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The longitudinal acoustic anomaly along the a axis of the crystal [N(CHj;),],ZnCl, has been investigat-
ed near the normal-incommensurate (N-IC) phase transition temperature by impulsive stimulated
scattering, for acoustic frequencies in the range of 350 MHz to 4 GHz. Considerable dispersion is seen
over this frequency range. The major contribution to the anomaly below the N-IC transition is due to
coupling to the amplitude mode, whose wave-vector-independent relaxation time 7 diverges as the transi-
tion temperature 7T; is approached with the temperature dependence given by 7=7,T;/(T;—T), with
70=~0.6 ps. We find no evidence for the coupling of the acoustic mode to the phase mode. The critical
exponents that describe the order-parameter behavior have values consistent with mean-field theory.
Critical-exponent values for other universality classes, particularly for the three-dimensional Ising model
are found to be inconsistent with the data. The acoustic anomaly above T; can be accounted for by the
coupling of the longitudinal acoustic mode to energy-density fluctuations associated with the soft mode.
A possible explanation for suppression of critical behavior in the acoustic anomaly near the N-IC transi-
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tion is given.

I. INTRODUCTION

In recent years much attention has been focused on the
class of compounds which undergo a phase transition
(upon cooling) from a high-temperature normal () or
“disordered” phase to an incommensurate (IC) phase at a
temperature 7, in which the crystal has acquired a spa-
tial modulation along one or more of the crystallographic
axes which is not a rational fraction of the N-phase lattice
spacing. At some lower temperature T,, another phase
transition usually occurs and the additional modulation
becomes commensurate with (“locks into”) the lattice
periodicity. Tetramethylammonium tetrachlorozincate
([N(CH;)4],ZnCl, or TMATC-Zn) belongs to a large
family of 4,MX, compounds that all exhibit IC phases.'
In the high-temperature N phase, the crystal is ortho-
rhombic (axis convention ¢ <a <b), belonging to the
space group D¢ (Pman). The N-IC transition in
TMATC-Zn occurs at T;~298 K, and the transition to a
ferroelectric commensurate (C) phase occurs at 7,~281
K. There is an additional transition at T,~277 K from
the ferroelectric phase to a ferroelastic phase.

The prototype (displacive) N-IC transition for this fam-
ily of crystals behaves as follows. Approaching the N-IC
phase transition from above, there are two degenerate
soft phonons with opposite wave vectors whose absolute
values are irrational in units of the reciprocal-lattice vec-
tors of the N phase. The origin of the instability that
gives rise to these soft modes is competition between vari-
ous short-range forces in the crystal. Below T; the two
soft phonons transform into two new modes, an ampli-
tude and phase modes. The amplitude mode behaves for
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T — T; like the soft-phonon mode above T;, while the fre-
quency of the phase mode behaves like that of an acoustic
phonon (@ proportional to g), although the attenuation of
this mode resembles that of an optic mode. In the case of
TMATC-Zn, however, an order-disorder rather than
displacive transition is believed to occur. Evidence for
this comes from inelastic neutron scattering’ and also
from the failure to observe an underdamped amplitude
mode in the IC phase using Raman-scattering tech-
niques. >

The dynamics of the N-IC phase transition in
TMATC-Zn have been investigated previously by prob-
ing acoustic anomalies with both ultrasonic techniques*®
and Brillouin scattering.®’ The acoustic strain S is cou-
pled to the order parameter Q of the transition to lowest
order by terms of the form SQ? in the free energy, as bi-
linear terms are symmetry forbidden. Although the
acoustic anomalies are weak, they exhibit pronounced
dispersion. In particular, the anomaly in the C,; elastic
constant measured at ultrasonic frequencies (10-70
MHz) appears to be quite sharp, but measured at
Brillouin-scattering frequencies (10 GHz) it is almost
completely smoothed out. This indicates that relaxation
of the order parameter (i.e., soft mode), which couples to
the acoustic phonon, occurs on an intermediate time
scale (100 ps to 10 ns) near T;. This behavior is found for
some other crystals in the A,MX, family such as
Rb,ZnCl,, but not for others such as K,SeO,, which ex-
hibits very little dispersion in this frequency range. '

In this investigation the longitudinal-acoustic modes
propagating along the a axis (the axis of the IC modula-
tion) of TMATC-Zn at frequencies between 350 MHz
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and 4 GHz are characterized through impulsive stimulat-
ed scattering (ISS). These frequencies fall ‘between the
ranges investigated by ultrasonics and Brillouin-
scattering techniques. The goal is to elucidate the static
and dynamical critical behavior and, if possible, to ex-
tract information about the phase-mode as well as the
amplitude-mode behavior in the IC phase. ISS has been
used previously to investigate structural phase transi-
tions, which give rise to acoustic anomalies at these fre-
quencies in other compounds,®~'° none of which exhibit
incommensurate phases.

II. EXPERIMENTAL DETAILS

Impulsive stimulated scattering is a time-domain
coherent spectroscopy that has been described in detail. !
On femtosecond-to-microsecond or longer times scales,
the technique permits optical generation and observation
of phase-coherent material excitations whose time-
dependent responses are recorded. The technique is illus-
trated in Fig. 1. Two ultrashort laser pulses are tem-
porally and spatially overlapped in a sample, with an an-
gle 0 between them. These pulses form an optical in-
terference pattern with spacing A given by

A= r ()

g 2sin(6/2)

where A and 0 are, respectively, the wavelength of and
angle between the excitation pulses inside the sample and
g is the magnitude of the scattering (grating) wave vector.
When the two pulses are incident on the front surface of
the sample (as in the present experiment), factors of the
refractive index cancel in Eq. (1) and the excitation wave-
length and angle in air can be used to calculate q. The
crossed pulses produce coherent acoustic phonons of
wave vector g through excitation mechanisms described
in the following section.

The response induced by the excitation pulses is moni-
tored using a third variably delayed probe pulse incident
at the phase-matching angle for coherent scattering.
Measurement of the scattered intensity as a function of
time delay between the excitation and probe pulses per-
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FIG. 1. Impulsive-stimulated-scattering (ISS) technique.
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mits determination of the temporal profile of the material
excitations. Assuming that the temporal response of the
induced excitation is slow compared with the pulse dura-
tion, the ISS intensity I(q,t) is given by

I(q,t)«<|G*(q,1)|?, @)

where G(q,t) is the Green’s-function response of the
dielectric constant due to the mode or modes which are
coherently excited. The projection of the tensor quantity
€ or G* selected by the light polarizations is assumed in
Eq. (2). Specific forms for a variety of modes have been
discussed previously,!! and forms for the acoustic pho-
nons probed in this experiment will be discussed below.

