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The wake potential associated with the passage of a swift charged particle through matter in the vicin-
ity of a solid-vacuum surface is studied. Full results of the wake potential as a function of space and
time when the particle moves parallel with and perpendicular to the surface are presented. Two different
approaches are followed: a dielectric analysis based upon the specular-reflection model and a Hamiltoni-
an treatment of the problem. Several different dielectric functions are used to describe the bulk solid.
Nonlocal dispersion effects are investigated. The influence of damping on the induced potential and its

velocity dependence are studied.

I. INTRODUCTION

A charged particle moving near a material medium
modifies the distribution of charges in that medium.
Knowledge of the resulting potential allows us to study
problems of binding and scattering of that particle.

The purpose of the present work is to study the real
potential distribution originated by a swift charged parti-
cle that moves with constant velocity in the vicinity of a
plane solid-vacuum surface. This matter has received
much attention in the past mainly related to the value of
the induced potential at the position of the particle itself.
Ritchie! studied the excitation of surface plasmons by
electrons. Takimoto? studied dynamical corrections to
the classical image potential in the case of thin films.
Surface excitations were shown to be important in the
van der Waals force between two surfaces’® and in the in-
teraction of a charge with a surface.*”® Dynamical
corrections to the image potential were achieved with®™1°
and without!' ™! inclusion of spatial dispersion in the
response function. It was found that dispersion becomes
important at small distances from the surface, where the
particle may couple to short-wavelength modes of the
solid. More sophisticated models have also been em-
ployed. Flores and Garcfa-Moliner!* gave a full
quantum-mechanical solution to the self-energy'> of a
nonrecoiled particle moving near a surface. Echenique
et al.'® followed a Hamiltonian approach®® and included
dispersion through a surface-plasmon dispersion relation
proposed by them. Sols and Ritchie!” have presented an
extensive study of the self-energy of a light particle,
which includes recoil, for motion inside and outside a
solid following the method established by Manson and
Ritchie.'"® This method has been extended by Zheng,
Ritchie, and Manson'? to include high-order corrections
to the image potential. Eriksson, Karlsson, and
Wijewardena® have evaluated the potential at the surface
in the hydrodynamic approximation thanks to a generali-
zation of the method employed by Heinrichs,? equivalent
to the specular-reflection model that is discussed
below.2!»22

Here we are concerned with the study of the scalar po-
tential engendered by a swift particle moving near a sur-
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face. By analogy to the bulk wave potential,>”%° we
denote it surface wake potential. Knowledge of the spa-
tial and time dependence of the surface wake is essential
when dealing with electron production by swift ions in-
cident on solids and in the transport of those electrons.
This is the case in convoy-electron emission,?® in
grazing-incidence electron-production experiments,?’ in
the generation of shock electrons,?® in secondary electron
emission,”® and in the phenomenon of wake-riding elec-
trons.?* The latter have been the subject of recent experi-
mental®® and theoretical’' work. litaka et al.’* have re-
cently explained the acceleration effect measured by Koy-
ama et al.} on convoy electrons produced in grazing in-
cidence of heavy ions on a metal surface in terms of the
interaction of those electrons with the surface wake set
up by the ions. Specular reflection of ions at a surface is
also affected by the induced potential.>* The surface
wake plays an important role in the dynamics of neigh-
boring ions moving near a surface®® and in the Coulomb
explosion of molecular ions induced by surface interac-
tion.3

The organization of this paper is as follows: Section II
approaches the problem for a nondispersive medium. In
Sec. III the basic equations for the potential in the dielec-
tric formalism are derived, making use of the specular-
reflection model. Several models for the bulk dielectric
functions are considered. In Sec. IV we summarize the
results obtained from a Hamiltonian formulation of the
problem. In Secs. V and VI the main numerical results
for the cases of parallel and perpendicular motion are dis-
cussed together with the corrections to the classical im-
age potential. The main conclusions are offered in Sec.
VII. Atomic units will be used throughout this paper un-
less otherwise specified.

