic form. ( ) Prm. c rojection of the struc-
ure o the orthorhombic form alon thong e a 2 axes.
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FIG. 2. A monoclinic unit cell put together with its mirror
image to produce an orthorhombic unit cell with an almost
double-c axis.

they encompass two layers of the each kind. The symme-
try of these crystals is found to be orthorhombic.

In a first approximation, the structure of the ortho-
rhombic form of (PbS)i, sTiSz can be viewed as an alter-
nate stacking of the unit cell of the monoclinic form and
a mirror image of this cell (Fig. 2). We will show this pic-
ture to be correct, apart from an additional translation
parallel to the layers. This makes this new form a true
polytype of the previously synthesized monoclinic form.

EXPERIMENT

Three crystals were taken from the same batch as had
supplied the monoclinic form of (PbS) i,sTiS2. They were
all thicker than the monoclinic crystals. Analysis on an
x-ray diffractometer showed that the diffraction pattern
of each crystal could be indexed on two mutually incom-
mensurate C-centered orthorhombic unit cells. One crys-
tal, with the approximate dimensions of
0.25 XO.20X0.01 mm, was selected for data collection.

Single-crystal x-ray diffraction was performed on an
Enraf-Nonius CAD-4F diffractometer using monochro-
matized Mo Ea radiation (X=0.71073 A). Unit-cell di-
mensions and their standard deviations were determined
for each subsystem independently from the setting angles
in four alternate settings of 19 reflections in the range
23.42'&0&25.25' for TiSz and of 21 reflections in the
range 24. 17'(8(25.38 for PbS. For TiS2 (first subsys-
tem; v= 1), lattice parameters were found as
a» =3.4086(3) A, a,2

=5.8814(7) A, and a, 3 =23.406(2)
A, with V, =469.2(1) A . For the PbS subsystem (v=2),
lattice parameters are a» =5.8020(5) A, a2z =5.8822(8)
A, and a23 =23.413(3) A, with V2 =799.1(2) A . The re-
sults show that both a 2 and both a 3 are equal within
standard deviations, indicating a common (a,z, a*3)
reciprocal-lattice plane, as well as a&z=a22 and a&3=a23.
The a

&
axes are parallel, but have an incommensurate

length ratio a»/az& =a0=0.58749(5). For the descrip-
tion of the structure the average values of the lattice pa-
rameters were used: a2= —,'(ai2+a22)=5. 8818(8) A, and
a3 = —,'(a i3+a23 ) =23.409(3) A.

From the size of the subsystem unit cells and the num-
ber of formula units per cell (Z =8 for PbS and Z =4 for
TiS2), one finds that the composition of the compound is
(PbS)„TiSz, with x = l. 174 97 for the orthorhombic com-

pound and x =1.1755 for the monoclinic compound.
Properly rounding off would lead to the seemingly
different composition 1.17 and 1.18, respectively. Here
we will designate both compounds with x =1.18. A
more accurate value for the stoichiometry is
x =1.175(l).

The data collection was performed separately for the
subsystems. Reflection intensities were measured at the
nodes of the reciprocal lattices of the respective subsys-
tems, and at the positions of the first-order satellites. All
main reflections were measured in one hemisphere up to
0=35'. The experimental stability was checked by the
three standard reflections (0,0,8), (0,2,6), and (0,2, —6),
measured every 2 h of x-ray exposure time; they showed a
long-term variation of less than 2%. The intensities were
corrected for the scale variation, Lorentz and polariza-
tion effects, and for absorption (@=454.4 cm ') using a
Gaussian integration method.

For TiS2, 2257 measured main reflections were com-
bined into 656 unique reflections, using Laue symmetry
mmm. The internal consistency was
RI =(+~I; I "~ )l(—QI; ) =0.058. For PbS, the same
Laue symmetry reduced 3795 measured intensities to
1047 unique reflections, with R&=0.042. The common
(O, k, l) reflections were used to bring the data sets on the
same scale. For 110 reflections present in both data sets,
this resulted in a scale factor of 0.9872(7) to multiply the
PbS intensities. The internal consistency is found as
RI=0.010. The result is a single data set for the misfit
compound with 1589 unique main reflections.

