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In a comprehensive study, the modified embedded-atom method is extended to a variety of cubic ma-

terials and impurities. In this extension, all functions are analytic and computationally simple. The
basic equations of the method are developed and applied to 26 elements: ten fcc, ten bcc, three diamond

cubic, and three gaseous materials. The materials modeled include metals, semiconductors, and diatom-

ic gases, all of which exhibit di8'erent types of bonding. Properties of these materials, including equation
of state, elastic moduli, structural energies and lattice constants, simple defects, and surfaces, are calcu-
lated. The formalism for applying the method to combinations of these elements is developed and ap-

plied to the calculation of dilute heats of solution. In all cases, comparison is made to experiment or
higher-level calculations when possible.

I. INTRODUCTION

In the past few years the methods for empirical and
serniernpirical calculations of metals and covalent rnateri-
als have evolved rapidly. These methods have recently
been reviewed by Carlsson, ' in an MRS Symposium, and
at a special symposium of the World Materials Congress.
A brief summary of the most closely related work is in-
cluded here. The embedded-atom method (EAM) of Daw
and Baskes, ' which is based on density-functional
theory, has been successfully applied to the fcc or nearly
filled d-band transition metals. The EAM has also been
applied to bcc metals. ' A number of recent papers sum-
marize the technique and its many applications.
Finnis and Sinclair' derived the 1V-body potential
method based on a second-moment approximation to
tight binding and originally applied it to the bcc or half-
filled d-band transition metals. Rosato, Guillope, and
Legrand' developed a similar method for the fcc transi-
tion metals. An analytic nearest-neighbor model of the
EAM for fcc materials was developed by Johnson. ' This
model had the limitation that all materials were forced to
have the same anisotropy ratio. Smith and Banerjea'
developed the equivalent-crystal model and Ercolessi, To-
satti, and Parrinello another model, both of which are
mathematically equivalent to the EAM. Baskes '

modified the EAM to include directional bonding and ap-
plied it to silicon. This paper contains references to the
many other three-body potentials that have been used to
describe the directional bonding in silicon. Brenner
used the analytic form of one of these silicon potentials
to model the carbon, oxygen, and hydrogen systems. The
silicon EAM model was extended by Baskes, Nelson, and
Wright to the silicon-germanium system where the
modified embedded-atom method (MEAM) was
developed. In the initial version of the MEAM a num-
ber of deficiencies were identified: inward relaxation at a
vacancy, an extremely large stacking fault energy, and
only qualitatively accurate small cluster predictions. Re-
cent calculations have shown that the relaxation at a

vacancy should be inward. The partial resolution of the
other deficiencies will be discussed below, but, in general,
the method presented here is close enough to the original
MEAM that the solution of these problems is not expect-
ed. Savino, Rao, and Pasianot developed a related
method based on second-order invariants. All of these
methods are mathematically similar and have in common
the attribute that the interaction between two atoms de-
pends upon their local environment. It is mainly this fact
that accounts for the huge successes that these methods
have had in predicting effects at metallic surfaces where
the atomic environment is significantly different from the
bulk.

It is the objective of this manuscript to extend the
MEAM and apply it to a large number of elements to
show its wide range of applicability. Our extension is

empirical and has not been justified by strong physical ar-
guments as have the EAM and N-body potential
methods. It is not our purpose at this point to obtain op-
timum potentia1s for all of the materials considered, but
rather to set up a framework that may be used for
atomistic calculations. An underlying theme in the de-
velopment of the method is computational simplicity so
that the interactions may be readily used for large molec-
ular dynamics or Monte Carlo simulations. The reader is
warned that the potentials presented here require further
verification before detailed calculations are performed.

Not only will the MEAM be applied to metals and
semiconductors, but we will develop the method so that it
is applicable to diatomic gaseous elements. In the pro-
cess of extending these methods, it was found that a
simplification to first-neighbor interactions for all crystal
structures (including bcc and hcp) was possible. In addi-
tion, a simple analytical model of the embedding function
was found to be sui5cient to rnirnic the basic properties of
all of the elements considered. In Sec. II, the model is
developed and the resultant analytic equations for the
elastic constants and simple defects are given. Section III
includes the application of the model to surfaces and
metastable structures. Section IV includes a discussion of
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the application to binary systems and Sec. V is a sum-
mary.

II. THEORY

the following section. Assuming that E,"(R) is known,
we may use Eq. (3) to determine the pair interaction for
type-i atoms:

A. Basic equations
y, ,

.(R)= IE,"(R) F—, (p, (R)IZ, )] .
l

(4)

The total energy E of a system of atoms in the
embedded-atom method has been shown ' ' ' ' to be
given by an approximation of the form

E=g F(p)+ —,
' g P (R; )

i j (wi)

where the sums are over the atoms i and j. [Throughout
the manuscript the subscripts (i,j,k) denote either an
atom at a particular site or the type of that atom. ] In this
approximation, the embedding function F, is the energy
to embed an atom of type i into the background electron
density at site i, p;, and P; is a pair interaction between
atoms i and j whose separation is given by R; . In the ini-
tial formulation of the EAM, P was assumed to be
entirely repulsive, but it has been shown in the more re-
cent formulations, ' ' that the nonuniqueness between P
and F allows more general forms for P. In the EAM, p, is
given by a linear supposition of spherically averaged
atomic electron densities, while in the modified
embedded- atom method, p, is augmented by an angular-
ly dependent term. ' Let us denote the term in
parenthesis in Eq. (l), i.e., the direct contribution to the
energy from the ith atom, as E, . Of course, atom i also
indirectly contributes to total energy through its interac-
tions with its neighbors. Then E; may be written as fol-
lows:

Using this definition of the pair interaction, we obtain an
alternative to Eq. (2) for the monatomic system. The en-
ergy contribution E; for any configuration of atoms is
given by

E, = g E;"(R,J )
1

j (wi)

+ F (P;IZ;) — g F (p, (R,, )IZ, )
i j (wi)

This equation has an appealing physical interpretation.
The first term in Eq. (5) is simply the average of the ener-

gy per atom of the reference lattice at each of the
nearest-neighbor distances. Note the similarity between
this term and the equivalent crystal model.

The second term is formed by the difference between
the embedding energy at the background electron density
actually seen by atom i and the average embedding ener-
gy of this atom in the reference lattice at each of the
nearest-neighbor distances. In essence we may consider
this term a new kind of embedding energy where our
embedding reference state is that of the reference lattice
rather than isolated atoms.

Using Eq (5), i.t is a simple matter to write down ex-
pressions for the unrelaxed vacancy formation energy E,
and the unrelaxed surface or stacking fault energies E(„)
in the reference lattice:

E; =F;(p, IZ, )+—,
' g Q,)(R;~ ),
j (wi)

(2)
Ef=E; +Z;F;(p; IZ; ) ZdF;(p; IZ;—),

where, for simplification, we have renormalized the back-
ground density by the number of nearest neighbors Z, in

what we call the reference structure of a type-i atom.
This renormalization has no real physical consequences;
it simply redefines a new embedding function. The refer-
ence structure is a crystal structure for which we have de-
tailed information about the behavior of atom i. It is usu-

ally, but not necessarily, the equilibrium crystal structure
of type-i atoms.

We now follow a similar procedure to that used by
Baskes, Nelson, and Wright. Consider the case of a
homogeneous monatomic solid with interactions limited
to first neighbors only. By limiting the interactions to
first neighbors only, we introduce a number of important
questions about cutoffs or screening. These questions are
addressed in the Appendix. In this reference structure
for an atom of type i we have

Z-
E,"(R)=F,(,(R)IZ, )+ P, , (R),

where p;(R) is the background electron density for the
reference structure of atom i and R is the nearest-
neighbor distance. Here E;"(R) is the energy per atom of
the reference structure as a function of nearest-neighbor
distance. We will discuss this function in more detail in

E~(„)=g E, +F;(p; IZ; )Z

F;(p; IZ;)
l

where E; is the negative of the minimum energy of the
reference lattice (sublimation energy), P"; is the back-
ground density at site i, a nearest neighbor to the defect
(vacancy, surface, or stacking fault), A~„I is the area per
atom of the planar defect, and Zd is the number of neigh-
bors to site i. Values for Zd and A („)are given in Table
I. Since for some planar defects there is more than one
type of site i, a sum over the different environments
(planes) in Eq. (7) is indicated.