II. LOCAL RESPONSE FUNCTION

Many properties of the interface between two media
can be analyzed by considering that they are undisper-
sive,”” in that the appropriate dielectric response func-
tions may be considered to depend only on frequency.
Then, the scalar potential can be simply derived by solv-
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ing the Poisson equation,'>*® taking the dielectric func-
tion as e(r,0)=e(w)O(—2z)+0O(z), where O(z) is the
Heaviside step function, and applying suitable matching
conditions or, equivalently, by using the method of im-
ages.

The problem we are dealing with concerns a swift
charged point particle with charge Z,, which is traveling
with velocity v in the vicinity of a planar solid-vacuum
surface. The notation r=(R,z), k=(Q,k,), and
v=(V",vZ) will be used hereafter. R, Q, and VH represent

components parallel with the surface. The z axis is
J
. V4
¢md(r,t):¢(r’t)_—1
[r—vt|
Z, e!QR-o) 1—e(w)
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chosen in the perpendicular direction. The solid is con-
sidered to be contained in the region z <0. The trajecto-
ry of the particle, whose recoil is assumed to be negligi-
ble, is described by the equation r=vt. The integration
of the Poisson equation is done more easily in the
Fourier-transform space. The homogeneous solutions in
the bulk and in the vacuum introduce two constants of
integration that are determined by the matching condi-
tions, which are the continuity of the potential and the
electric displacement. Finally, the induced potential
reads

O(—z)
e(w)

1
elw)

uuz/vz

O(z)—

1 6(—2)] , 2.1

where =0 —Q-V| and k >=Q?+&®?/v2. The second term inside the curly brackets in this expression leads to the os-
cillatory bulk wake potential?> ~2° generated by the charged particle when it moves deep inside the bulk material.

The case of motion parallel with the surface consists in taking the limit v, —0 in Eq. (2.1) while keeping v,z =z con-
stant, where z,, is the z coordinate of the particle. In this case the surface wake potential for an external trajectory

(zp>0) is symmetric with respect to the surface:

. z dQ .oz -0 —
ind =1 Q iQ'R QUzg| +1z]) 1—el(w)
o= f 0° ¢ I+e(o) ’

(2.2)

where R= R—V,rand ¥=Q-V|. For an inner trajectory (z, <0) one obtains

_ z o ot 1—
¢‘1|nd(ryt):2_7:_nggelQ.R e Qllzol+ ‘)“1 __E(C()) { (

1+elw)

_e(~z) ]ﬂ—glz—zol L
€(

(2.3)

9(—Z)J,

elw) )

where the second set of curly braces represents again the bulk wake potential.
Expressions (2.1)-(2.3) can be used with any frequency-dependent dielectric function. In a simple metal e(w) is

given by the classical approximation

2
“p

olo+iy)’
172

elw)=1—

(2.4)

where w, =(47n)"’" is the classical plasma frequency of a free-electron gas with density n and ¥ is an infinitesimal posi-
tive quantity representing the damping of the plasma mode. Choosing V,=(v,0) parallel with the x direction, taking
the z inverse Fourier transform in Egs. (2.2) and (2.3), and performing the Q, integration, the induced potential can be

put in the form

—-q\i ms/u

ind o2y o Lo, 20,7, L 0X Lo,
i (r,t)=— - fo dqJ, |q ’ g O(—X)sin . K, ;

0,Z, o No Lo o IFle, v

+i——" dq |J, |g—= |- 2
[ v fo q|J0 |9 v 0|9 v 1+4°2
20,Z, . WX No, Lo,
O(—Xx)sin— | K|, 0 o(—z)0(—z,), (2.5)
v v

where wSZwl,/\/—2 is the classical surface plasma

frequency, X=x—ut, L=\/y2+(|z|+\zol)2,
N:\/y2+(z —2z4)% and J, is the Bessel function of or-
der 0. An oscillatory contribution, whose wavelength is
2mv/w, appears in the potential behind the particle and
it decreases almost exponentially with L. The terms of
Eq. (2.5) which contain N represent the bulk wake poten-
tial. The rest of the terms inside the set of curly braces
correspond to the bulk wake potential that a particle with