First-order satellites were measured up to 8,„=27' in
a hemisphere with k ~ 0. To increase accuracy,
reflections with I ~ 2. 5o.(I) were selected for an addition-
al measurement, spending six times more time on each
PbS satellite and 24 times more on each TiS2 satellite.
The same corrections were applied as for the main
reflections.

The "satellite" data set for TiS2 comprised 2579
reflections, which were combined into 677 unique
reflections using mmm symmetry. It contained 91
~h, ~=0.59 satellites, which are equal to ~h2~ =1 main
reflections of the PbS subsystem. 115 reflections, with
~h&~=0. 41 or ~h, ~=4.59, were overlapping with PbS
main reflections. All these reflections were removed.
Furthermore, the reduced data set contained 102 (0,k, l)
reflections, which were used to bring the TiSz satellites
onto the same scale as the main reflections. The scale
factor was obtained as 1.144(1) with RI=0.009 for 75
common reflections with I )2. 5o.(I).

Similarly, 4238 satellites of the PbS subsystem were
combined into 1086 unique reflections. The latter set
contained 87 main reflections of the TiS2 subsystem and
111 satellites overlapping with TiS2 main reflections.
Again the 102 (0, k, l) reflections present were used to
bring these satellites onto the same scale as the main
reflections. The scale factor was obtained as 1.142(1)
with RI=0.009 for 75 common reflections. It is noted
that the reflections with both ~H~ =

~h i ~

= 1 and
~M~ = ~h2~ =1 form a plane of common first-order satel-
lites, which were present in both the measured data sets.
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Refinements were performed on reflections with
I ) 2.5o(I). With this criterion for observability, the
number of unique reflections reduced to 1309 [108(O,k, I)
reflections, 353 main reflections of the TiSz subsystem,
663 for PbS, and 186 satellites].

SUPERSPACE-GROUP SYMMETRY

4
a„';= g Wkak, i =1,2, 3,

k=1
4

q= y W4kak.
k=1

(2)

(3)

That both the basic structure periodicities A and the
modulation wave vectors are derived from the same set of
reciprocal vectors M expresses the fact that each subsys-
tem is modulated with a modulation wave vector given by
the periodicities of the reciprocal lattice of the other sub-
system.

For the present analysis the following matrices will be
used:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 1

0 1 0 0
0 0 1 0
1 0 0 0

(4)

The starting point of the superspace-group approach is
the description of the diffraction pattern with a finite set
of integer indices. ' The common (b*,c*) plane im-
plies that four reciprocal vectors are sufficient to obtain
an integer indexing of the complete diffraction pattern.
This set, M = [ai,az, a3, a4], can be defined as a", =a»,

are the reciprocal-lattice vectors of the subsystem unit
cells as defined in the experimental section. Superspace is
obtained in the usual way, by identification of the four
basis vectors of M with the perpendicular projection of
four independent translation vectors in a (3+1)-
dimensional space. ' The fourth element of M can be
expressed in the first three. This defines the incommen-
surability, expressed by the o. matrix:

o =(ao, 0, 0) .

The basis vectors of the subsystem reciprocal lattices
A*, together with the subsystem modulation wave vec-
tors q, can be written as an integral linear combination
of the basis vectors in I

are found to be 0 +K +M =odd is absent for the
(H, K,L,M) reflections. This implies a C centering given
by the centering translation

The (3+1)-dimensional Bravais class follows as
P:Cmmm (a0,0,0)111,' with C a tentative symbol
representing the centering translation Eq. (6).