So far we have been quite general in our discussion, but
to show the applicability of the method, it is necessary to
specifically define how to calculate the background densi-
ty. As mentioned above, the EAM used a linear superpo-
sition of spherically averaged atomic electron densities.
Previously Daw' has shown that the EAM may be im-
proved by adding gradient and higher-order corrections
to this simple background density. It is not clear that
this approach can be extended to mimic the efFects of co-
valency. We use the origina1 EAM formulation as the
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dominant contribution to a series of partial background
electron densities. Thus, the first partial background
electron density at site i is defined by an equation of the
form

p(01 —y a(0)(R

j (wi)
(Sa)

where p," '(R, ) represents the atomic electron density of
a type-j atom at a distance R, . from site i. We generalize
this expression by defining a series of correction electron
densities that explicitly depend upon the relative posi-
tions of neighbors of atom i:

(1))2 y
'

y xa~a(1)(R )
'2

a j (wi)

(2))2 y
'

y XaXp~a(2)(R )
'2

a,p j (Ai)

a(2)(R )
'

2

j (Ai)

(p ') = y y xaxttxypa (R; )
a, p, y j (Ai)

(8b)

(8c)

(8d)

where x; =R; /R;, and R;a is the a component of the
distance vector between atoms j and i. The specific forms
for Eqs. (8b) —(8d) are chosen so that the partial back-
ground electron densities are invariant to lattice transla-

Perfect lattice fcc
hcp
bcc
Diamond

Dimer

12
12

8
4
1

0
1

3

0
32
9

1

TABLE I. Values of the geometry factors s ""for the perfect
lattice (x =0), vacancy (x =v), high index surfaces [x =(ijk}],
and stacking fault [x =(111)]and area factors A1„1for the sur-
faces and stacking fault. The lattice constant is a; .

Structure Zd S;"" S' ' S '" A /a
2

3

(
—)2 y t( I)( (ll)2

1=0
(9)

tion and rotation, scale simply with atomic electron den-

sity for homogeneous deformation, and equal zero for a
cubic lattice with a center of symmetry. It has been
shown previously that Eqs. (8b} and (Sc) are equivalent
to a three-body cos and cos dependence, respectively.
Similarly, Eq. (Sd) corresponds to a cos dependence. For
example, Eq. (8b) may be alternatively written

(p'") = g p""(R;J)p'k'"(R k ) cos(0,„),
j,k (Ai)

where 8,.k is the angle between atoms j, i, and k. In this
summation the pairwise term for j =k is included. Note
that, for generality, a different atomic electron density is
used for each component of the partial background elec-
tron density. Because of the geometric way that the den-
sities p,

'" are defined, we may consider that they are re-
lated to specific angular momentum contributions (spdf)
to the background electron density and that the associat-
ed atomic electron densities are related to averages of the
actual angular momentum dependent atomic electron
densities. It is not at all clear what the specific relation-
ships are.

We need to combine the partial background densities
to form the total density that is to be used as the argu-
ment of the embedding energy. In the spirit of density-
functional theory, this one, scalar number needs to
represent the electron density throughout all space. At
this time there is no clearcut guidance from theory on
how we should proceed. At first thought a linear super-
position of partial densities seems an obvious choice, but
because of the square root introduced by solving for p", ,
1=1 —3, a singularity is introduced into the density (and
thereby the energy) derivatives. It is possible to avoid
this singularity by combining the squares of the densities.
Thus, using the simplest dimensional analysis we form
the total background density by taking a weighted sum of
the squares of the partial background densities:

Vacancy fcc 11

bcc 7
Diamond 3

(111) surface fcc
bcc

9
4

11

11

Diamond 3

(1l.0) surface fcc

(111) sf

bcc
Diamond
fcc
Diamond

7
11

6
3

12

4

(100) surface fcc 8 8

bcc 4
Diamond 2

112
27
52
27

15
4

25
9

56
27
25
9
1

3
32
9

&3/4
v'3

&3/4
&2/2

v'2/2
v'Z/4

&3/8
&3/8

with weighting functions t ". Without loss of generality
we take t ' to be equal to unity. We may think of Eq. (9)
as a perturbative expansion of the background density
away from the linear superposition p', ':

3

p p
( 0 )

1 + 1 g t 1 1
(p

( I1 /p ( 0 1
)
2 + (9a )

1=1

The correction terms l = 1 —3 may be physically thought
of as adjustments to the spherical density due to the ex-
istence of gradients or divergences or the loss of inversion
symmetry respectively. We use Eq. (9}in the calculations
presented below, but almost identical results are obtained
if the expansion Eq. (9a) is used.

We may easily perform the sum over atoms in Eq. (8)
for simplified geometries. In this case, since all R,"=R,
the nearest-neighbor distance, the atomic density factors
out of the sum. Without loss of generality we take the
atomic electron density at the equilibrium lattice con-
stant to be unity. Using Eq. (9), the background densities
for the reference lattice p, used in Eqs. (3)—(7) and the de-
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feet background densities p", used in Eqs. (6) and (7) to
calculate simple defect energies may be written in a sim-
ple form:

3

[p~(R ) j = g t; s. l), 0(p~(l)(R ) )2

1=0
3

(
—)2 y t(l) (l),x

1=0

(10)

=Z'
E; (R ) = E;"(R)+ F; (p;'' '(R )Z'/Z; )

1

I

F;(p", '(R))
1

(12)

where Z' is the number of nearest neighbors in the struc-
ture.

Calculation of shear elastic constants requires the
second derivative of the total energy. For monatomic,
centrosymmetric structures,

The factors s "' and s ""depend only on geometry and
are given in Table I and by s,' ' =Zd. Note that, for fcc
and bcc, p; =Z,p';' '(R), but for the diamond cubic and
hcp (ideal c/a) lattices the I =3 component of the partial
electron density enters into the reference lattice back-
ground electron density. For the perfect dimer and the
vacancy in the three structures considered here, the
It=1 —3 contributions are identical. This same environ-
ment is also seen by the "second" atom at the low-density
fcc and bcc surfaces. Only the 1=0 and I =3 com-
ponents contribute to the fcc stacking fault energy which
has the same background electron density as the hcp per-
fect lattice with ideal c/a. The first-neighbor model does
not distinguish the diamond cubic stacking fault, i.e., its
energy is zero. Thus, the discrepancy in the original
MEAM for silicon of a large stacking fault energy is not
resolved here but is relegated to the consideration of
longer-range interactions whose effect is determined by
the details of the screening procedure and is not con-
sidered here. Note that the values for s,'"', 1=1,3, are
significantly larger for the free surface than the vacancy
showing the importance of the correction terms in this
case.

It is quite easy to obtain formulas for the energies of
metastable structures. For any monatomic cubic struc-
ture with a center of symmetry, we obtain the following
formula for the energy per atom:

TABLE II. Values of the derivatives of the atomic density
(p' ') and position g{R') for the two shear modes. p' ' is the
negative of the slope of p';' ' with respect to the scaled first-
neighbor distance. [See Eq. (16) below. ]

Shear
mode

Structure (
(2))2" g(R')'

fcc
bcc

4(P' ' —2)'
256 (p(2) 1 )2
81

fcc
bcc

(p(2) 6)2
256

9

more complicated for the diamond cubic structure which
also includes an internal relaxation. The shear elastic
constants are easily obtained from Eq. (13a):

BE;
y, y'= /0;, (13b)

where 0, is the atomic volume.

B. Determination of the parameters

We will now discuss the method for determining the
parameters for specific elements. In this section we give
detailed equations relating each parameter to a specific
physical quantity. The casual reader is advised to skip
this section and proceed to the applications in Sec. III.
The reader who intends to develop his own MEAM func-
tions will find this section invaluable. The formalism we
use for the solid elements is also used for the gaseous ele-
ments. In the final subsection we describe how we obtain
parameters for the gaseous elements. The resultant pa-
rameters are all given in Table III. Each subsection
below includes an estimate of the reliability and unique-
ness of the parameters.