The experiments were conducted using a system con-
sisting of two Nd:YAG lasers, 12 which produce variably
delayed excitation and probe pulses of 100 ps duration, at
a repetition rate of 600 Hz. The excitation laser is Q
switched, mode locked, and cavity dumped to produce a
single 1.064-um pulse with approximately 1 mJ of energy.
The probe laser is Q switched and mode locked, and one
pulse in its output pulse train is selected electro-optically
and frequency doubled to provide a 532-nm probe pulse.
The timing between the excitation and probe pulses is
controlled electronically by shifting the phase of a com-
mon mode-locker rf source to the probe laser and by elec-
tronically delaying the timing of the Q switches and
single-pulse selector. This system offers several advan-
tages over experimental systems in which the time delay
is accomplished via a mechanical delay line. First, the
time delay between excitation and probe pulses is no
longer limited to the length of the mechanical delay line.
Data can be recorded with delays up to 100 us, which
would correspond to a spatial delay of 33 km. This is im-
portant for measurement of low acoustic frequencies and
attenuation rates. Second, changes in the probe-beam po-
sition and spot size at the sample due to delay line
misalignment and beam divergence are -eliminated.
Third, increased energy is available for the excitation and
probe pulses through the use of cavity dumping (for the
excitation pulse) and two separate lasers. This is particu-
larly important for observing modes with weak-scattering
Cross sections.

All of the experiments were carried out with the excita-
tion and probe pulses and the signal polarized vertically
relative to the scattering plane (VVVV) and with the
wave vector g aligned along the a axis. Under these con-
ditions longitudinal-acoustic (LA) modes aligned along
the a axis (corresponding to the C,, elastic constant) were
excited and probed. The experiments were carried out
using scattering angles (in air) of 6.80°, 18.73°, 40.08°, and
88.33°. The excitation pulses were focused cylindrically
to sizes of 2.5 mm (in the wave-vector direction) XO0.1
mm. The large spot size minimizes uncertainty in g,
which is important for measurement of weak acoustic at-
tenuation rates, as has been discussed.!! The pulse ener-
gies were kept below 200 uJ to avoid optical damage of
the crystal. Data were recorded with sample tempera-
tures between 320 and 250 K, always on cooling. The
average cooling rates during the experiment were be-
tween 0.15 and 0.1 K per minute for temperatures less
than 275 K and greater than 300 K, between 0.003 and
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0.01 K per minute near T; and in the IC phase above 290
K, and between 0.01 and 0.03 K per minute between 290
and 275 K. There was no detectable dependence of any
of the data features on the cooling rate. Particular care
was exercised in this regard because of the possible pres-
ence of domains in the IC phase, which can lead to
artificially high acoustic attenuation rates.

The crystal was mounted in a vacuum chamber in con-
tact with the cold finger of a closed-cycle helium refri-
gerator and a heater block, which was used to control the
sample temperature. The temperature was recorded us-
ing a thermistor, which was in contact with the sample.
The relative precision of the temperatures recorded in
this experiment (the relative error between nominally
identical temperatures recorded at different scattering
wave vectors) is £0.1 K, as a result of the existence of
temperature gradients in the sample. The absolute accu-
racy of the temperatures reported is 1 K.

Large (~6X6X6 mm?®) single crystals of TMATC-Zn
were obtained by slow evaporation of a saturated solution
at 40°C. The crystals used in these experiments were
colorless, transparent, and free from visible defects except
for several visible cleavage planes in the ab plane, which
were caused by mechanical and thermal shocks which oc-
curred during transportation from Paris, where the crys-
tals were grown, to MIT. All laser beams were incident
on the ab face of the crystal for the three lowest scatter-
ing angles and the ac face for the highest scattering angle.
This was a consequence of the surface quality of the two
different samples used at the different angles and has no
effect on the measurement of the LA-phonon modes mea-
sured in the a direction.

II1. ISS EXCITATION MECHANISMS

There are two distinct mechanisms through which the
parallel-polarized excitation pulses can interact with the
same to excite longitudinal-acoustic phonons. First, they
can drive acoustic phonons directly through impulsive
stimulated Brillouin scattering (ISBS). The equation of
motion for acoustic waves in the crystal driven by this
process is

d%u, c u; 1 3
o2 ]%, ijkl 0x ;0 2 87

p

where p is the density, u; is the local displacement in the
ith direction, C;j; is the elastic constant tensor, E; is the
electric-field component in the ith direction, and
Kijx =O€;; /38y, where €;; is the dielectric tensor and S;
is the acoustic strain given by

du; OJu;

—L 4
dx;  dx; @

1
SU:E

The scattering geometry, pulse polarizations, and pulse
durations chosen for this experiment limit the modes
which are excited to longitudinal-acoustic phonons prop-
agating along the a axis. For this case, Eq. (3) simplifies
to
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2t =——kE?, 5

P ar dx? 8r  Ox ©)

where all of the tensor subscripts have been dropped and
uy, Cyy» Kpyp> and EX(x,t)~[1+cos(gx)]8(¢), are as-
sumed.

The solution to this wave equation yields

S(q,t)x6(gtqy)G(q,t), (6)

where g, the excitation wave vector, is assumed to lie
along the a axis and S=S,; is the longitudinal strain
along this axis. The Green’s function response is

G(q,t)oc%e*wsin(wt) , (7)

where w and y are the acoustic frequency and attenua-
tion rate, respectively, and v =w/q is the acoustic veloci-
ty.

The second mechanism through which the 1.06-um ex-
citation pulses can excite longitudinal-acoustic phonons
is by depositing heat into the sample through weakly al-
lowed absorption into C-H vibrational overtones. This
leads to thermal expansion, which causes both a steady-
state thermal grating and a transient longitudinal-
acoustic response. We refer to this process as impulsive
stimulated thermal scattering (ISTS); other names have
been used previously.'* In this case the acoustic strain is
given by

S(q,t)=8(gtqy)e T'—e "cos(wt)]
~8(qtgy)[1—e "cos(wt)], (8)

where the thermal diffusion rate I' is negligibly slow on
our experimental time scale.

The total dielectric response to impulsive stimulated
Brillouin and thermal scattering is the sum of the
Green’s-function responses defined in Egs. (7) and (8):

G*(q,t)= Ae "'sin(wt)+B[1—e "'cos(wt)] , 9)

where 4 and B reflect the relative amplitudes of the
responses to ISBS and ISTS, respectively. The ISBS am-
plitude A is proportional to ¢ [Eq. (7)], while the ISTS
coefficient B is independent of g. Therefore the signal
[given by Eq. (2)] at large scattering angles is dominated
by ISBS and shows oscillations at 2w, while the signal at
small scattering angles is dominated by ISTS and shows
oscillations at the fundamental frequency w.