Other extinction conditions are found for specia1 sub-
sets of reflections: L =2n, is present for the (OOLO)
reflections; L +M =2n and H +L =2n for the (HOLM)
reflections; H+M=2n and K=2n for the (HKOM)
reflections, ; and H =2n and M=2n for the (HOOM)
reflections (n is an integer). The superspace group ex-
plaining all these extinctions is G, =P:Cmca(ao, 0,0)lss.
It is noted that the extinction condition corresponding to
the c glide is violated by some weak reflections among the
main reflections and satellites of the PbS subsystem,
whereas the a glide and b glide are violated among the
TiS2 main reflections. Refinements showed that sub-

groups of G, cannot explain these additional reflections.
Therefore, we conclude that 6, is the group describing
the symmetry of orthorhombic (PbS), ,8TiS2.

%'ith the coordinate transformation defined by the ma-
trices W' [Eq. (4)], the elements (R;)r,") of the subsystem
superspace groups can be defined as' ' "

R'= W'R, (W )

(7b)

For the subsystem superspace groups one thus obtains,
G,'=G, and G, =P:Cmna(ao ', 0,0)lls with, again, C
defined by Eq. (6). Note that G,' and G, are equivalent.
The different notation reflects the fact that both
subsystem-space groups are described with respect to a
different origin. The elements of 6, =6,' and of G, are
given in Table I. Similarly, the space groups describing
the symmetry of the basic structure of each subsystem
can be obtained as the restriction of G, to three-
dimensional space. One obtains 61 =Cmca and

TABLE I. Elements of the superspace group 6„ together
with the corresponding elements of both subsystem superspace

groups 6, , v=1,2. The listed element may be combined with

any of the lattice translations or with the centering translation,

n;, i =1,2, 3,4 assumes all integer values.

Q2

The 8 matrices can be interpreted as defining a coor-
dinate transformation in superspace, between the super-
space axes corresponding to M and the standard super-
space for each subsystem. For example, 8' gives the re-
1ation between the subsystem indexing of reflections and
the indexing on M [Eqs. (2) and (3)]:

(H, K,L,M)=(h„k, l„m ) W

Considering the superspace indexing, the diffraction
pattern again has orthorhombic symmetry, now generat-
ed by (m„l), (m 1), and (m, 1). Systematic extinctions

(El)ni, n2 n3 n4)

(E1) —', —',0, —')
(2„1)O,O, O, —,

'
)

{2,1) —,', 0, —,', 0)

(i 1)0,0,0,0}
(m, 1)0,0,0, —,

'
)

(m 1) —,', 0, —,', 0)

(El ln4, nz, n3, n& )

(E 1 g, —,',0, —,
'

)

(2, 1) -,', 0, 0, 0)

(2, 1)0,0, —,', —,
'

)

(i 1)0,0,0,0)

(m, 1 ) -,', 0,0,0)

{m 1)0,0, —,', —,
'

)
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G2=Cmna. Again both subsystem-space groups are
equivalent.

THK STRUCTURE

Each section in superspace perpendicular to the addi-
tional dimension gives an equivalent description for phys-
ical space. It is characterized by the parameter t. ' '
With respect to the subsystem lattice A„ the coordinates
of atom j of subsystem v in such a section t can be writ-
ten as

xv((J)=xv|(J)+"v|(xvs4) (8)

xu4=aa„(j)+t,
x2 4 =ap [x2& (J') t]

Evidence that the orthorhombic compound is a poly-
type of monoclinic form was provided by comparing the
unit-cell dimensions. With a unequal to 90', an ortho-
rhombic lattice can be constructed from the monoclinic
one by having the c axis pointing alternately left and
right (Fig. 2). The resulting orthorhombic c axis has
length c(0)=2sin(a)c(m)=23. 419 A. This compares
very well with the experimentally determined value of
ass =23.409(3) A. Note that 2c (m) =23.518(4) A.