It may seem as if there are an inordinate number of pa-
rameters for each element. In reality, for the pure solid
elements there are 11 parameters, three of which we show
below have little importance and are thus fixed at nomi-
nal values. Each of the eight remaining parameters is

directly related to a physical quantity: the sublimation

energy, the lattice constant, the bulk modulus, two shear
constants, two structural energy differences, and the va-

cancy formation energy. These eight parameters are to
be compared to the six or seven parameters used in the
current formulations of the EAM (Refs. 27 and 28) or the
seven used in the X-body formalism. '

BE,
BE

BR,"

I j (&i)
Reference structure equation of state

F.'(1)t.( ) (12( (. ))
i i

2Z. Bc
(13a)

where e is the shear mode (y or y') and the primes denote
derivatives. For convenience, without loss of generality,
we have taken the values of t,'

' and of the atomic elec-
tron densities to be unity at equilibrium. The values for
the R and p derivatives are given in Table II for the fcc
and bcc structures. The expressions are considerably E,"(R)= —E, (1+a ')e (14a)

The elements considered here have equilibrium solid
phases at room temperature of the fcc (Z, =12), bcc
(Z, =8), or diamond cubic (Z, =4) crystal structure or
are diatomic gases (Z, =1). For the solid phases our
method closely follows the procedure we have used previ-
ously. The energy of an element in the reference struc-
ture is given by a universa1 energy function:
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or

a ' =a;(R /R; —1),

a; =+98;0;/E;

a;=+K /E R.

(14b)

(14c)

(14d)

where R; is the equilibrium nearest-neighbor distance, B;
is the bulk modulus, 0; is the atomic volume of the solid
elements, and E; is the diatomic force constant for the
gaseous elements. Alternatively, we could use high-
pressure experimental data or first-principles calculations
to determine the reference structure equation of state.

In summary, we use the experimental values of the sub-
limation energy, ' nearest-neighbor distance, and bulk
modulus, or force constant to determine the reference
structure equation of state. The resultant parameters are
very well determined, coming directly from clearcut ex-
periments. Hence, the model gives excellent equilibrium
properties. Away from equilibrium the model depends
upon the universal equation of state which has been
shown to be quite reasonable for a ' & —l.

2. Embedding function

The embedding function is chosen as a simple function
of electron density:

F,(p) = A, E, p lnp, (15)

where 3, is a parameter to be determined. This logarith-
mic form has been shown previously to give the correct
coordination dependence between bond length and ener-

gy. We determine the value of A, for the solid elements

by using values of the fcc-bcc energy difference derived
from phase diagrams and Eq. (12). It should be noted
that alternatively these energy differences could be ob-
tained from ab initio local-density approximation (LDA)
calculations. Currently the results of these two methods
are somewhat in disagreement. The method of calculat-
ing the relaxed metastable energies is discussed in Sec. III
below. We will see below that, when this structural ener-

gy difference is small, the values of A; are expected to be
close to unity for the bulk elements. Examination of
Table III verifies our expectation. It turns out that, for
the fcc elements, A; is greater than unity and for the bcc
elements 3, is less than or equal to unity. For carbon we
also fit to the energy and lattice constants of graphite and
this procedure results in a significantly higher value of

We discuss below how we use experimental and
theoretical trimer information to obtain A; for the
gaseous elements.

For the bulk elements the calculated structural energy
difference is quite sensitive to the value of A;, but unfor-

TABLE III. Parameters for the MEAM. Values listed are the sublimation energy E; (eV), the equi-
librium nearest-neighbor distance R; (A), the exponential decay factor for the universal energy function
a;, the scaling factor for the embedding energy A;, the exponential decay factors for the atomic densi-
ties p', ", and the weighting factors for the atomic densities t ".

Eo A; p(0) p(1) p(2) p(3) (2)
l

g(3)
I

CU

Ag
Au
Ni
Pd
pt
Al
Pb
Rh
Ir

3.540 2.56 5.11 1.07 3.63 2.2
2.850 2.88 5.89 1.06 4.46 2.2
3.930 2.88 6.34 1.04 5.45 2.2
4.450 2.49 4.99 1.10 2.45 2.2
3.910 2.75 6.43 1.01 4.98 2.2
5.770 2.77 6.44 1.04 4.67 2.2
3.580 2.86 4.61 1.07 2.21 2.2
2.040 3.50 6.06 1.01 5.31 2.2
5.750 2.69 6.00 1.05 1.13 1.0
6.930 2.72 6.52 1.05 1.13 1.0

6.0 2.2
6.0 2.2
6.0 2.2
6.0 2.2
6.0 2.2
6.0 2.2
6.0 2.2
6.0 2.2
2.0 1.0
2.0 1.0

3.14
5.54
1.59
3.57
2.34
2.73

—1.78
2.74
2.99
1.50

2.49
2.45
1 ~ 51
1.60
1.38

—1.38
—2.21

3.06
4.61
8.10

2.95
1.29
2.61
3.70
4.48
3.29
8.01
1.20
4.80
4.80

Li
Na
K
V
Nb
Ta
Cr
Mo
W
Fe

1.650
1.130
0.941
5.300
7.470
8.089
4.100
6.810
8.660
4.290

3.04 2.97 0.87 1.43 1.0
3.72 3.64 0.90 2.31 1.0
4.63 3.90 0.92 2.69 1.0
2.63 4.83 1.00 4.11 1.0
2.86 4.79 1.00 4.37 1.0
2.86 4.90 0.99 3.71 1.0
2.50 5.12 0.94 3.22 1.0
2.73 5.85 0.99 4.48 1.0
2.74 5.63 0.98 3.98 1.0
2.48 5.07 0.89 2.94 1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.26
3.55
5.10
4.20
3.76
4.69

—0.21
3.48
3.16
3.94

0.44
0.69
0.69
4.10
3.83
3.35

12.26
9.49
8.25
4.12

—0.20
—0.20
—0.20
—1.00
—1.00
—1.50
—1.90
—2.90
—2.70
—1.50

C
Si
Ge

7.370 1.54 4.31
4.630 2.35 4.87
3.850 2.45 4.98

1.80 5.50 4.3
1.00 4.40 5.5
1.00 4.55 5.5

3.1
5.5
5.5

6.0
5.5
5.5

5.57
3.13
4.02

1.94 —0.77
4.47 —1.80
5.23 —1.60

H
N
0

2.225 0.74 2.96 2.50 2.96
4.880 1.10 5.96 1.50 4.00
2.558 1.21 6.49 1.50 6.49

3.0
4.0
6.5

3.0

6.5

0.20 —0.10
0.05 0.00
0.09 0.10

0.00
0.00
0.00
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The equations for the atomic electron densities are as-
sumed to be given by a simple exponential form:

p""(R)=e b-
l * =/3'"(R XR;0 1),—

(16a)

(16b)

where PI', 1=0—3 are parameters to be determined.
Note that, without loss of generality, we have chosen the
form so that at equilibrium each atomic electron density
is equal to unity. Banerjea and Smith have shown that
a simple exponential represents the electron density quite
well for the bulk, near vacancies and free surfaces, and
for diatomics.

To determine the values of /3';", l =0—3, we first use the
experimental shear elastic constants. From Eq. (13) we
see that the shear elastic constants for the fcc and bcc
structures depend upon only the I =0 and 1=2 atomic
electron densities. It was found that the specific values of
the exponential decay constant PI

' do not severely affect
most calculated properties, so far simplicity PI

' was
chosen to eliminate the I =2 contribution to one of the
shear elastic constants (see Table II). That is, for fcc ma-
terials, /3I ' was chosen equal to either 2 or 6 (depending
upon the experimental shear elastic constants) and for
bcc materials /3I

' was chosen equal to 1. Then for fcc
and bcc materials using Eq. (13) and Table II, PI

' is

uniquely determined by the shear elastic constants:

a, —2Z;y'0;/E;
(17a)

I

for P

(0)
l

a; —Z;yQ;/E;
for P'"=-2,

l

(17b)

a; —9Z;yQ; l8E;
for P' =1 (17c)

[Because of the lack of data for the diamond cubic and
dimer structures, we take PI"=P', '=P', ' except for car-
bon where graphite stability and geometry are used. In
the case of the diamond cubic elements, we use a numeri-
cal procedure to calculate the shear elastic constants
and vary /3I

' and PI" until we get agreement with experi-
ment. It is found that, for the values of P in Table III for
silicon, the first-neighbor relaxation to a vacancy is out-

0
ward (0.05 A) in agreement with initial first-principles
calculations ' but not more recent calculations and the
relaxation at unreconstructed low index free surfaces is

0

slightly outward (0.05—0. 1 A) in disagreement with first-
principles calculations which show a small inward re-
laxation. These relaxations do depend, although insensi-
tively, upon the values of /3 used. It is likely that varia-
tion of P';", PI ', and PI

' could improve agreement with
the first-principles calculations. The calculated relaxa-
tions at the silicon surfaces are significantly smaller than

tunately there is considerable uncertainty about the
correct structural energy. For the gaseous elements the
amount of data fit is small and the value of 3, is not well

determined.