This treatment can be generalized by regarding the
elastic constant C, not as a real number, but as a complex
frequency-dependent inverse response function'® defined
by

olw)=C(w)S(w) , (10)

where 0 =0, is the longitudinal stress along the a axis.
This response function can be separated into real and
imaginary parts:

Clw)=Cy—AC(w)=(Cy—C")+iC" , (11)

where C, is a real frequency-independent background
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term and AC(w) is composed of the real and imaginary
parts C’' and C”, respectively. In the analysis which fol-
lows, experimentally determined values of the acoustic
frequency w and attenuation rate ¥ which enter into Eq.
(9) are expressed in terms of the real and imaginary parts
of the elastic response function C(w) through the rela-
tions

co—c |2
0=q = , (12)
P
yalll
Y 20p (13)
IV. RESULTS

A. Data features

Data taken at a scattering angle 6=18.73° (scattering
wavelength A=3.269 um) are shown in Fig. 2 for crystal
temperatures of 320 and 297 K. The data (solid curves)
show oscillations at both the fundamental acoustic fre-
quency @ and 2w, indicating that both ISBS and ISTS
mechanisms are active. Fits to the data (dashed curves)
based on Eq. (9) are also shown, and the frequency
v=w/27 and attenuation rate y obtained from the fits
are shown for both temperatures. At 320 K the crystal is
in the high-temperature orthorhombic (normal) phase,
and the attenuation rate is quite small, but measurable.
Note that the corresponding Brillouin linewidth y /27 of
0.9 MHz would be extremely difficult to measure by con-
ventional methods. AT 297 K, which is slightly below
the normal-incommensurate phase-transition tempera-
ture, the attenuation rate has increased by approximately
an order of magnitude, but the acoustic velocity has fal-
len by less than 1%. The complete temperature depen-
dence of the acoustic parameters throughout the temper-
ature range covered in this experiment is presented in
Sec. IV B below.

There are also exists the possibility that other light-
scattering active relaxational modes, in particular the

T=320K v=877MHz
y=59ps’!
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H
E
'é I
8 & T T T T T T T —
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171 y=64ps!
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FIG. 2. ISS data taken with a scattering angle of 18° 44’
(A=3.269 pum) at two sample temperatures. Solid lines are
data, and dashed lines are fits to the data. Note the change in
time scales between the scans.
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phase mode, contribute to the data scans, but are
effectively masked by the steady-state thermal grating.
This can be ruled out through the wave-vector depen-
dence of the relative intensity of the acoustic modes pro-
duced by the ISBS and ISTS mechanisms, which is illus-
trated in Fig. 3 for the three lowest angles used in this ex-
periment. The ratio of the coefficients 4 and B defined in
Eq. (9) is plotted as a function of g for the sample at
T=300 K. Because of limitations in time resolution and
the extremely high acoustic frequency at the highest
wave vector (corresponding to a scattering angle
6=288.33°), A /B could not be determined reliably at this
wave vector. The points fall on a straight line, which ex-
trapolates to a value quite close to 4/B=0 at ¢=0.
Any contributions to the signal from relaxational modes
such as a phase mode (whose intensity should also be
wave-vector dependent) would heterodyne with the
acoustic signal and cause deviations from this linear rela-
tionship. Simulations indicate that signal from a phase
mode with an intensity greater than 5% of the acoustic-
mode intensity should be observable given the signal-to-
noise ratio of the data. The linear relationship is obeyed
over the entire temperature range covered by the experi-
ment, indicating no additional contributions above this
level to the signal.

B. Acoustic anomalies

The temperature-dependent velocity v =w/q and at-
tenuation rate ¥ of longitudinal acoustic phonons propa-
gating along the a axis with wavelength A=3.269 um are

o
< o8-
0.6
0.4

0.2

0 05 1 15 2 25 3 35 4 45
Wave vector (um’')

FIG. 3. Ratio of the amplitudes of the two acoustic-mode ex-
citation mechanisms plotted vs acoustic wave vector. The
points are described by a straight line.
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shown in Fig. 4. The temperature range shown encom-
passes the N-IC phase transition at T;~298 K, the IC-C
(ferroelectric) transition at 7,=~281 K, and the
ferroelectric-to-ferroelastic transition at 7,=<277 K.
These transitions, particularly the N-IC and the
ferroelectric-to-ferroelastic transitions, are reflected in
the anomalous acoustic behavior near them.

Figure 4 indicates that as the temperature is lowered
from 320 K to T; the attenuation rate increases from a
temperature-independent background value, peaking
slightly below T; at 297 K. Upon further cooling the at-
tenuation rate decreases, undergoing a slight increase
again near the lock-in temperature 7;. A narrow peak in
the attenuation rate, which has been suggested in previ-
ous ultrasonic data,’ occurs at T,. Anomalous behavior
in the acoustic velocity is also evident. The velocity in-
creases gradually upon cooling until 305 K, at which
point it begins to decrease gradually. This decrease be-
comes quite steep between 298 and 295 K, below which
the velocity begins to increase again. It undergoes an
abrupt increase at the first-order transition at T,, as has
been observed previously. >

As expected from previous Brillouin-scattering and ul-
trasonics results, the acoustic anomaly near 7, exhibits a
strong dependence on the scattering wave vector ¢. This
is illustrated in Fig. 5, which shows the acoustic attenua-
tion rate scaled by the wave vector squared and the
acoustic velocity over the range of scattering wavelengths
investigated. The scattering wavelengths shown in Fig. 5
were corrected for small uncertainties in the values deter-
mined from Eq. (1) by assuming no dispersion in the ve-
locity at 320 K and by assuming that the velocity deter-
mined at 6=18.73° is the true velocity. These wave-
lengths will be used for all subsequent data analysis. The
attenuation rate at the largest wavelength could not be
accurately determined because of noise in the data from
parasitically scattered light, nor could the velocity be
determined accurately at the smallest scattering wave-
length because of small nonlinearities in the experimental
time base, which are due to nonlinearities in the phase
shifter described in the experimental section above.
From Fig. 5(a) it can be seen that as the wave vector in-
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FIG. 4. Acoustic attenuation rate (solid circles) and velocity
(open circles) shown as a function of temperature for A=3.269
pm. The phases of the crystal are separated by dashed lines.
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creases, the peak in the attenuation rate becomes consid-
erably broader and shifts to lower temperatures. At the
same time, the sharp drop in the acoustic velocity [Fig.
5(b)] becomes more gradual with increasing wave vector.
These trends reflect the fact that in the hypersonic fre-
quency range (300 MHz to 4 GHz) the condition w7 <<1
is not fulfilled near the N-IC transition as it is at ultrason-
ic frequencies.