Assuming the orthorhombic compound to be such a
polytype, the coordinates of the atoms in the lower half
of the unit cell were obtained from the monoclinic struc-
ture by referring the latter coordinates with respect to the

for v=1, 2 and i =1,2, 3. From Eqs. (1)—(4) the basic
structure coordinates x„; follow as

x„(j)=n„+x„.(j), i =1,2, 3,
X2i(J)=n2t+x2t( j)—t

x2;(j)=n2;+x2;(j), i =2,3,
where n„, runs over all integers, and x,.(j) are the coor-
dinates of atom j with respect to the subsystem unit cell.
These are the ones determined in the structure
refinement. The modulation functions u~;(X„,4) are
periodic, with periodicity one. Their arguments are the
fourth superspace coordinates of the subsystems

orthorhombic cell. With the proper choice of origin, all
atoms in the orthorhombic unit cell were generated by
the symmetry elements (Table I). Refinements of the
basic structure coordinates showed the initial guess to be
correct, since a reasonable fit was obtained (Table II).
The final coordinates did difFer only marginally from
those derived from the monoclinic structure (Fig. 1). All
refinements were performed with the computer program
COMPREF from the program system JANA.

The complete structure also involves modulation func-
tions for each atom. In the basic structure Ti is on an in-
version center i =2„/m„while the other atoms are in
the mirror m„. The corresponding superspace operators
lead to restrictions on the modulation functions (Table
III).

The modulation functions can be written as a Fourier
series:

ui;(x„,4)= g Aj;sin(2mnx„~)+BJ;cos(2nnx„, 4) .
n=1

It appeared that for each atom the first harmonic (n =1)
could be refined, while for Pb the second harmonic was
also included in the refinement. More harmonics led to a
singular matrix. Only those parameters were employed
that are compatible with the superspace-group symmetry
(Table III). The main efFect of the modulation was to
reduce the partial R factor for the TiS2 main reflections,
while a reasonable fit of all first-order satellites was ob-
tained (Table II). The refinements also included aniso-
tropic temperature factors, a scale factor, and an isotro-
pic parameter describing secondary extinction. The re-
sults of the refinement of the modulated structure are
summarized in Tables IV and V.

The R factors for the best model are still rather high
(Table II). In the search for other solutions, structure
models were tried in lower symmetries, ranging from
acentric orthorhombic to monoclinic. Refinement of the
additional parameters introduced in this way did not lead
to a significant lowering of the R factors, while the struc-
ture remained essentially the same as described in 6, . It
was therefore concluded that the relatively large
b,F=(F,b,

—E„l,) values must have another origin.

TABLE II. Reliability factors for the final fits, with and without the modulation, respectively. The
R factors are defined as R„=(gIIF,b, I

—IF„|,II )/Q IFob. l and R„2=[g( IFob. l

+IF,b, I

]'i . Partial R factors are defined using a subset of the reflections. The TiS2 part and PbS part
comprise the main reflections of the corresponding subsystem, excluding the common reflections
(O,E,L,O).

Reflection
subset

Number of
reflections

Basic structure
RF R

Modulated structure
RF R„2

A11

First-order
satellites
TiS~ part
PbS part
Common

1309

186
353
663
108

0.115

0.152
0.111
0.082

0.144

0.180
0.135
0.116

0.111

0.161
0.122
0.112
0.085

0.163

0.168
0.172
0.167
0.122
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TABLE III. Symmetry restrictions on the modulation func-
tions. The restrictions apply to the modulation functions as
defined in Eqs. (g) —(11),with symmetry operators from Table I.
For each atom it is given whether the function is odd, even, or
zero.

Coordinate Odd harmonics Even harmonics

TABLE V. Modulation parameters. Values are given for
A„';a,,; and B„';a; (A) ~ For j =Ti, S1 (v=1), the values corre-
spond to B„&a», A„2a&2, and A„3a». For j =Pb, S2 (v=2), the
values correspond to A„&az, , B„za2z, and B„,az, [Eq. (11) and
Table III]. Standard deviations in the last digits are in

parentheses.