3. Atomic electron densities

those previously reported using the MEAM. We dis-

cuss below how we use experimental and theoretical tri-
mer information to obtain PI" for the gaseous ele-

ments.
For the fcc and bcc elements we find that the relaxa-

tion near a vacancy and free surface depend upon the
values of /3';", l = l and 3. This effect is expected due to
the loss of mirror-plane symmetry. We choose a value of
P';"=P'; ' to insure that these relaxations are small
(- &0. 1 A) and into the vacancy and away from the free
surface. For these calculations we use the screening pro-
cedure described in the Appendix.

In general, the values of the PI" are not well deter-
mined because they are highly correlated and we have
chosen some of them somewhat arbitrarily. However,
the experimental elastic constants restrict their values to
a limited range. On the other hand, small variations in
the chosen values do not seem to be particularly impor-
tant in the calculations that we present below. We have
no reason to expect that this insensitivity is a general re-
sult. Choosing P';" to agree with the slope of the actual
atomic densities, as we have done previously, was not
tried here. Johnson' in his analytic first-neighbor EAM
for Cu found that an electron density decay constant of
6.0 yielded reasonable functions but could not fit both
shear elastic constants. This value should be compared
with the calculated angular momentum averaged atomic
values for the 3d' 4s' state of 6.0 and 3d 4s of 6.6. Our
values for Cu (see Table III) are 3.63, 2.2, 6.0, and 2.2 for
l =0—3 (spdf).

It is in the selection of the /3's that the functions
presented here are not optimized. Before significant use
is made of these functions, it is recommended that a more
definitive evaluation of the P s be made using either first-
principles calculations of the volume dependence of the
shear elastic constants, experimental vacancy, or surface
relaxation data, experimental higher-order elastic con-
stant data, or phonon dispersion data.

(y —2y')Z, 0,
for

2A E (/3
' 2)— (18a)

(2y' —q)Z, 'n,
r' '= for /3 '=2,

3;E (/3' ' —6)
(18b)

9y'Z, 0,
t,

' '= for bcc .
2563;E,

(18c)

For the diamond cubic elements, t ' is determined by the
numerical procedure discussed above. The values of t,

' '

are all positive except for Pt and Al and range from =0.5
for Li, Na, and K to = 10 for Cr, Mo, and W. There
seems to be a regular parabolic behavior in t,

' ' based on

4. Partial electron density weights

The final parameters are the weighting functions t,
'"

for the partial electron density used in Eq. (9). As dis-
cussed above, t,

' '=1. The values of t,
' ' for the fcc and

bcc elements are determined from the elastic shear con-
stants' using Eq. (13) and Table II:
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5. Parameters for the gaseous elements

The determination of the parameters for the diatomic
molecules is less definitive than that for the solid elements
due to the minimal amount of experimental and theoreti-
cal information that has been used. In principle, high-
quality quantum chemistry calculations could be per-
formed to definitively establish the MEAM parameters.
We have used experimental data and calculations

15

10-

row 3
row 4

~ row 5

Ik

the number of d electrons (see Fig. 1) as is seen in many
d-band properties. ' For the bulk elements, t,.' ' is deter-
mined uniquely from Eq. (7) by the experimental stacking
fault energy or structural energy difference between the
fcc and hcp phases. For the fcc elements t ' must be
greater than zero while for the bcc and diamond cubic
elements t,' ' is less than zero. Once the t,-'", l =0,2, 3, are
determined, t " is uniquely determined from Eq. (6) and

the experimental or calculated vacancy formation
energy. The values of t,"' are all positive except for Al
and Cr. It has been assumed in these calculations that
the relaxation energy is negligible. It would be a simpler
matter to include relaxation iteratively. The correction
of the I =1—3 partial densities to the dominant EAM
density scales as t "lZ; . Since the t " are usually all of
order unity, the correction scales inversely with coordina-
tion of the reference lattice squared and is small for the
fcc elements, significant for the bcc's and crucial for the
diamond cubics and dimers. This behavior correlates
well with our success in using the EAM for fcc's, our lim-
ited success with bcc's, and the necessity to use the
MEAM for diamond cubics.

The determination of t " is definitive for the cases that
depend on the elastic constants or stacking fault energies.
In the case of t ", which depends on the vacancy forma-
tion energy, the value is only as good as the experimental
data which is sometimes not well determined. Similarly,
the structural energy differences between the fcc and hcp
phases is questionable.

for trimers of various geometry to determine our parame-
ters. In Fig. 2 we present the results of fitting to the tri-
mer information. In general, we considered three trimer
geometries, the equilateral triangle, where there is no
screening, and the linear and =120 trimers, where the
two outside atoms are completely screened (see the Ap-
pendix for a discussion of screening).

For hydrogen, the first-principles calculations of Sieg-
bahn and Liu were used. These calculations predict the
linear trimer to be the lowest metastable equilibrium with
an atomic separation of 0.93 A and an energy 0.42 eV
above that of an isolated hydrogen atom and dimer. The
120' trimer and equilateral triangle are predicted to have
an equilibrium atom separations of 0.95 and 1.06 A, re-
spectively, and energies 0.29 and 2.3 eV above the linear
geometry minimum configuration. Note that the MEAM
calculations for the equilateral triangle yield an atomic
separation somewhat greater than the first-principles cal-
culations.

For nitrogen, the equilibrium trimer was fit to the
linear experimental geometry with a relative separation
R; /R; of 1.075 and an energy between —9.8 and —14.3
eV. Since so little data have been used, the density
weighting parameters for /=2, 3 were set equal to zero
for simplicity. It is necessary to have t,'"& 0 to have the
linear trimer more stable than the 120' bent trimer.

For oxygen the equilibrium geometry is a 116.8' trimer
with atom separation of 1.28 A and an energy 1.04 eV
below that of an isolated oxygen atom and dimer. The
equilateral triangle configuration has an atomic spacing
of 1.45 A and an energy 1.22 eV above the 116.8' tri-
mer. The minimum at the bent geometry is attained
not through repulsion of the outside atoms, which are
completely screened, but through a tradeoff between the
l = 1 and l =2 partial electron density contributions.

We conclude this section by presenting in Table IV the
calculated shear elastic constants, unrelaxed vacancy for-
mation energies, and stacking fault energies that result
from the MEAM using the parameters in Table III. For
all of the elements, the calculated values are almost ex-
actly equal to the experimental or theoretical input ex-
cept for the diamond cubic structure where the elastic
constants are within a few percent of the experimental in-
put. For the latter elements the predicted internal relaxa-
tion parameter is also given. For both Si and Ge we ob-
tain a value of 0.75 which is in excellent agreement with
experiment of 0.74 for Si (Ref. 50) and 0.71 for Ge. ' For
carbon a much larger value of the internal relaxation pa-
rameter is obtained; unfortunately, there is no experimen-
tal data available for comparison. As discussed above,
the stacking fault energy for the diamond cubic materials
is zero for the first-neighbor model.

-5
0 10

III. APPLICATION TO SURFACES
AND METASTABLE STRUCTURES

Number of d electrons
FIG. 1. Weighting parameter for l =2 (d electrons) t ' vs

number of d electrons. The specific row in the Periodic Table
for each element is indicated.

The surface energy is an important physical quantity
that may be readily compared with experiment. Howev-
er, it should be noted that this comparison is somewhat
complicated. Experimental surface energies depend
strongly upon impurities and must be extrapolated to 0 K



2734

5.0

2.5-

0.0

-2.5-

-5.0
0

-6-

-8-

-10-

-12
0.9

H3

12

I

1.0
I

1 ' 2
I

1 ~ 3

Relative atomomic separation

Relative atomornic separation

M. I. BASKES 46

1.4

(c)

1.0

0.9-

to be comp
Po1nted put h

ations. gn add' '
to calcu

t at perha
1tion, it ha

ergy should b
P aps surface str

' as been

e compare
s ress rather t

calculate t
P e to experimen

. an en-

the surface h l
ergy which de d

q (7l we
e surface ener

ent. Using F

ac@ground el
ePends stron l

we present l

e ectron den t ~ ~

g y uppn

o m1ssing"
t s an 1ndicat

ener-

P; Z,. ive
r e surface

on the
ron density at th

t e amount
e ectron

a 1on pf th

close-packed s
e surface. ~e

surface el
surfaces for b

e see that,

e ectrPn densit
Pt fcc and bc

The densit f
1y 1s predicted

cc, the

ies or Cr
to be the

cprrespp d'
1 and Au

e 1ghest.