V. ANALYSIS OF ACOUSTIC ANOMALY NEAR T;

In order to use the measured acoustic anomalies to
quantitatively characterize the dynamics of the N-IC
phase transition, it is necessary to relate the real and
imaginary parts of the response function C [Egs.
(10)-(13)] to the dynamics that control the phase transi-
tion. As mentioned earlier, the lowest-order coupling be-
tween the strain S and order parameter Q takes the form
SQ?. The leading terms in the Landau free-energy expan-
sion are

= 1 241 41 6 1 2__1 2
F=Fy+3AQ°+BQ"+:DQ +7COS ThSQ . (14)
3
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FIG. 5. (a) Acoustic attenuation rate y scaled by g2 shown

as a function of temperature for the three scattering wave-
lengths at which y could be determined accurately (lines are
guides to the eye). Note the broadening of the peak and its shift
to lower temperatures as A is deceased. (b) Acoustic velocity v
shown as a function of temperature for the three scattering
wavelengths at which v could be determined accurately. As A is
decreased, the drop in the acoustic velocity becomes more gra-
dual and less pronounced.
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The first term is a background term; the second through
fourth terms describe the free energy associated with the
N-IC phase transition, which has an order parameter Q;
the fifth term is the free energy due to strain; and the last
term is the coupling term with coupling constant A. The
coefficient A4 is assumed to vary with temperature as
A= Ay(T—T;), and all other coefficients are assumed to
be temperature independent. The complex frequency-
dependent elastic constant C(w) defined in Eq. (10) can
be obtained from this free energy expansion by

~ do
=< > (15)
Clw) as
where fluctuations in the stress defined by o =dF /9dS are
given by the equation

80 =Cy0e—hQ,6Q —1h(8Q)*, (16)

where Q, is the average value of the order parameter.
Equation (14) and (16) indicate several temperature-
dependent effects on the elastic susceptibility C. In the
high-T phase, Q, =0 and only the fluctuation term (8Q )?
influences C. In the low-T phase, Q, is finite and both
the Q,6Q and fluctuation terms contribute to the suscep-
tibility. Sufficiently far below T}, the (8Q)?* term can usu-
ally be neglected, and the Landau-Khalatnikov (LK) con-
tribution due to the term Q,8Q dominates.

The obvious asymmetry of the acoustic data (shown in
Fig. 5) about T is due to the fact that both LK and fluc-
tuation terms contribute to the anomalies below T}, and
only fluctuations contribute to the anomalies above T;.
Previously measured acoustic anomalies in IC crys-
tals'> 16 have been analyzed by first fitting the data above
T, with the fluctuation contribution and then, using the
parameters determined from the analysis, subtracting the
fluctuation contribution from the data below T; and
fitting the remaining data with the LK contribution. In
the present case the anomalies above T are significantly
smaller than those below T}, and unique analysis of the
data above T; is difficult. Therefore the acoustic
anomalies below T; will first be analyzed using only the
LK contribution. The question of the fluctuation contri-
bution to the data, both above and below T;, will be re-

turned to below.

A. Landau-Khalatnikov contribution

Linearizing Eq. (16) with respect to 8Q and considering
order-parameter relaxation characterized by a relaxation
time 7 yields the following expression for C(w) for
T<T;:

- h*/(2B+4DQ3)
Clw)=Cy— P . 17

For T>T;, C(w)=C,. A detailed derivation of Eq. (17)
is given in Ref. 13. This equation is valid whether the or-
der parameter is assumed to be purely relaxational or a
damped harmonic oscillator, provided its natural fre-
quency w, exceeds the acoustic frequency w.

Combining Eq. (17) with Egs. (12) and (13) leads to the
classical LK expressions for the acoustic velocity v and
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attenuation rate y for T < T;:
A’ A’
V=g |[1————— =y |1 ———— |, (18)
U1+ | 1+e ]
T T
=yt —2T —~y +an—2T— | (19)
Y=o 1+ 1o 1+

where vy and y are the values of the velocity and at-
tenuation rate in the absence of the transition and A’ is a
unitless parameter given by

. A 1 h?

- A L - 0)

Since the acoustic frequency changes by about 2% near
the N-IC transition, the average value of w, denoted by @,
has been used in Egs. (18) and (19). Further, A’ is as-
sumed to be independent of temperature (which will be
discussed further below), and 7 is assumed to have a tem-
perature dependence given by

T.

1l

T,—T

p
) (2D

T=TO

where p is a dynamical critical exponent which is as-
sumed to be 1. Deviations from this value will be dis-
cussed below.

Before the acoustic anomalies can be analyzed quanti-
tatively, the transition temperature 7; must be deter-
mined. Within the framework of LK theory, it can be
shown that, by setting

i = (22)

orT |r=1, ’

the temperature T, at which the maximum in the acous-
tic attenuation occurs is a linear function of the acoustic
frequency, given by the equation

T,,=—(1oT)o+T; . 23)

A plot of T,, vs acoustic frequency at that temperature is
shown in Fig. 6. A fit to these points using Eq. (23) is
also shown. The transition temperature determined from
this fit is T;=298.0+0.1 K. T; will be fixed at this value
for the remainder of the data analysis. It should be noted
that the contribution to the data due to energy-density
fluctuations, which will be addressed below, has been
shown to have very little effect on the position of the at-
tenuation maximum below T}, and therefore the value of
T; determined from considering only the LK contribu-
tion should still be essentially correct in the presence of
fluctuations. !’ This will be confirmed below.

In order to apply Egs. (18) and (19) to the data, it is
necessary to fix the background attenuation rate y, and
velocity v,. The wave-vector dependence of ¥, can be di-
vided out by expressing ¥, as ¥,/q% The value of Yo will
be fixed at 1.6 X 107? um?®/ns for all scattering wave vec-
tors and temperatures, both above and below T;. Fixing
the velocity background is more problematic, since nei-
ther the frequency range nor temperature range investi-
gated above T is large enough to permit an unambiguous
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TABLE 1. Parameters for the LK fits to the data for T < T;
without the contribution from the fluctuation term.

A (pm) v (GHz) 7o (ps) A
0.746 3.83 0.63+0.13 0.021+0.001
1.554 1.83° 0.56%0.13 0.022+0.001
3.269 0.8712 0.5140.13 0.022+0.001
8.932 0.316° 1.1340.43 0.024£0.001

282° 0.010 0.71 (0.022)°

2Value at the attenuation maximum.
®Quantity kept fixed.

frequency at the maximum of the acoustic attenuation.
From the fit to the data shown in Fig. 6, a value of
To=0.64£0.05 ps is obtained for this relaxation time,
which is consistent with the values shown in Table I.