{
opposite charge, and following a trajectory given by
R=V,t and z= —z,, would create at the position r. The
integrals in (2.5) have a nonoscillatory nature (Coulomb
terms?>2%). By derivation of Eq. (2.5) one obtains the
force acting on a test charge that can be further
simplified when R=0.*% The asymptotic behavior of
Eq. (2.5) evaluated at the position of the charge provides
a first correction to the classical induced potential,
—Z,/(2|z|). Further, when the particle travels at the
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surface, the induced potential remains finite.

If the charged particle moves in a perpendicular direc-
tion with respect to the surface (V, =0, v, =v) the incom-
ing (outgoing) trajectory corresponds to v <0 (v>0) and

J

5 e—Q(]z{+\utl)
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the particle finds itself in the vacuum for negative (posi-
tive) times. When €(w) is given by Eq. (2.4), the surface-
wake-induced potential reads

e ~2lsing, 1
0+ Q%

—Qlzlg; — —ut! —o(l lutl
e sinw,t e Qlz—uvt , e QU+ luh

|

() +o
wy+0% Pol+Qnr 7 ol +QW?
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w
+221ﬁ9(t—z/v)8(—2)sin »

The oscillatory terms in this formula come from the poles
in the w-complex plane of expressions involving the
response function €(w) in Eq. (2.1). They are accom-
panied by a factor ©O(t) that reflects the retarded charac-
ter of the response. Thus, not until the particle has
crossed the surface does the particle-surface interaction
make any oscillatory contribution. For an incoming tra-
jectory, the surface wake is symmetric with respect to the
surface plane when the particle is still in the vacuum side
because only the first term survives in (2.6) in that case.
Equation (2.6) has also been obtained by Suzuki, Kiti-
gawa, and Ohtsuki®' from the self-consistent relation for
the potential in terms of the random-phase approxima-
tion (RPA) susceptibility that they expanded up to the
second order in (Eg—E,)/(0+iy), with Eg and E,, be-
ing the one-electron energies. They assumed a steplike
profile for the electron gas density in the solid. The
asymptotic behavior of the induced potential at the posi-
tion of the particle is a well-established result.” !

The local response contemplated in this section consti-
tutes a crude approximation that gives realistic values
only for fast particles and points in the vacuum far from
the surface (z >>|v|/w,) or when dealing with phenome-
na involving high-energy transfers to the solid. i.e., when
large values of w account for the major contribution to
the process under consideration. However, this simple
theory reproduces most of the qualitative properties of
the surface wake that are obtained with a more sophisti-
cated model.

III. DIELECTRIC DESCRIPTION:
BASIC EQUATIONS

A representation of the exact surface response function
is not possible with present computational facilities.
Thus a model is needed to deal with practical problems
concerning surfaces. The well-known specular-reflection
model (SRM), introduced in the study of the surface
plasmon dispersion by Ritchie and Marusak?' and in-
dependently discussed by Wagner,? constitutes a step
beyond the local response of the previous section: Nonlo-
cal effects are accounted for through the dielectric func-
tion of the bulk material e(k,w). This model has been
brought to bear on the many problems involving the in-
teraction of charges with plane-bounded

0

(2.6)

lul

solids.> 42042744 1n it electrons in the solid are con-
sidered to be specularly reflected at the surface and in-
terference between the outgoing and the reflected com-
ponents is neglected.*> %46