Periodic
g ements in the

ower than the
n 1n e

appear l

talline ex
' g cement, in mos

energies in

erimental d 53, 54 . o t cases, with

gy ingle-crystal surf
quite good The l

close to th
ur ace is expect d

owest-

occurs fpr
y ystal»ne data. Th

reasonably
pol cr

ce tobe

or Cr and +u f
e worst a re

anomalousl l
or which w

greement

Inetals th
'

ace electron d
'

ove have
s y pw surfa

we noted ab

e high atom
n ensities. Fo

to have the
mtc density (l l l

' or the fcc

ve t e lowest ener
surface is

g~es slightl h h
rgy with the (lppl

P«dieted
and (l lp

«face energy 1 h.
ew cases the l

ener-

This effect h
g er than the (lppl

ensity (lips

Jea. For th
n calculated b S

'
energ

~ 1 9
as also been

surface e

r e bcc met,
y jth an

' gy than the clo
's Predicted to

» and Ge; l

oser-packed (lpp
ave a

experiment I
y e d calculate

) surface
e sur face en

. Both

strongl
n all

nerg1es
cases the s f

greater than

on the ex e
s«ace ener

gy used. y

perimental va
gy depends

Fu eg al. 5
y cases this ener

at1on ener-
man c

vacancy form

have used d
ergy;s npt kno

late the (l pp
density functio

own well.

surface ener
'

'ona theory to c I

than the „ l
0 erg/cm2

' "" »culat

00 erg/cm2;, o t e value calculated here

-5- 0.8-

-6.3--116.a I

I I

1.1 1.

i-0 1.2 11.4 1.6 1.8 2

1.0
-7
0.8 0 2.2

Relative atom ic separatio

gy ) for hydro gen vs relative

g ef. 37). The eu
n ca culations of H

e curve labeled "1 " i

g

"is for a bent

angle

th b t. 116
set.

68' t t bl as shown in th e in-

0.7-

0.5-

0.4-

0.3 I 'I I ' I ' I
~~ I ~ I I ~ ~I ' I ' I ' II ' I ' I ' I I ' I ' I ' I ' ~ I

oz z+og~&

Element

FIG.. 3. Relative s

low in ex surfaces.
surface elect ron densit p; Z; for three



46 MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC. . . 2735

+ A, p' 'ln(Z'/Z, )], (19)

where a * and p" ' are functions of the nearest-neighbor
distance R'. By taking the derivative of Eq. (19) with
respect to nearest-neighbor distance, we obtain an itera-
tive equation for the relaxed nearest-neighbor distance R '

of the metastable structure with Z' nearest neighbors:
—(+ ' —a )hr

P,' 'A; ln(Z'/Z;)e
Ar= (20)

Q 2
1

It should be noted that, in their paper, they quote experi-
mental values for W of 1800—5000 ergs/cm, so that the
correct surface energy is far from established. Previous
EAM calculations for the fcc elements yielded single-
crystal surface energies as much as 50% below the poly-
crystalline experimental values. It appears that the
MEAM yields surface energies that are closer in line with
what is expected for single-crystal energies.

We derived in Eq. (12) above the general expression for
the energy of an atom in a monatomic centrosymmetric
lattice with Z' nearest neighbors. For the specific equa-
tion of state [Eq. (14)] and embedding function [Eq. (15)]
chosen above we obtain

Z'Z, o

E, (R ') = [
—(1+a ')e

Z

where hr =R '/R; —1. We may obtain an estimate of the
energy of structures near the reference structure by con-
sidering the case of structures where Z'=Z. Then, using
Eqs. (19) and (20),

E;(R')=E; [
—1+(A, —1)h

+ —,'A;[1 —A;(P'; '/a;) ]b, +o(b, )], (21)

where b, =Z'/Z —1. If the reference structure (b, =0) is
to have the minimum energy, then we expect that A; = 1

and p', o'&a,. /QA;. In reality, Z' takes on discrete
values so that it is only necessary that A;=1 to assure
that the reference structure has the minimum energy.

Using the above equations, we have calculated the en-

ergy and relative change in equilibrium nearest-neighbor
distance for all of the elements considered above. The re-
sults are presented in Table VI. The hcp phase was cal-
culated assunung an ideal c/a ratio. Note that the
MEAM is able to represent the experimental structural
energies quite well. We note a potential problem with the
predicted stability of some of the bcc elements in the
simple-cubic and diamond cubic structures. Even though
the bcc structure is predicted to be the equilibrium phase,
the energies of these metastable phases are only a few
hundreths of an eV higher. Recent density-functional
calculations predict that the energy of the simple-cubic
and diamond cubic structures of 3d metals are on the or-

TABLE IV. Calculated values of the shear elastic constants
0 3

y and y' (eV/A ), the unrelaxed vacancy formation energy Ef
(eV), and the unrelaxed stacking fault energy E,f (ergs/cm').
The parameters of the MEAM were determined from these ex-
perimental quantities, when known, and agree to better than a
few percent. The values of the internal relaxation parameter g
are given in parentheses for the diamond cubic materials.

TABLE. V. Calculated values of the surface energy for low
index crystal faces compared to the experimental polycrystalline
average values (ergs/cm ). The experimental values (Refs. 53
and 54) are accurate at least to about 10% and in a number of
cases, indicated by an asterisk, have been crudely extrapolated
from the melt temperature to 0 K.

Cu
Ag
Au
Ni
Pd
pt
Al
Pb
Rh
Ir

0.47
0.29
0.26
0.78
0.45
0.48
0.17
0.093
1.21
1.68

0.15
0.10
0.091
0.31
0.18
0.30
0.14
0.023
0.72
1.07

Ef

1.14
1.02
0.90
1.46
1.40
1.30
0.67
0.58
2.70
3 ~ 50

Ef

73
20
55

125
100
110
160

9
172
203

CU

Ag
Au
Ni
Pd
Pt
Al
Pb
Rh
Ir

(110)

1651
1271
1084
2435
1659
2167

897
424

2902
2907

1409
1087
886

2036
1381
1656
618
366

2598
2835

(110)

1642
1222
1115
2384
1670
2131

969
431

2921
3058

expt

1770
1320
1540
2240
2OOO*

25OO'
1000'4
6oo*

2600
3OOO*

Li
Na
K
V
Nb
Ta
Cr
Mo

Fe

0.060
0.027
0.012
0.32
0.25
0.52
0.63
0.69
0.98
0.73

0.007
0.004
0.002
0.34
0.35
0.33
0.88
0.91
0.98
0.30

0.34
0.42
0.42
2.30
2.95
3.30
1.95
3.40
3.87
1.95

Li
Na
K
V
Nb
Ta
Cr
Mo

Fe

431
288
182

2490
2788
3292
1230
2122
2646
2289

279
202
125

1805
2018
2305
1247
1861
2247
1720

202
169
110

1705
1868
2173
1032
1930
2232
1566

520*
260*
145*

2600*
23OO*

2780*
2200*
2900*
2990
2360

C
Si
Ge

2.33(5.4)
0.48(0.75)
0.43(0.75)

1.40
0.31
0.25

7.00
4.00
4.00

C
Si
Ge

6195
1878
1658

5082
1253
1154

6224
1535
1414

1135
900
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der of eV's above the bcc structure. It should be noted
that Paxton, Methfessel, and Polatoglou significantly
overestimate the fcc-bcc energy difference of the 3d met-
als compared to the presumably more accurate phase dia-
gram results. Volume changes, however, seem to be in
agreement with these calculations. For V, both Paxton,
Methfessel, and Polatoglou and the present calculations
give the ratio of the diamond cubic to bcc atomic
volumes as 1.4.

For hydrogen the value of hr = 10 means that no meta-
stable solid structure with the indicated symmetry was
found at zero pressure. Stable structures for nitrogen and
oxygen were found to lie within a few eV's of the dimer
energy. Molecular solids were not considered. We see
that, as expected, in all cases the equilibrium nearest-
neighbor distance decreases as we go from the close-
packed structure to a lower coordination.

As mentioned above for carbon, the graphitic structure
was also fit. The resultant calculated (experimental) equi-
librium structure has an energy 5 (10) meV below that of
diamond, an in-plane nearest-neighbor distance of 0.92
(0.92) of that of diamond, and interplanar spacing of 3.3
(4.4) diamond nearest-neighbor distances. The potential-
energy surface normal to the graphite planes is quite flat

and very small parameter changes can affect the equilibri-
um geometry and energy significantly.