Deviations from classical behavior in the LK contribu-
tion to include the effect of static critical behavior have
been derived through dynamic scaling arguments'® and
yield, for the acoustic anomalies,

v=v,[1—At?7G(Br,7)], (25)
Y=v,+® —27’; ANt @r)F(@r,y) , (26)

where ¢, is the reduced temperature (T —7;)/T;, S and ¥
are usual critical exponents, and G(wT,7) and F(wT,7)
are analytical approximations to the real and imaginary
parts of the relaxation function

(1—iwT) 7%, (27)
which are given by the expressions
F(an-,y)IZl —1~sin X arctan(wr)
Y ot zv
X {cos[arctan(wr)]}7/?", (28)
G(wT,y)=cos —z%arctan(wr) {cos[arctan(wT)]}7/?Y .

29)

Equations (28) and (29) give the correct behavior in the
limiting cases of ot <<1 and w7>>1, and they satisfy the
Kramers-Kronig relationship. In mean-field theory,
B$=0.5 and y=1, and Egs. (25) and (26) reduce to Egs.
(18) and (19).

Previous analysis of the acoustic anomalies at ultrason-
ic frequencies in Rb,ZnCl,,'® which is isomorphic to
TMATC-Zn, have shown critical exponents consistent
with three-dimensional (3D) Ising-model behavior
(8=0.324 and ¥y =1.24). Fits to the A=3.269 um data
using Egs. (25), (26), (28), and (29) and assuming Ising-
model values for the critical exponents are shown in Fig.
7 (dotted lines). The values for T; and the attenuation
rate and velocity backgrounds above T; were fixed to the
values discussed above, and the value of zv was set to 1,
which is consistent with conventional van Hove relaxa-
tion and is in agreement with previous measurements of
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the critical behavior of IC crystals.'>!® The backgrounds
below T; were treated as fitting parameters, and 7y and A’
were varied independently to fit the attenuation rate and
velocity simultaneously. The fit to the attenuation rate
using these exponent values is shown in Fig. 7(a), with the
values of the parameters 7,=0.91 ps and
A’=6.82X10"*% In order to yield an adequate fit to the
data, the attenuation background below 7; was found to
be approximately twice that above T;. This is an effect of
the term (z,)**~7 in Eq. (26), which reduces the attenua-
tion rate back to the background level for temperatures
above T;. This factor and the factor of y also present in
Eq. (26) reduce the value of A’ well below the value deter-
mined from the mean-field fit. The fit to the acoustic ve-
locity with the identical parameter values is shown in
Fig. 7(b). This fit underestimates the magnitude of the
anomaly and also has significant curvature in the velocity
below T;. The fit to the velocity is not very sensitive to
the background velocity below T;; essentially identical
fits are obtained by assuming either the background ve-
locity of the mean-field fit [assumed in the fit shown in
Fig. 7(b)] or assuming that the background below T; has
the same behavior as that above T;.

It is evident from Fig. 7, particularly Fig. 7(b), that the
assumption of 3D Ising behavior of the LK contribution
to the acoustic anomaly yields significantly worse fits to
the data using the assumed behaviors for the velocity and
attenuation rate backgrounds than the fits assuming
mean-field behavior for the LK contribution. In order to
fit the data adequately with Ising values for the critical
exponents, the backgrounds must be assumed to be
different from the simplest possible behaviors discussed
above. In particular, the attenuation rate must be as-
sumed to have a background value below T; of twice that
above T;. Although this cannot be completely ruled out,
it seems unlikely.

B. Energy-density fluctuation contribution

The presence of acoustic anomalies above T; and devi-
ations from LK behavior for AT <1 K below T; are due
to the presence of fluctuations in the order parameter of
order (8Q)* near the transition. Inclusion of this effect
has been dealt with in a number of different ways for
different IC crystals.'> The dynamical scaling approach
of Fossom'® (discussed above for the LK contribution to
the acoustic anomalies) will be adopted here to character-
ize the acoustic anomalies for 7> 7;. Within this frame-
work the anomalies in the acoustic velocity and attenua-
tion rate due to energy-density fluctuations are given by
the equations!®

Av=v,Ct, 1+ Dt>°)G(mr,u) , (30)

N

zZv

Ay= aCt, M1+ Dt @7 )F(@rt,u), (31

where C is a unitless coupling constant, u is the critical
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0.9. Using the results of both techniques together, which
extends the dynamic range covered by either technique
alone by nearly two orders of magnitude, yields a value of
p=0.97+0.03. This value corresponds to the slope of
the dotted line shown in Fig. 8(a).

This determination of p assumes that the parameter A’
is independent of temperature, which is not necessarily
true [cf. Eq. (20)]. If B <<D, where B and D are the
coefficients which enter into the Landau expansion [Eq.
(14)], A’ has a temperature dependence given by
A ~Qi~(—t, )28, where t, is the reduced temperature
given by (T —T;)/T; and B is the static critical exponent.
In this limit the temperature dependence of (y —v,)/q>
is given by (AT) 1*2P) (with AT=T,—T), and so the
slope in Fig. 8(a) would be given by —(1+283). For
smaller but still finite values of D /B, the leading-order
corrections to the slope of Fig. 8(a) are of the form
—[1+2(D /B )2B) away from AT=0. The fact that the
tangent line to the ot <<1 data of Fig. 8(a) has a slope of
nearly 1 indicates that A’ is essentially independent of
temperature for the range of AT covered in this experi-
ment.

Figure 8(b) shows the values for the acoustic velocity
Av=v—v, plotted against AT on a log-log scale for
acoustic modes with wavelengths A=8.932, 3.269, and
1.554 um. Although there is significant scatter in the
data, it is evident that the LK fits adequately characterize

0.1
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0.0001 : e
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the data over most of the temperature range, with sys-
tematic deviations again occurring at values of AT <1 K.

The values for the parameters 7, and A’ determined at
all four wave vectors from the fits to the data are shown
in Table I. The values of these parameters for A=3.269
and 1.554 um were obtained by consistent fits of both y
and v, while the parameters for A=0.746 and 8.932 um
were obtained by fitting only the attenuation rae and ve-
locity, respectively. The increased error bars on the pa-
rameters determined at the smallest and particularly the
largest wavelengths reflect the fact that fitting only ¢ or v
alone reduces the uniqueness of the fit. From Table I it is
evident that there is no dependence of either 7, or A’ on
the acoustic wave vector within the assigned error bars.
This conclusion is further reinforced by the results of ul-
trasonic experiments, which yielded a value of
0.56X107"* dbcm 'Hz 2K®® for a parameter B,
which can be related to 7 via the equation

_ 4TTN
T 8.6860 0

Assuming that A’ is independent of acoustic frequency,
this yields a value of 7,=0.71 ps for the coefficient of the
relaxation time which couples to a 10-MHz acoustic
mode. This is also included in Table 1.