The potential created by an external charge distribu-
tion p(r,¢) in the vicinity of a surface can be obtained in
terms of the SRM through considering the symmetrized
charge distribution p%(r,t), where the notation
A_(R,z)=A(R,—|z]) and A4,.(R,z)=A(R,]|z]) is
adopted, and then solving the Poisson equation for: (i) a
bulk medium described by €(k,w) in the presence of the
charge p¢ (r,t) plus a charge sheet 0~ (R,)8(z) located
at the surface, and (ii) vacuum containing both the charge
p%(r,t) and, as a consequence of the continuity of the
electric displacement normal to the surface, the men-
tioned charge sheet with opposite sign, —o ~(R,#)8(z).
The former provides the potential in the solid side (z <0),
while the latter applies to the vacuum side. The quantity
o is eliminated after imposing the continuity of the po-
tential at the surface. Using the form

— 1 ilkkr—o
firn=—g [dkdo fko)e e

for the Fourier transform and carrying out the calcula-
tions outlined above, one obtains the result

o(r,t)=¢ (1,1)0(z)+¢_(r,t)0(—2z) ,

(3.1)
and

$(Q,z,0)=47[U,(Q,z,0) Fp*(Q,0)e.(Q,z,0)] ,

(3.2)
where
_ 1 dkz e ik,z
U+(Q,z,w)—;f 2P ke
. 3.3)
U Qo= [ e e )2
— 1<y 277. k2 P* ’ G(k,a)) ’
_Q ks iz o
€.(0,z,0) ﬂ_f 2 e e ,
i (3.4)
_Q z_e ” _
e-(Q,z,0)== 2 aka) —&@70),

and the quantity
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U,(Q,0,0)—U_(Q,0,0)
1+€,(0,0) ’

P(Q )= (3.5
where €,(Q,w)=¢€,(Q,0,0) is the so-called surface dielec-
tric function,® is related to the charge sheet through
P(Q,0)=07(Q,0)/2Q.

Let us consider a swift moving charge in the vicinity of
a solid surface and let the particle charge and trajectory
be described as in the previous section. The external
charge density takes the form p%(r,#)=Z,8(r—vt). The
quantities U, are readily found to be

Z iolz| /v, T
U, (Qz,0)=— ¢ — e ’ (3.6a)
ol | & v,k 2Q
U_(Q,z,w)= Zi e""“‘/”z — e 2% +al(z)
T vl | Rk 0) v,k 20e(0) ’
(3.6b)

where €(0)=¢€(0,0), ®=w—Q-V|, and k2=Q*+a&2 /w2
Provided that e(k,®) has no branch points in the k-
complex plane, one obtains

_ ik, |z|
2B e °

a(z)=
v, Imk0>0 (Q2+k(2))[k(2)_(a-)/vz)2]

XRes

1
ek, ) ]kz=k0 '
|
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where the sum is extended over the zeros of €(k,w) in the
upper-half k,-complex plane. Also, from Egs. (3.4),

¢ —0lz]

€(0,2,0)= +B(z), (3.7)

e€lw)

where

ikylz|

€ 1
(z)=2i Res . (3.8)
B leg>0 (Q2+k(2)) lE(k,a)) }kz:ko

When the poles &, in the previous sums have finite imagi-
nary parts, a(z) and (z) go to zero like a decaying ex-
ponential in the |z|— o limit. However, k, may have an
infinitesimal imaginary part coming, for instance, from
the damping of the plasma modes that in the retarded
response formalism used here enters the dielectric func-
tion through the substitution w—w+iy, y —>0+. In
this case a(z) and B(z) behave like imaginary exponen-
tials whose arguments vary with Q and w. Nevertheless,
these quantities oscillate very rapidly as |z| becomes
large, giving rise to a vanishing contribution to the poten-
tial in that limit.
The induced potential,