Ti (v=1)

S1 (v=1}

Pb (Y=2)

Q)2

Q»
Q)2

QI3

Q2l

Q22

Q23

zero
odd
odd

even
odd
odd

Qdd

even
even

zero
zero

odd
even
even

odd
even
even

T1
S1
Pb
S2

Pb

A Jl /BJI A„'2 /B„'2

First harmonic (n = 1)
0.004(4)
0.001(4)
0.059(1}

—0.046(7)

0.0
—0.008(10)

0.001(3)
—0.01(2)

Second harmonic (n =2)
0.021(3) 0.004(5)

A 3/B 3

—0.014(7)
—0.017(7)

0.025(3)
0.03(2)

0.003(5)

S2 (v=2) Q2)

Q22

Q23

Qdd

even
even

Qdd

even
even

One factor influencing the quality of the fit is stacking
faults. Their precise nature is difficult to determine, and
certainly cannot be described by a lowering of the sym-
metry. Two types of such faults can be distinguished.
The first can be described as having consecutive layers
that assume the monoclinic-type stacking instead of the
normal alternating left-right stacking (Fig. 3). Since no
reflections corresponding to the monoclinic cell could be
observed, this kind of fault is probably not too important.

The second type of stacking faults is related to the
structure within each subsystem. Two nearest layers of
the same kind may be on top of each other, or may be
shifted over —,'a, . Allowing these two possible stackings

TABLE IV. Basic structure coordinates and temperature pa-
o 2

rameters (A ) as obtained by refinement of the modulated struc-

ture. Coordinates refer to the subsystem lattices. Standard de-

viations in the last digits are in parentheses. The temperature
factor that appears in the expression for the structure factor is

defined by

3

T=exp —2+ g U;,a„a„h„h„,

for both subsystems gives four possible structures (see
next section). The incidental occurrence of other types of
stacking can also explain the presence of certain
reflections, which would be absent in a fault-free sample
with symmetry 6, .

Another important phenomenon, inherent in incom-
mensurate crystals, is that reflections can be found that
are arbitrarily close to each other. For reflections with a
finite width (b, A, effect, mosaic spread) this implies that
some reflections are measured at the same position. Usu-
ally, this overlap is between strong reflections and sate1-
lites of much higher order, the latter with virtual zero in-
tensity. Unique to the intergrowth compounds is that
such an overlap also occurs between main reflections of
the respective subsystems, and between main reflections
of one subsystem with low-order satellites of the other
subsystem. For (PbS), &sTiS2, the special value of
Qp=0. 587 —0.6=

5
determines a partial overlap between

the h, =3, (3,E,L,O) main refiections of TiS2 and the
hz=5, (O, K,L, 5) main refiections of PbS. Inspection of
the refiection list shows the largest ~bI'~ values to be
among these two subsets. It was already noted in the ex-

U» and U» are zero as a consequence of the symmetry.

0+t3

T1
S1
Pb
S2

Ti 1

S1 1

Pb 2
S2 2

Ul,
0.010(1)
0.010(1)
0.0396(7)
0.045(4)

1 0.0
1 0.0
2 075
2 025

0.004(1)
0.003(1)
0.0252(6)
0.018(3)

0.017{2)
0.013(1)
0.0254(7)
0.031{4)

0 0
0.3353(5) 0.0611(2)
0.0944(2) 0.31823(6)
0.0954(12) 0.2994(4)

—0.000(1}
—0.000(1)
—0.0005(5)
—0.002(3)

iCo

rn~
'

l

I

I

b

, ll

FIG. 3. Arrangement of the monoclinic subcells comprising
the orthorhombic unit cell, in the normal structure (left), and

with a monoclinic stacking fault (right).
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periment section that some reciprocal layers of satellites
had to be removed due to a partial overlap with the main
reflections. At the same time, the corresponding main
reflections will have been contaminated by the satellites.
These reflections will also be fitted less well than is to be
expected for a conventional structure.

The considerations presented above lead us to conclude
that the model presented here correctly describes the
ideal, fault-free structure of the orthorhombic form of
(PbS), ,sTiS~.