The value of 7, can also be obtained from the slope of
Eq. (23), which relates the temperature to the acoustic

(24)

0.1

(b)

0.014
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FIG. 8. (a) (y—v0)/q* vs AT=T,—T (T < T;) for the data illustrated in Fig. 5(a) and the ultrasonics data of Ref. 4. The dotted
line corresponds to w7 << 1 and has a slope of 0.97+0.03. The solid lines are the LK fits to the data, with mean-fields values for the
static critical exponents. The dashed lines include contributions from the fluctuation term also. (b) Av=wv,—v vs AT (T <T;) for the
data illustrated in Fig. 5(b). The solid lines are the fits described in (a).
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TABLE 1. Parameters for the LK fits to the data for T < T;
without the contribution from the fluctuation term.

A (pm) v (GHz) 7o (ps) A
0.746 3.83 0.63+0.13 0.021+0.001
1.554 1.83° 0.56%0.13 0.022+0.001
3.269 0.8712 0.5140.13 0.022+0.001
8.932 0.316° 1.1340.43 0.024£0.001

282° 0.010 0.71 (0.022)°

2Value at the attenuation maximum.
®Quantity kept fixed.

frequency at the maximum of the acoustic attenuation.
From the fit to the data shown in Fig. 6, a value of
To=0.64£0.05 ps is obtained for this relaxation time,
which is consistent with the values shown in Table I.

Deviations from classical behavior in the LK contribu-
tion to include the effect of static critical behavior have
been derived through dynamic scaling arguments'® and
yield, for the acoustic anomalies,

v=v,[1—At?7G(Br,7)], (25)
Y=v,+® —27’; ANt @r)F(@r,y) , (26)

where ¢, is the reduced temperature (T —7;)/T;, S and ¥
are usual critical exponents, and G(wT,7) and F(wT,7)
are analytical approximations to the real and imaginary
parts of the relaxation function

(1—iwT) 7%, (27)
which are given by the expressions
F(an-,y)IZl —1~sin X arctan(wr)
Y ot zv
X {cos[arctan(wr)]}7/?", (28)
G(wT,y)=cos —z%arctan(wr) {cos[arctan(wT)]}7/?Y .

29)

Equations (28) and (29) give the correct behavior in the
limiting cases of ot <<1 and w7>>1, and they satisfy the
Kramers-Kronig relationship. In mean-field theory,
B$=0.5 and y=1, and Egs. (25) and (26) reduce to Egs.
(18) and (19).

Previous analysis of the acoustic anomalies at ultrason-
ic frequencies in Rb,ZnCl,,'® which is isomorphic to
TMATC-Zn, have shown critical exponents consistent
with three-dimensional (3D) Ising-model behavior
(8=0.324 and ¥y =1.24). Fits to the A=3.269 um data
using Egs. (25), (26), (28), and (29) and assuming Ising-
model values for the critical exponents are shown in Fig.
7 (dotted lines). The values for T; and the attenuation
rate and velocity backgrounds above T; were fixed to the
values discussed above, and the value of zv was set to 1,
which is consistent with conventional van Hove relaxa-
tion and is in agreement with previous measurements of
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the critical behavior of IC crystals.'>!® The backgrounds
below T; were treated as fitting parameters, and 7y and A’
were varied independently to fit the attenuation rate and
velocity simultaneously. The fit to the attenuation rate
using these exponent values is shown in Fig. 7(a), with the
values of the parameters 7,=0.91 ps and
A’=6.82X10"*% In order to yield an adequate fit to the
data, the attenuation background below 7; was found to
be approximately twice that above T;. This is an effect of
the term (z,)**~7 in Eq. (26), which reduces the attenua-
tion rate back to the background level for temperatures
above T;. This factor and the factor of y also present in
Eq. (26) reduce the value of A’ well below the value deter-
mined from the mean-field fit. The fit to the acoustic ve-
locity with the identical parameter values is shown in
Fig. 7(b). This fit underestimates the magnitude of the
anomaly and also has significant curvature in the velocity
below T;. The fit to the velocity is not very sensitive to
the background velocity below T;; essentially identical
fits are obtained by assuming either the background ve-
locity of the mean-field fit [assumed in the fit shown in
Fig. 7(b)] or assuming that the background below T; has
the same behavior as that above T;.

It is evident from Fig. 7, particularly Fig. 7(b), that the
assumption of 3D Ising behavior of the LK contribution
to the acoustic anomaly yields significantly worse fits to
the data using the assumed behaviors for the velocity and
attenuation rate backgrounds than the fits assuming
mean-field behavior for the LK contribution. In order to
fit the data adequately with Ising values for the critical
exponents, the backgrounds must be assumed to be
different from the simplest possible behaviors discussed
above. In particular, the attenuation rate must be as-
sumed to have a background value below T; of twice that
above T;. Although this cannot be completely ruled out,
it seems unlikely.

B. Energy-density fluctuation contribution

The presence of acoustic anomalies above T; and devi-
ations from LK behavior for AT <1 K below T; are due
to the presence of fluctuations in the order parameter of
order (8Q)* near the transition. Inclusion of this effect
has been dealt with in a number of different ways for
different IC crystals.'> The dynamical scaling approach
of Fossom'® (discussed above for the LK contribution to
the acoustic anomalies) will be adopted here to character-
ize the acoustic anomalies for 7> 7;. Within this frame-
work the anomalies in the acoustic velocity and attenua-
tion rate due to energy-density fluctuations are given by
the equations!®

Av=v,Ct, 1+ Dt>°)G(mr,u) , (30)

N

zZv

Ay= aCt, M1+ Dt @7 )F(@rt,u), (31

where C is a unitless coupling constant, u is the critical
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exponent related to heat capacity, D is a parameter which
accounts for leading-order corrections to scaling, 77 is
the relaxation time of the energy-density fluctuations
above T}, and all other terms are defined above.