¢, ) =¢(r,0)—Z, /|t—vt| ,

can be written from Eqgs. (3.1)—(3.8), after some tedious
but straightforward algebra, as

i Y4 © s : © )
or,0=—"5 [“dQ [Td@ e ¥R [* que ive 0t 4,

2
zﬁ (3.9)
ind _“1re El iQR [ *® —iw _ Y
Z<0(r,z)—272f0 dQ [ 740 [ dwe U [B(2)~ A€,(0,2,0)]+ 6" (r—v1,v) ,
where
. k2B(0)+(Q/lv,D[1/e(k,0)—1]
k[ 1+e (ko)) ’
ez (3.10)
1 i® 20Q o 1
B(z)= a(z)+ — (z) | = —sgn(v,)—= Res R
lv, | ¢ kzsz S 1m%>0 (k§v2—a?) elk,w) jk;ko
[
and where €,=¢€(0,0) is the static and local dielectric con-
Z, .dk 1 ) stant. This result coincides with the classical electrostat-
¢°°(r,v)=-2—f—2 (k—lr)_l elkr (.11 ic potential. In the limit z— — o the induced potential
2m k| el kv reduces to the bulk wake given by Eq. (3.11).

represents the bulk wake potential in the solid*3 ™% at the
position r with respect to the particle when it moves deep
inside the solid with velocity v. '

When z— o the contribution to ¢'™ to order 1/z is
obtained from Egs. (3.9):

l1—¢, Z,
It VIR=ViP+z+v,e 2

z—>0o, |r—vt| <<z,

¢ind( r,t ):

(3.12)

So far no choice has been done for the bulk dielectric
function, e(k,w). It should be mentioned that when one
takes a frequency-dependent response, a(z) and B3(z) trivi-
ally vanish and one is dealing with the undispersive case
of Sec. II. Two different approximations will be con-
sidered here that go beyond the local response function.

(i) The hydrodynamic approximation (HA)*’

2

@p
elk,w)=1+

[ _>0+
Bk’ —wlo+iy) r Vs

(3.13)
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which incorporates dispersion of the plasma modes
through B=V'3/5vp, the speed of propagation of density
disturbances in an electron gas characterized by a Fermi
velocity vgp. Inserting Eq. (3.13) in Egs. (3.7) and (3.8),
one obtains

olo+iye 22— (Qwl /A)e ~A!

a)(a)-i-i)/)-—a)f,

€(0,0)= s
and from Eq. (3.10),

\ icT)a)f,Qe_A'z‘

Bk AA(AN 4B

B(z)=sgn(v

where we have made use of the fact that the only zero of
J

—|zl(Q%+2A_)1/2
e
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(3.13) in Imk, > 0 is given by

A= —ik2=é\/co;+[3’2Q2—m(w+iy) ,

and the square root is understood to yield Re(A) > 0.
(ii) The plasmon pole approximation (PLA),*

w2

elk,w)=1+ £
e = e kA alatiy)

(y—07%),

(3.14)

that retains the main features of the full RPA dielectric
function. There are two poles of €(k,w) in the upper-half
k,-complex plane: i(Q2+2A%)!/2. Using Eq. (3.14), one
obtains'®

e~|zl(Q2+2A+)“2

. 2
_olotiy) g, 22
€(0,2,0) Q e AL—AL

A_(Q*2A_)"2 A (Q*+2A,)7

) (3.15)

where Q=w(o+iy)—Q3 A, =+[B*+Q]? and Qg=w§+w§. The square roots in Eq. (3.15) are taken to yield a

positive real part. In the same way one finds

B0) o) 2iQ@w? e—lzt(QZHA,)”2 e—lzl(Q2+2A+)V2
Z)=sgn(v — -
B A, —A) | (Q2A ) (0202124 )+5?2]  (Q242A ) [0XQ +2A, )+ 7]

The asymptotic behavior of the potential must be quite
similar in both the HA and the PLA cases because the
only difference between these approximations is that the
latter includes single-particle excitations (the term k*/4)
in the plasmon dispersion and this becomes important
only at small distances from the surface.

Under the HA approximation the expression for the
surface wake potential given by the SRM, Egs. (3.9),
coincides with the solution obtained by solving the linear-
ized Bloch hydrodynamic equations for a jellium bound-
ed by a rigid wall at the surface, and then imposing as
matching conditions the vanishing of the normal com-
ponent of the hydrodynamic velocity and the continuity
of the potential and its derivative.