DISCUSSION

In each subsystem there is only one crystallographical-
ly independent atom of each type (Table IV). From Fig.
1 it then follows that there is only one type of atomic
plane in the PbS subsystem, and only one type of sulfur
plane in the TiS2 subsystem. Consequently, there is also
only one type of plane of contact between the two subsys-
tems. As for the other misfit-layer compounds, the shor-
test distances between the two subsystems are between
the sulfur atoms of the first subsystem and lead atoms of
the other subsystem.

To study the intersubsystem bonding, it was proposed
to plot the interatomic distances as a function of the
fourth superspace parameter t. ' ' The distance be-
tween one atom of the second subsystem at x2(Pb), and
one atom of the first subsystem at xi (Sl) becomes infinite
for t ~+ac [Eq. (9)], as is illustrated by one of the para-
boliclike curves in Fig. 4. However, the distances from a
single Pb to all sulfur atoms of the first subsystem togeth-
er form a plot periodic in t, with the same periodicity as

3.80

for the second subsystem itself, i.e., with periodicity
ao=0. 59 (Fig. 4). '

The interpretation of Fig. 4 is that all distances read off
at a single value of t represent the coordination of Pb by
S1 somewhere in the crystal. All existing coordinations
are represented in one period along the t axis. The effect
of the modulation is to increase the Pb to S1 distance at
points where they are closest (A2 in Fig. 4). Further-
more, the variation in the shortest distance decreases
from 0.14 A in the basic structure to 0.09 A in the real
structure. It appears that this variation is of the same or-
der as the variation in the individual Pb to S2 distances
within the periodic second subsystem (0.06 A), and it is
much smaller than the range of Pb to S2 distances (0.23
A). The effect of the incommensurateness in the basic
structure on the first coordination shell is surprisingly
small, which probably is an important feature determin-
ing the stability of the misfit-layer compounds. ' Com-
paring the distances between Pb and S1 with the corre-
sponding distances in the monoclinic form shows that the

plane of contact is to a large extent similar in both poly-
types (Figs. 4 and 5; Table VI).

The structure of the individual layers is almost the
same in the orthorhombic and the monoclinic form.
Comparing the modulation functions shows that in both
compounds the main displacements are on the atoms of
the PbS subsystem, along the commensurate in-plane
direction a,2. For the orthorhombic form, the com-
ponent along c of the Pb modulation also has a relatively
large amplitude. Unfortunately, in the present
refinement the standard deviations for the modulation pa-
rameters of the other atoms, especially of S2, are rather
large.

The structure of the individual layers is centered rec-
tangular. This implies a C centering in the lattice of the
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FIG. 4. Coordination of Pb (v=2) by Sl (v= 1) as a func-
tion of the fourth superspace coordinate t. Distances are given
for the basic structure (broken curves) and for the modulated
structure (full lines). The curves are from Pb at
(0.25,x 22, 0.5 —x 23,0.5+X2,4) to S 1 at (0.5+n»,—0.5+x22,x23 0.5+x»4) for the curves marked AI and to Sl
at (n» x», x23,X&,4) for the curves marked A2 (n» is integer;
x„; from Table IV). Equally marked curves correspond to
different values for n», i.e., to different but translationally
equivalent sulfur atoms.
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FIG. 5. Coordination of Pb (v=2) by Sl (v=1) for the
monoclinic form as a function for the fourth superspace coordi-
nate t (after Ref. 5). Distances are given for the basic structure
(broken curves) and for the modulated structure (full lines).
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TABLE VI. Selected interatomic distances compared to the corresponding distances in the mono-
clinic form. Distances are given between Pb and S1 (see Figs. 4 and 5) and between Pb and the five

closest symmetry equivalents of S2.