The anomalies in the acoustic attenuation rate and ve-
locity for temperatures T > T; are plotted on a log-log
scale in Fig. 9. The backgrounds assumed in Sec. VA
have been subtracted from the data shown in Fig. 9. Fig-
ure 9(a) shows the data for the same scattering wave vec-
tors which are shown in Fig. 8(a) for temperatures
T<T;, and Fig. 9(b) shows only data taken with
A=3.269 um. The velocities at other wave vectors con-
tained too much scatter to allow quantitative analysis.
Equations (30) and (31) can be used to analyze the data,
and the results are also shown in Fig. 9. For all of the fits
carried out, the relaxation time 7" (which has a different
value than the relaxation time 7 for the LK contribution)
was assumed to have the soft-mode behavior described by
Eq. (21), T; was fixed to 298.0 K, and the critical-
exponent product zv was assumed to be 1 (as above). The
data could be fit adequately by assuming a broad range of
values for the critical exponent u. The choice u=0.11,
which corresponds to 3D Ising-model behavior, is shown
in Fig. 9 (solid lines). These values are in agreement with
those found for systems isomorphous to TMATC-Zn
above T..'® Although the Ising values for the critical ex-
ponents are not unique, they yield better fits than the
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values for other models such as the XY model with the
simplest choice of background velocities and attenuation
rates assumed here. For these fits 74 =0.8 ps,
C=1.3X10"2, and D=—2.5. The fits to the acoustic
attenuation rates [Fig. 9(a)] are quite good, but the fit to
the acoustic velocity [Fig. 9(b)] consistently overestimates
the magnitude of the anomaly, although the temperature
dependence of the fit is roughly consistent with the data.
A better fit to the data is obtained with the parameters
74 =0.8 ps, C=3.9X1073, and D=—5.4, which
reduces the magnitude of the anomaly and increases its
curvature at large values of AT [dashed line in Fig. 9(b)].
The fact that different parameters are needed to fit the
anomaly in the acoustic velocity is most likely due to the
difficulty of accurately subtracting the background veloc-
ity and cannot be taken as evidence of the inadequacy of
the Ising-model fits. The best fits to the anomalies in the
attenuation rate and velocity plotted on a linear scale
with the background terms included for A=3.269 um
are also shown in Figs. 7(a) and 7(b).

As discussed above, the fluctuations in the energy den-
sity also contribute to the anomaly below T; and should
be included along with the LK contribution in the
analysis of the data. Such an analysis is complicated by
the fact that even accurate characterization of the fluc-
tuation contribution above 7; does not uniquely deter-
mine the fluctuation contribution below 7;. Such an
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FI.G. 9. (@) (¥ —v0)/q* vs AT=T,—T (T >T,) for the data illustrated in Fig. 5(a). The lines are fits to the data due to energy-
density fluctuations assuming a 3D Ising value for the critical exponent u. (b) Av=vy—v vs AT (T > T;) for the data with A=3.269
pum. The solid line is the fit using parameters consistent with the attenuation rate fits, and the dashed lines uses the parameters de-

scribed in the text.
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analysis is even more difficult in the absence of accurate
characterization of the fluctuation contribution above T;.
However, using reasonable assumptions regarding the
fluctuation contribution below T}, it is possible to assess
the effect that this contribution has on the parameters of
the dominant LK contribution. The first assumption is
that the relaxation time of the energy-density fluctuations
below T is given by 7, =0.577. This is consistent with
classical van Hove behavior of the singularity at T,
which has been assumed in the analysis of the data above
(zv=1). It is also assumed that both the critical ex-
ponent p and the magnitude of the correction to the scal-
ing term D are the same above and below 7;. The final
assumption regards the value of C, the magnitude of the
contribution of the fluctuation term below 7;. We as-
sume that the magnitude of the fluctuation contribution
below T; is equal to that above T;. This is consistent
with theoretical arguments that the universality class for
the critical behavior of the N-IC transition is the n=2
Heisenberg (XY) model.” For this model,
C(T<T;)=0.97C(T>T;).'"* Further, this assumption
has been found to be adequate in the analysis of ultrason-
ic attenuation near the A point in liquid helium,* which
is of the same universality class. In that case a critical
comparison was possible because of the fact that the tran-
sition temperature was accurately known and the temper-
ature resolution of the experiment was in the uK range.
Using these assumptions, the contribution to the anomaly
in the attenuation rate due to energy-density fluctuations
below T, is shown in Fig. 7(a) for the scattering wave-
length A=3.269 um.

With these assumptions for the parameters for the fluc-
tuation contribution, the anomaly below T; can be
reanalyzed. The acoustic velocity is given by the sum of
Egs. (18) and (30), and the attenuation rate is given by the
sum of Egs. (19) and (31). The parameters in the fluctua-
tion contribution are fixed at a given wave vector, and the
LK parameters 7, and A’ are allowed to vary. The result-
ing fits for the acoustic attenuation rates are shown in
Fig. 8(a) (dashed lines). From Fig. 8(a) it is apparent that
inclusion of the fluctuation contribution improves the fits
to the data, although the fits overestimate the magnitude
of the attenuation rate near T; at all wave vectors. This
may indicate that either the magnitude of the fluctuation
term near 7, is less than assumed or there is a weak
dependence of A’ on temperature. The LK parameters
for these fits are shown in Table II. The value of the pa-
rameter A’ decreases by 10-20 % and the value of 7, in-
creases by 20-40 % when the effect of fluctuations below
T; are included. Uncertainty in the background velocity

near T, coupled with the small change in velocity near
this temperature prevents a quantitative analysis of the
contribution of the fluctuation term to the acoustic veloc-
ity.

It should be mentioned that assuming a value for C
which is larger below T; than above, such as a value of
C(T <T;)=1.85C(T >T;) predicted by the Ising mod-
el, !¢ causes the attenuation rate to drop below zero over
the temperature range from 297.5 K to 7;. This is un-
physical, and therefore such values of C below T; can be

1
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TABLE II. Parameters for the LK fits to the data for T < T;
including the contribution from the fluctuation term described
in the text.

A (pum) v (GHz) 7o (ps) A
0.746 3.83* 0.75+0.13 0.019+0.001
1.554 1.83° 0.77+0.13 0.01940.001
3.269 0.871* 0.70+0.13 0.017+0.001

#Value at the attenuation maximum.

ruled out. This may indicate that the fact that Ising-
model exponents were found to yield adequate fits to the
data above T; is misleading and that the velocity and at-
tenuation rate backgrounds are more complicated than
assumed in this analysis. It is also possible that the
correct theoretical model for this phase transition is not
fully understood. As a final note, subtraction of the con-
tribution to the anomaly in the attenuation rate does not
change the position of the attenuation maximum by more
than 0.1 K at any of the wave vectors investigated in this
experiment. Therefore the transition temperature deter-
mined in the beginning of Sec. V A remains unchanged
within the assigned error bars in the presence of fluctua-
tions.