IV. HAMILTONIAN FORMULATION

The so-called Hamiltonian models® ™3 reduce the

solid-charged particle interaction to a problem of
creation and destruction of excitations in the solid with
well-defined energies. They have been extensively em-
ployed in the past.»111216=18,35,54=39 H,wever, these do
not account for the continuum of electron-hole pair exci-
tations. Nevertheless, dispersion can be easily imple-
mented in the plasma modes.

We restrict ourselves to the interaction of an external
charged point particle with a medium via its bulk and
surface plasmons. Under this assumption the Hamiltoni-
an that describes the problem may be written as’! ~5

H=H,+H, ,

[

where

> wkb;fbk

M Qk,>0

2
H0=—L+ S aQaéaQ-i-
Q

is the Hamiltonian of the free particle and the free medi-
um, an and bl are the creation operators for surface and
bulk plasmons, respectively, and o, and  are the ener-
gies of those excitations. The interaction Hamiltonian
reads

H,= [dr¢(rp(r,1),

where the scalar potential operator in the Schrodinger
picture,®

#(r)= 3 B,b,sink,z e’ Q@RO(—2)

Q,kz>0

+ 3 dqage 27l @R+Hc.
Q

has been used, and

To?

SQUQ ’

V is the volume of the solid and S is the area of its sur-
face.

Let us assume that the particle has a very large mass,
so that recoil is neglected. We consider a particle that
moves along a straight line, so that the external charge
distribution is p(r,7)=2Z,8(r—vt). The notation of Sec.

2
87w, Ao 2=
sza)k ’ Q

|Bk|2=
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II is used here. Following standard techniques,® the
wave function in the interaction picture at the time ¢ is
readily found to be

- t, =0l iQV —agk
JQ—Z\AQf_wdte e 7R

Then the induced potential reads

1122 —ir¥p! .
|\I/I>: I_Ie k e k k] ¢md(r7t):(\l/1’¢ll\l}1> ,
k
here
~\JQ\2/2 IJQa w
X {I(;[e }|O) d)I:eiHthssefiHot .
where After very simple manipulations one finds
t , . , HQV —ao )t ,
L=2By [ di'sink,v,re 1 O(—0,1') (r,1)=¢""(r,1)+¢**(r,1)0(—2) , @.1)
and where
|
2 —QUzl+]|v,t])
sur L, W e 7 OR o(—t) O(1)
e S R T g o e
I z 0 I v, 99
e~ 2zl sin(oyt—Q'R)

o]
~Z,—v./6( [dQ

stands for the part of the potential which originates in
the interaction of the particle with the surface excita-
tions. The bulk excitations contribute as

¥ (r,t)=[¢>(r—vt,v)— = (T—vz,v)]O(—v,1)
+[E7(r,v,t)—§*(T,v,1)]O(t)sgn(v,) ,
4.3)

where T=(R, —z), ¢*(r,v) is given by Eq. (3.11) with the
following dielectric function:

2

@p
elk,0)=14+—5— , ¥—=0",
oy —w, —olo+iy)
similar to the PLA of Eq. (3.14), and
w dk 1 ik-r
’ )t =T 5 DY
£*(r,v,t) 2 | ek k) 1|e

X

ikv . ]
coswyt — sinw; ¢ | .

Wk
Expression (4.3) is made up of two parts, each with
different sign. They can be understood as coming from
two different stimuli: one located at the position of the
particle and the other at the specular image of this posi-
tion with respect to the surface. Not until the particle
has crossed the surface does the second bracketed term
make any contribution, while the first one vanishes when
the particle is outside the solid.

In computing these expressions we choose for the bulk

plasmons the following dispersion relation:

wf =w} +Bk +k*/4 .

—Qlzl+]z,])

__fdQ 00q P

cosQ-R
Q.VH_

¢surf l',

(4.2)

7o (QV,—0op) 24+ 0%?