IV. APPLICATION TO BINARY SYSTEMS

In our previous work we applied the EAM to impuri-
ty ' and alloy systems. In that work we used the exper-
imental values of the dilute heats of solution to scale the
electron density and determined the unlike-atom pair po-
tential by assuming a geometric mean between the like-
atom potentials. In this work a different tack more in the
direction of that used by Voter and Chen, and parallel
to the method used above to obtain the monatomic pair
potential, is used. Instead of considering a dilute alloy
system, consider an equiatomic binary intermetallic alloy
system (ij ) where each i atom has only j neighbors and
vice versa. Simple examples of these systems are the B1
(NaC1 type-6 neighbors) or 82 (CsC1 type-8 neighbors)
crystal structures. For such a reference lattice which is
cubic and has a center of symmetry, the total energy per
atom ( —,

' i atom + —,
' j atom) E;~(R ) is given by

E;,"(R)= ,'[F;(Z~jp—j' '(R)IZ; )

+F (Z, p,
" '(R)/Z )+Z, P;i(R) j, (22)

TABLE VI. Calculated structural energy differences (eV) and relative changes in nearest-neighbor
distances. The energies are relative to the equilibrium phase except for hcp, where the energy is rela-
tive to the fcc structure. When two energies are listed, the first is the MEAM calculation and the
second is the energy derived from the experimental stacking fault (Ref. 43) or phase diagram informa-
tion (Ref. 35). The parameter A; has been varied to yield agreement with this latter energy.

fcc hcp
hE

bcc sc
Ar hE Ar

Diamond
hE Ar

Cu
Ag
Au
Ni
Pd
pt
Al
Pb
Rh
Ir

0.013
0.005
0.012
0.021
0.020
0.023
0.036
0.003
0.034
0.040

0.006
0.003
0.005
0.015
0.020
0.020
0.050
0.003
0.030
0.040

0.04
0.03
0.02
0.09
0.10
0.12
0.11
0.03
0.27
0.33

0.04 —0.06
0.03 —0.05
0.04 —0.05
0.07 —0.04
0.10 —0.05
0.15 —0.04
0.10 —0.04
0.02 —0.06
0.19 —0.01
0.32 —0.01

0.20
0.15
0.12
0.38
0.28
0.40
0.36
0.09
0.76
0.92

—0.09 0.75
—0.08 0.46
—0.09 0.59
—0.06 1.13
—0.08 0.95
—0.07 1.27
—0.07 1.22
—0.09 0.27
—0.02 1.70
—0.02 2.05

—0.13
—0.12
—0.14
—0.09
—0.11
—0.11
—0.10
—0.14
—0.03
—0.03

Li 001
Na 0.01
K 001
V 0.13
Nb 0.11
Ta 028
Cr 0.12
Mo 0.23
W 032
Fe 003

0.00 0.06
0.00 0.07
0.00 0.07
0.15 0.08
0.22 0.08
0.26 0.07
0.09 0.05
0.28 0.06
0.33 0.05

—0.02 0.05

—0.001
—0.000
—0.000
—0.012
—0.017
—0.027
—0.017
—0.045
—0.053
—0.013

—0.001
—0.001
—0.000
—0.060
—0.050
—0.060
—0.020
—0.050
—0.060
—0.030

0.09 —0.04
0.05 —0.04
0.04 —0.04
0.06 —0.05
0.05 —0.05
0.15 —0.04
0.15 —0.03
0.12 —0.04
0.20 —0.03
0.21 —0.03

0.29
0.16
0.12
0.12
0.01
0.03
0.36
0.02
0.28
0.48

—0.09
—0.10
—0.10
—0.11
—0.13
—0.09
—0.07
—0.08
—0.08
—0.06

C 1.11
Si 0.53
Cse 0 38

1.20 0.37 0.000 —0.030
0.51 0.23 —0.007 —0.010
0.36 0.22 —0.006 —0.030

1.37 1.14
0.48 0.47
0.36 0.34

0 27 1.33
0.14 0.58
0.13 0.44

0.18
0.08
0.08

H
N
0

2.24
3.62
2.04

10
0.63
0.57

0.000
0.000

2.24
3.29
1.86

10 2.24
0.52 3.01
0.48 1.71

10 2.24
0.45 2.54
0.41 1.43

10
0.34
0.32
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where Z;. is the number of nearest neighbors to an i or j
atom. As above, we solve for the pair potential assuming
that the equation of state is known. Then

$;J.(R ) = [2E,"(R ) F—
, (Z,.p""'(.R )/Z, . )

1J

FJ—.(Z;ip;'' '(R)/ZJ )] . (23)

As in Eq. (14), we use the universal form 0 for the in-
termetallic energy with parameters E;1=(E; +Ei )/2
—4;~, a;J=(a;+a )/2, and R; calculated from the as-
sumed equilibrium intermetallic atomic volume

0;~ =(0;+Q~ )/2. For the binaries of a solid with a gase-
ous impurity, the reference state is taken as the solid ele-
ment with interstitial impurities (no relaxation). These
obvious simplifications are not necessary but allow a sim-

ple qualitative test to the model. Alternatively we could
use experimental or calculated values for the intermetal-
lic energy if they are known. We obtain approximate cal-
culated values of the enthalpy of mixing 6; from de Boer
et al. for the solid elements and experimental values
from handbooks ' for the impurities and list these
values in Tables VII-IX. In de Boer et al. these calcu-
lated values are found to agree quite well with experiment
when available. Negative entries indicate an exothermic
heat of mixing. It turns out that some of the dilute heats
of solution for hydrogen are readily available. Thus, in

these cases, we back calculate 5; from the unrelaxed di-

lute heat of solution using the approximations discussed
below. These values are underlined in Tables VII-IX.
We choose to use a reference lattice of 82 type (Z,. =8)
for the solid-solid alloys although this choice is found to
be unimportant. We do not consider the case of mixed
gaseous elements although a similar formalism to that
used above based on a mixed dimer reference state could
be used.

As a first approximation we assume that the partial
electron density weights depend only on the embedded
atom type and not on the type of the atom contributing
the density. In addition, to facilitate calculations without
any additional parameters, we do not scale the electron
densities as we have done previously. The reader
should be cautioned that these assumptions are extreme
and that much better potentials could be obtained by
scaling the electron density. If detailed calculations are
to be performed it is recommended that experimental
heats of solution be used to scale the densities. In addi-
tion, the assumption made above about the partial elec-
tron density weights needs to be fully investigated.

We present in Table X the results of calculations of the
dilute heats of solution for the elements for which alloy
data is available in the fcc elements. In these calculations
relaxation of only the first shell of neighbors to the fcc or
bcc substitutional impurity atom has been performed.

TABLE VII. Literature values of calculated or experimental heats of formation (eV/atom) b;, for
equiatomic compounds of fcc elements with other elements. No entry indicates that data were not
available. Underlined values are derived from the dilute heats of solution.