Basic structure Modulated structure

Atom pair

Al
A2
B
Ci
C2
S2 along c
S2 at + 2a2,
S2 at —

za22

S2 at 2a»1

orthorhombic
form [A]

3.21
3.16
3.29
3.62
3.58
2.755
2.935
2.967
2.980

monoclinic
form [A]

3.21
3.16
3.30
3.64
3.59
2.755
2.933
2.971
2.975

ortho rhombic
form [I]

3.20
3.21
3.29
3.61
3.53

mono clinic
form [A]

3.23
3.20
3.31
3.61
3.56

complete crystal. For the simple misfit-layer compounds,
with an AB sequence of the layers, two consecutive layers
of the same kind (e.g., A) can be right on top of each oth-
er, or they can have an additional shift of —,'a„2. Com-
bined with the C centering, the latter implies a F-
centered lattice for subsystem v. This notation led to a
classification of the simple misfit-layer compounds in four
types, as characterized by the combinations of stackings
in the respective subsystems: CC, CF, FC, and FF. '

For the monoclinic form the c axes have been defined
to make the smallest possible angle with the normal to
the planes [5.27(2)'].' The stacking of the layers in the
monoclinic form could then be identified as CC type
with, for both subsystems, c =11.76 A. Comparing the
structures of the orthorhombic form and the monoclinic
form shows that the PbS subsystem in o-(PbS)»sTiSz has

again a C-type stacking, with a pseudotranslation vector
equal to the c axis in the monoclinic form (Fig. 1). Alter-
nately, this axis turns 5.27' to the left and to the right,
thus resulting in the orthorhombic structure with an ap-
proximate doubled c axis.

For the sulfur planes of the TiS2 subsystem of the or-
thorhombic form, a C-type stacking with a pseudo-
translation vector equal to the c axis of the monoclinic
form, is also found. However, when the top planes of two
consecutive layers have a pseudotranslation vector tilting
5.27' to the left, the bottom planes have the pseudo-
translation vector tilting to the right. This is a result of
the fact that in order to derive the structure of the ortho-
rhombic form from the structure of the monoclinic form,
not only every other TiS2 layer is replaced by its m, mir-

ror image but, in addition, it is translated over ( —,', —,',0).
This same translation then determines that the Ti atoms
assume a F-type stacking, with the pseudotranslation vec-
tor now perpendicular to the layers.

Extending the former classification of stacking types, '

orthorhombic (PbS), »TiS2 can be characterized as of the
C(F)C type. The C symbols refer to the stacking of the
sulfur planes of TiSz and of the PbS subsystem, respec-
tively, while the F symbol gives the stacking type of Ti as
is implied by the structure of the sulfur planes. The other
types of stacking also have their counterpart among the
double-c-axis orthorhombic structures, i.e., F(C)C,

C(F)F, and F(C)F. The corresponding superspace groups
are P:Cmc m(ao, 0,0)1 ls, P:Cmca (ao, 0,0) 1 ls, and
P:Cmcm(ao, 0,0)lss. Note that the different stackings
now correspond to different translation components com-
bined with rotational operators, and not to different
centering translations as for the simple misfit layer com-
pounds.

As noted in the preceding section, the occurrence of
the stackings other than C(F)C, may be an important
source of the stacking faults. From the superspace-group
symbols, it follows that the extinction conditions are
different for the alternative symmetries, and that the ob-
served violation of the extinction conditions correspond-
ing to 6, can be explained by parts of the crystal having
one of the other symmetries.

CONCLUSIONS

Detailed structural information is given for the inor-
ganic misfit-layer compound (PbS), &sTiS2. It is shown
that this form, with orthorhombic symmetry, is a poly-
type of the previously reported monoclinic structure of
(PbS)~ &sTiS2. The stacking AB in the latter compound
is replaced by a stacking ABA'B' in the orthorhombic
form. Layers A and A ', as well as layers B and B', have
identical structures as a result of the superspace group
symmetry.

The structures of the corresponding, individual layers
appeared to be the same in both polytypes. The ortho-
rhombic superspace group determines that in the ortho-
rhombic form there is only one type of plane of interac-
tion between the subsystems. This interaction can be
characterized by its shortest interatomic distances, which
are between Pb and S of the TiS2 subsystem. The local
structure around these atoms was shown to be the same
in the two polytypes, both for the basic structure arrange-
ment and for the modulation functions.
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