VI. DISCUSSION

A. Mean-field behavior of critical exponents

Over most of the temperatures range below T, the
acoustic anomalies in TMATC-Zn are described quanti-
tatively by the Landau-Khalatnikov contribution to the
anomaly. Assuming that there is no excess acoustic at-
tenuation for temperatures less than 7; and that the
background velocity is linear in temperature (with a
discontinuity in the slope allowed at T;), the critical ex-
ponents are found to be those of mean-field theory. To
describe these exponents by those of other universality
classes, such as the 3D Ising model, would require both a
large excess attenuation below T; and a substantial curva-
ture in the background velocity, neither of which is
justified. The present experiment thus yields determina-
tions of the critical exponents associated with the N-IC
transition in TMATC-Zn.

The static critical exponent values are in contrast with
the values of the critical exponents reported for materials
isomorphic to TMATC-Zn,!? particularly those deter-
mined though ultrasonic techniques in RbZnCl,.'® There
are several possible reasons for this discrepancy. The
first is that the focus of the ultrasonic measurements was
on the fluctuation term above 7;. The critical exponents
for this contribution to the acoustic anomaly could not be
established in the present experiment, but were consistent
with those of the Ising model as well as mean-field
theory. The exponents for the LK contribution near 7;
in the ultrasonics data were assumed to be those of the Is-
ing model, but the uniqueness of this identification was
not explored.

The second possible reason for the difference of the
measured critical exponents between these two experi-
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ments is that non-mean-field behavior obtains over a nar-
rower temperature range in TMATC-Zn than in
RbZnCl, and therefore cannot be observed in the present
experiment. This may be due to a suppression of the
acoustic anomaly in TMATC-Zn, especially further
below T; where the anomalies are strongest in the present
experiment. The two crystals have very similar proper-
ties. The N-IC transitions are both of the order-disorder
variety and involve rotations of the ZnCl, tetrahedra.
Both of the materials undergo a lock-in transition which
also involves rotations of these tetrahedra and which re-
sults in an improper ferroelectric phase with the direction
of polarization along the ¢ axis (with the convention
b>a>c). The temperature range over which the IC
phase is stable in RbZnCl, is approximately 110°, which
is much larger than the range for TMATC-Zn (approxi-
mately 17°). It is possible that the coupling of the acous-
tic mode to the polarization mode in the IC phase
suppresses the critical fluctuations, even into the IC
phase, since the same types of motions give rise to the
two transitions. This would have a much more pro-
nounced effect on the N-IC transition in TMATC-Zn be-
cause of the much smaller temperature difference be-
tween the N-IC and lock-in transitions.

B. Amplitude- and phase-mode couplings

Throughout the analysis both the LK relaxation time 7
and the fluctuation relaxation time 7% have been assumed
to have the temperature dependence given by Eq. (21).
Above T; the relaxation time 7+ is identified with the (de-
generate) soft-mode energy-relaxation time. Below T;
this degeneracy is lifted, and the relaxation time 7 can be
associated with either the amplitude mode, phase mode,
or both. If relaxation is due primarily to the acousticlike
phase mode, its rate should be dependent on the wave
vector of the acoustic mode, increasing as the acoustic
wave vector is decreased. If the relaxation is due pri-
marily to the opticlike amplitude mode, the relaxation
time should be independent of the acoustic wave vector.
From Table I it can be seen that, within the error of the
experiment, 7 is independent of g. Therefore we attribute
the observed acoustic anomaly to coupling with the am-
plitude mode. It should be noted that the wave-vector
dependence of the relaxation time associated with the
phase mode may be altered by pinning of this mode at
q =0, which would make the relaxation time relatively
wave-vector independent for small values of q.

This result is also consistent with the reported
Brillouin-scattering data. Equation (21) and the wave-
vector-independent value of 7 measured in the present ex-
periment indicate a peak in the acoustic attenuation for
T<T; at T,,=287.5 K for an acoustic frequency of 9
GHz. This is qualitatively what is observed.’ It has been
suggested’ that the apparent lack of a sharp acoustic
anomaly at Brillouin-scattering frequencies is due to
masking of the anomaly by coupling of the acoustic mode
to the phase mode. No evidence is found for such a cou-
pling in this experiment.

There exists very little independent information on ei-
ther the amplitude or phase mode with which to compare
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the results of these experiments. Temperature-dependent
low-frequency Raman-scattering results® revealed no
strongly temperature-dependent low-frequency modes in
the IC phase, indicating that these modes are most likely
overdamped or relaxational in this phase. NMR results?!
have indicated similar behavior, as well as a gap in the
phase mode of ~10''-1012s7 1,

Direct probing of the amplitude and phase modes in
the IC phase was attempted on both picosecond and fem-
tosecond time scales using ISS. Direct observation of
soft-optic-phonon modes have been reported recently in
the materials KNbO, (Ref. 22) and BaTiO;.?* Although
the relaxation times are on the correct time scale for
direct probing to be successful in TMATC-Zn, no soft
modes were observed. This is due most likely to the rela-
tive weakness of the scattering cross sections for these
modes.

VII. CONCLUSIONS

The longitudinal-acoustic anomaly along the a axis of
the crystal TMATC-Zn has been investigated near the
normal-incommensurate (N-IC) phase transition by im-
pulsive stimulated scattering for acoustic frequencies in
the range of 350 MHz to 4 GHz. Considerable dispersion
is seen over this frequency range. Below the N-IC transi-
tion, the major contribution to the anomaly is due to re-
laxation of the order parameter (Landau-Khalatnikov
contribution). The relaxation time is adequately charac-
terized by a single wave-vector-independent relaxation
time with the temperature dependence given by
7=11;/(T;—T), with 7y=0.6 ps. This is consistent
with the relaxation time measured with ultrasonics tech-
niques. We identify this relaxation as the amplitude
mode and find no evidence for the coupling of the acous-
tic mode to the phase mode. The previously measured
Brillouin-scattering data are also seen to be qualitatively
explained with the same relaxation time. The critical ex-
ponents which enter into the LK contribution are those
of mean-field theory. Critical-exponent values for other
universality classes, particularly for the 3D Ising model,
are found to be inconsistent with the data.

Above the N-IC transition temperature 7}, the acoustic
anomalies are explained by the coupling of the
longitudinal-acoustic mode to fluctuations in the energy
density associated with the soft mode. These fluctuations
can be accounted for using dynamic scaling theory. The
data are not sufficient to determine quantitatively the
values of the critical exponents which enter into the
theory, but the data are seen to be consistent with 3D
Ising-model values of the exponents.
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