CU Ag Au Ni Pd pt Al Pb Rh

Cu
Ag
Au
Ni 005
Pd —0.20
Pt —0.18
Al
Pb
Rh —0.04
Ir 0.00

0.23
—0.11
—0.01

0.14
0.22

0.11
0.00
0.07

0.11
0.17

0.05
0.23
0.11

0.00
—0.07
—0.48

0.02
—0.01
—0.02

—0.20
—0.11

0.00
0.00

0.03
—0.84
—0.46

0.03
0.09

—0.18
—0.01

0.07
—0.07

0.03

—0.82
—0.27
—0.02

0.01

—0.48
—0.84
—0.82

0.02
—0.46
—0.27

—0.64 —0.10
—0.60 0.05

—0.04
0.14
0.11

—0.01
0.03

—0.02
—0.64
—0.10

0.01

0.00
0.22
0.17

—0.02
0.09
0.01

—0.60
0.05
0.01

Li
Na
K
V
Nb
Ta
Cr
Mo
W
Fe

0.07
0.04
0.03
0.19
0.27
0.33
0.19

0.25
0.25
0.21
0.40
0.52
0.60
0.42

—0.29
—0.48
—0.45

0.00
0.05
0.16
0.12

0.01
0.46
0.59

—0.27
—0.45
—0.44
—0.10
—0.11
—0.05
—0.02

—0.58
—0.21
—0.12
—0.53
—0.79
—0.78
—0.22
—0.22
—0.10
—0.06

—0.47
—0.01

0.12
—0.68
—1.00
—0.98
—0.36
—0.42
—0.30
—0.19

—0.40
—0.44
—0.46
—0.30
—0.24
—0.30
—0.32

0.04
0.05
0.02
0.23
0.42
0.53
0.25

—0.20
0.28
0.42

—0.44
—0.68
—0.67
—0.20
—0.23
—0.14
—0.08

—0.13
0.41
0.58

—0.51
—0.80
—0.78
—0.27
—0.32
—0.23
—0.13

C
Si
Ge

0.21
—0.45
—0.20

0.32 0.34 —0.32
—0.57 —0.56
—0.51 —0.43

0.27
—0.44
—0.31

0.32
—0.40
—0.23

H
N
0

0.28
0.25

—0.78

0.29

—0.12

0.14 0.09
0.36

—1.20

—0.05
0.48

—0.56

0.14 0.38
0.62 —1.60 0.46 0.59

—3.50 —1.10 —0.79 —0.90
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For the case of the gaseous impurities, an interstitial
geometry is used and no relaxation is allowed. Screening
is accomplished using the procedure defined in the Ap-
pendix except for the case of the interstitial where, be-
cause of its small electron density, screening due to the
interstitial has been ignored. The direct comparison to
experiment when available is shown in Fig. 4. Even
though the trend is correct, the agreement between ex-
periment and calculation is only fair. Note that almost
all of the calculated heats are more negative than experi-
ment. This disagreement occurs because the electron
densities are not scaled; that is, every type of atom has
the same electron density at its equilibrium separation.
By varying this ratio we make the local environment of a
host atom less hostlike and thus raise the heat of solution.
Therefore, we could obtain better agreement with experi-
ment by scaling the electron densities. For example, con-
sider the five cases of Ni, Pd, and Pt in Cu, and Cu in Ni
and Pd where experimental dilute heats of solution are
available. By simply reducing the electron density of Cu
(relative to Ni, Pd, and Pt) by a factor of 2 and using the
relaxation energies obtained above, the heats of solution
(eV) are calculated to be 0.09(0.03), —0.28( —0.44),
—0.63(—0.53), 0.15(0.11), and —0.50( —0.39) where the
experimental values are given in parentheses. This agree-
ment is excellent. In the cases where the relaxation is
large we have chosen not to report the dilute heats of

solution as the relaxation procedure used here was
deemed insufficient to yield a close approximation to the
fully relaxed value. In the remaining substitutional cases
the relaxation is accurate to better than =0. 1 eV. It is
easily shown that, for the simplifying assumptions above,
to a good approximation the dilute heat of solution for
the interstitials is given by 2A, . The value calculated for
substitutional carbon in solution appear quite large cer-
tainly to some extent because relaxation has not been in-
cluded and more importantly because the interstitial
geometry is the equilibrium state. Similarly, the solution
energies for silicon and germanium in nickel are large.

From elasticity theory, the relaxation energy is expect-
ed to depend upon the relative difference in volume of the
host and impurity. In Fig. 5 we show this dependence.
Here we have plotted the relaxation energy, normalized
by the host bulk modulus times atomic volume, versus
the relative volume difference squared. Elasticity theory
predicts that, if the volume contribution to the relaxation
energy were dominant, the points would lie on a straight
line. Even though some linear dependence may be seen
for specific hosts, clearly there are important chemical
effects in addition to the volume effect.

V. SUMMARY

The following outline summarizes the main contribu-
tions of this manuscript.

TABLE VIII. Literature values of calculated or experimental heats of formation (eV/atom) 4;, for
equiatomic compounds of bcc elements with other elements. No energy indicates that data were not
available. Underlined values are derived from the dilute heats of solution.

Li Na V Nb Ta Cr Fe

Cu
Ag
Au
Ni 0.01 0.46 0.59
Pd —0.58 —0.21 —0.12
Pt —0.47 —0.01 0.12
Al
Pb
Rh —0.20 0.28 0.42
Ir —0.13 0.41 0.58

0.07
0.25

—0.29
—0.27
—0.53
—0.68
—0.40

0.04
—0.44
—0.51

0.04
0.25

—0.48
—0.45
—0.79
—1.00
—0.44

0.05
—0.68
—0.80

0.03
0.21

—0.45
—0.44
—0.78
—0.98
—0.46

0.02
—0.67
—0.78

0.19
0.40
0.00

—0.10
—0.22
—0.36
—0.30

0.23
—0.20
—0.27

0.27
0.52
0.05

—0.11
—0.22
—0.42
—0.24

0.42
—0.23
—0.32

0.33
0.60
0.16

—0.05
—0.10
—0.30
—0.20

0.53
—0.14
—0.23

0.19
0.42
0.12

—0.02
—0.06
—0.19
—0.32

0.25
—0.08
—0.13

Li
Na
K
V
Nb
Ta
Cr
Mo
W
Fe

0.55
0.75
0.71
0.51
0.71
0.73
0.38

1.04
1.35
1.30
1.01
1.35
1.41
0.89

1.27
1.69
1.64
1.19
1.63
1.69
1.06

0.55
1.04
1.27

—0.02
—0.02
—0.03

0.00
—0.01
—0.11

0.75
1.35
1.69

—0.02

0.00
—0.11
—0.09
—0.13
—0.23

0.71
1.30
1.64

—0.02
0.00

—0.10
—0.07
—0.11
—0.22

0.51
1.01
1.19

—0.03
—0.11
—0.10

0.01
0.01

—0.02

0.71
1.35
1.63
0.00

—0.09
—0.07

0.01

0.00
—0.03

0.73
1.41
1.69

—0.01
—0.13
—0.11

0.01
0.00

0.00

0.38
0.89
1.06

—0.11
—0.23
—0.22
—0.02
—0.03

0.00

C
Si
Ge

—0.50 —0.70
—0.47 —0.52
—0.33 —0.42

—0.70
—0.44
—0.44

—0.23
—0.27
—0.13

—0.18
—0.49
—0.07

—0.19
—0.23

0.01

0.08
—0.39
—0.09

H
N
0

—0.47
—0.67
—1.60

—0.30 —0.33

—1.30 —1 ~ 13

—0. 15
—1.10
—2.15

—0. 16
—1.15
—2.10

—0. 17
—1.25
—3.59

0.25
—0.60
—2.35

0.27
—0.26
—2.21

0.11
—0.15
—2.21

0.15
—0.03
—1.30
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(I) The modified embedded-atom method has been ex-
tended and successfully applied to a large number of ele-
ments encompassing various bonding characteristics. It
is found that this simple model can describe the elastic
behavior and simple defect properties of these diverse
materials.

(2) In this comprehensive study, bulk structural and
surface properties have been calculated and compared to
experiment and higher level calculations. The surface
properties are in reasonable agreement with experiment
while the energetics of the bcc metals in open structures
is in contradiction with LDA calculations.

(3) An empirical approximation for the background
electron density has been developed which includes s-, p-,
d-, and f-type angular contributions.

(4) A detailed description of the method of parameter
determination has been given and the uniqueness and sen-
sitivity of these parameters to the input data has been ad-
dressed. It is stressed that the functions presented here
are an attempt at using the model which has not been
completely optimized.

(5) It has been found that, in contrast to previous
methods, it is sufficient to consider only first-nearest
neighbors even in the case of hcp or bcc structures. En-
ergy differences such as the fcc (but not diamond cubic)
stacking fault occur naturally from the angular depen-

Si H 0
Cu
Ag
Au
Ni
Pd
Pt
Al
Pb
Rh
Ir

0.21
0.32
0.34

—0.32

—0.10
—0.37
—1.06

—0.45 —0.20
—0.57 —0.51 —0.20
—0.56 —0.43

0.27 —0.44 —0.31
0.32 —0.40 —0.23

0.25

0.36
0.48
0.62

—1.60

0.46
0.59

—0.78
—0.12

—0.12
0.00

—3.50
—1.10
—0.79
—0.90

TABLE IX. Literature values of calculated or experimental
heats of formation {eV/atom) 5;,. for equiatomic compounds of
diamond cubic and gaseous elements with other elements. No
entry indicates that data were not available.

D-

-2
-2

Experiment (eV)

FIG. 4. Calculated vs experimental (Ref. 60) dilute heats of
solution (eV) for substitutional solutes in fcc hosts.

dence rather than from long-range interactions.
(6) An enviromnentally dependent, physically intuitive,

screening procedure has been developed. The results of
this manuscript are insensitive to the details of the
screening procedure.

(7) The formalism of applying the MEAM to alloy sys-
tems has been developed and applied to the calculation of
dilute heats of solution. A number of severe approxima-
tions have been made in these calculations and it is
inadvisable to use the alloy potentials until they are fully
optimized. Clearly more work needs to be done in this
area.
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FIG. 5. Scaled relaxation energy vs the square of the relative
volume difference for substitutional solutes in fcc hosts.
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TABLE X. Calculated dilute heats of solution (eV) for elements in fcc materials. The impurity is
substitutional (first-neighbor relaxation included for fcc and bcc but not for diamond cubic impurities)
for the solid elements and interstitial (unrelaxed) for the gaseous elements. The second entry, when
present, is the experimental value (Ref. 60). Underlined values are taken from experiment (Ref. 59).

Host
Cu Au Ni Pd pt A1 Pb Rh

CU

Ag

Au

Ni

Pd

pt

Al

—0.20
0.03

—0.86
—0.44
—0.94
—0.53

Pb
R}1 —0.74
Ir —0.73

0.81

—0.76
—0.29
—0.44

0.35
0.55

0.39
0.22

—0.56
—0.36
—0.36

0.24
0.38

—0.12
0.11
1.20

0.62
0.28

0.04

—0.28
—0.28
—1 ~ 13
—1.65

2.10
—0.55
—0.68

—1.01
—0.39
—0.63
—0.11
—0.39
—0.20
—0.11
—0.09

—1.21

—0.34

—0.17

—0.50

0.53

—0.51

—0.14
—0.35
—0.26

—1.46
—0.50
—0.49

—2.98 —2.97

—0.72 —0.64

0.53 0.78

0.37 0.57

1.01 —0.35 —0.25

—2.99 —0.31 —0.54 —0.52

—2.14 —2.07

—2.14
—2.09

1.05
1.71

4.79

—0.72

9.42
—0.61

—1.64
—1.74
—3.06 —1.26 —0.34 —0.26

Li
Na
K
V
Nb
Ta
Cr
Mo
W
Fe

0.51
0.80
0.73
0.56
1.25
1.45
0.46

1.03
1 ~ 17
1.09
1.32
1.99
2.44
1.36

—0.72
—1.17
—1.05

0.04
0.44
0.97
0.37
0.21

0.85
5.89

—0.25
—0.06
—0.06
—0.23

0.52
0.76

—0.12

—1.78
2.56

—1.44
—2.04
—2.03
—0.66
—0.39

0.08
—0.24

—1.47
3.67

—2.11
—2.65
—2.62
—1.33
—1.11
—0.59
—0.86

—1.09
—0.79
—0.81
—0.98
—0.35
—0.01
—1.07
—1.65

1.12
1.48
1.71
1.41
2.64
3.57
1.49

—0.28
5.74

—1.24
—1.14
—1.14
—0.89
—0.27

0.14
—0.60

—0.11
7.26

—1.62
—1.57
—1.56
—1.23
—0.67
—0.24
—0.85

C
Si
Ge

—0.05
1.49
3.94

5.79 4.09
0.43 —0.53
0.74 0.21

3.36 4.45
0.96
1.76

4.39
0.69
1.67

H
N
0

0.57
0.50

—1.55

0.59

—0.23

0.29 0. 17 —0. 10
0.72 0.96

—2.40 —1.12

0.28 0.77
1.24 —3.20 0.92 1.18

—7.00 —2.20 —1.58 —1.80

APPENDIX

It is appropriate at this point to justify to some extent
the physical reasons that interactions of other than first-
nearest neighbors may be ignored. It would seem clear
that, for the fcc structure where the ratio of second- to
first-neighbor distances is 1.4, the exponential decay of
electron density can make the second-neighbor contribu-
tion to the energy (and elastic constants) small. In fact,
this assumption is frequently used in both pair potential
and many-body calculations. However, in practice, this
natural decay is not rapid enough and the potentials must
be artificially terminated to eliminate second-neighbor in-
teractions. The situation in bcc materials is even more
ambiguous where the ratio of second- to first-neighbor
distances is 1.15. A11 calculations of bcc materials to data
have used at least second-nearest-neighbor interactions.
The reality fortunately seems to be that the interaction

between atoms depends upon more than distance. Fu
et al. ' have recently shown in density-functional calcula-
tions that, at a (100) surface in (bcc) W, the large amount
of local screening rnanifests itself in the fact that only in-
teractions between adjacent layers are important in deter-
mining atomic relaxation. That is, the second-nearest
neighbors do not play a part even in the bcc structure.
This surprising result gives some support to the pro-
cedure we have used here in ignoring all but first-
neighbor interactions.

Since we have chosen to consider only first-neighbor
interactions, it is necessary to provide a cutoff or screen-
ing procedure that defines what a nearest neighbor is.
This procedure must be continuous in the energy and its
first two derivatives to insure that, e.g. , spurious minima
do not appear in the potential-energy surface or energy is
not conserved in a molecular-dynamics calculation due to
force discontinuities. It is also desirable that this pro-
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FIG. 6. Schematic of screening of atom k and atom i by atom

j. Complete screening occurs if atom k lies within the 60' angle

ZAiB. No screening occurs if angle Ijik )60'.
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where

0, 8~m/6,
2 —1)As (R,k /RtS;k= e

j., 0 ~ m. /3,
w/6 & 0& w/3, (A2)

and s =sin(n. /3 —8)/sin(8 —m. /6), 8=djik. This ratio s is
equal to the ratio of the distances from atom k to iC and

cedure be computationally simple so as not to dominate
the energy calculations. Two basic schemes are typically
used to limit the range of interactions. In the first
method all distance-dependent functions are smoothly
forced to zero at a predetermined (cutoff) distance. This
method may be implemented by multiplying the function
in question by a "cutoff function" that smoothly goes
from the unity to zero as a function of increasing dis-
tance ' or by modifying the function in question by at-
taching a piecewise continuous "tail" near the end of
range. This method considers atoms only pairwise. A
second scheme has been implemented by a number of au-
thors. ' This method imposes "screening" between an
atom and its neighbors by reducing the interaction of any
atoms that are not nearest neighbors.

We propose here a "screening" method that takes into
account the actual geometry of the atoms under con-
sideration. In Fig. 6, we consider the screening between
atoms i and k by atom j. By considering atoms i and j as
nearest neighbors with touching atomic spheres, it is easi-
ly seen that if atom k lies within the screened cone denot-
ed by angle AiB, it may be considered as completely
screened from atom i. Similarly if Zjik &2ZSik=60'
atom k may be considered as completely unscreened by
atom j. For 30'&Zjik & 60', atom k is partially screened
and the amount of screening depends upon the distances
between the atoms as well as the angle. Thus, we can
define a screening function S,k.

0.0
60

I

65 70 75

Angle (deg)

FIG. 7. Screening factor for atoms i and k vs apex angle co in
an isosceles triangle geometry, ij =jk.

iB. It is chosen to make S; k and its first two derivatives
continuous. The atom indices for each triad are defined
by the condition Rjk & R,j and Rlk ~ R,j

The specific form for S; k is chosen so that, for close-
packed structures, the second derivative of the energy
with respect to small vibrational motion of the first neigh-
bors is unaffected. It is certainly not unique. If the con-
stant A is set equal to 500, the contributions from second
neighbors are small enough so that the calculated
cohesive energy and elastic constants of the bcc structure
are essentially the same as when only nearest neighbors
are considered.

As an example in Fig. 7, we show the screening factor
for atoms i and k in an isosceles triangle with apex angle
co. Note that the screening rapidly increases as co in-
creases from an equilateral triangle. The base angle used
above in Eq. (A2) 8=(~ co)/2. —

Since the screening is caused by the existence of the
electron density of an atom, it should also depend upon
the electron density of atom j. A simple possibility (not
implemented here) is to multiply the exponent in Eq. (A2)
by p" '(R; ) and p" '(R k). .

The choice of the above screening procedure means
that atoms in planar-type structures, e.g., hcp or graph-
ite, naturally interact with more distant out-of-plane
atoms even if in-plane atoms are much nearer. Similarly,
atoms approaching a free surface will interact with the
surface atoms even at distances much greater than the
in-plane nearest-neighbor distance. The interactions in
these cases are governed by the falloff in electron density
rather than by an arbitrary cutoff distance.
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