For the surface plasmon dispersion relation we adopt the
one proposed in Ref. 16, in the spirit of the PLA (see Ref.
40 as well), to account for the electron-hole pair excita-
tions in the large momentum limit:

oh=0l+Bu,Q+nQ’+Q%/4,

where n=v2—(Bw,Q,+w?—Q2vr)/Q? and Q, is the
momentum for which the Landau cutoff intersects the
surface plasmon dispersion curve: 04,(Q.)=0Q.[Q,
+2v;]/2. The undispersive case of Sec. II is achieved
through taking o, =w, and 0y =w;

V. PARALLEL TRAJECTORY: v,=0

The perpendicular and parallel components of the
force acting on the particle (image force) under parallel
motion conditions have received great attention in the
past as they could be responsible for the deflection angle
in the trajectory and the energy loss suffered by the
charge.331:6238 The possibility of a skipping motion of
ions at the surface, where the image force plays the role
of the attractive force against the planar crystal potential,
has also been suggested.®> The knowledge of the surface
wake potential allows us to deal with those problems. It
has been calculated by Gumbs and Glasser** using the
SRM and the RPA dielectric function for the bulk.

The surface wake for parallel motion is obtained from
the equations of the previous sections by taking the limit
v,—0 while maintaining v,z =z, constant, where z; is
the z coordinate of the particle that creates the wake.
The results are written for Z, =1 hereafter.

Beginning with the Hamiltonian formulation, Eq. (4.2),
which gives the surface modes contribution, the potential
reads as follows:

+ﬂ'sinQ-ﬁ8(0'Q—Q-VH) , (5.1)
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where R=R — \Z12
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When the particle moves in the solid side (z, <0) the induced potential is found to be, in terms of the SRM,

ind _ 1 dQ iQR 26,(0,2p,0) -Qlz
)= | == —_— (S}
P 27 f Q ¢ 1+€,(Q,0) ¢ (z)
26,(0Q,zp,0) —0lz—
+ es(Q,z—zo,w)—{—es(Q,z+zo,w)—%6s(@zyw) O(—z)—e 2777 }
(5.2)
where ©=Q-V, while for a particle traveling in the vacuum (zy>0) one gets
— —Qz
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These results reproduce previous calculations for the in- —1 1 1
. .l . 43 . 1 —__ 1 :
duced potential at the position of the particle.*> Equation D(z)= 4 +i 3 FReS ko) 57
(5.1) is obtained from (5.2) and (5.3) for positive z when Imky>0 %0 z ke =ko <2
the surface response function is approximated by |
€(0,2,0)=€,(Q,w)e 2 and +0|—

[&(Q,0)=1]/[6/(Q,0)+1]=0} /[w(w+iy)—o)],
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The correction to the image potential ¢(z) (defined as
half the induced potential at the position of the charged
particle, that creates it) with respect to the classical re-
sult, which in the case of a metal is —1/(4z) [from Eq.
(3.12) for r=vt and €y—> ], can be derived from Eq.
(5.3). Using Egs. (3.7) and (3.8) one obtains
)

B+ V0 (T o

—1
Hlz)=—=+ —
4z 8V2V/ B — 020}

For B2=Q, the second term in the above expression is
finite and given by 3Bw] /(8V2Q3z%) (this happens for
r;=1.628 if w, is 0). In the range of metallic densities
and for @, =0 the correction introduced by the PLA to
the classical image potential is between 5 and 15 % larger
than the correction obtained from the HA approximation
and it increases with the parameter r,. The effect of
dispersion is stronger in the PLA, but at large distances
from the surface the small momentum behavior dom-
inates in the potential, and, consequently, the electron-
hole pair excitations, which the PLA incorporates
through the large momentum limit in the dispersion of
the bulk plasma modes, have a little effect.

The correction term in the above equations, B /z?, is
velocity independent as it comes from the small momen-
tum limit. It can be understood as a shift in the position
of the apparent image plane.” Thus the image potential
is, to that order of approximation, that generated by a
perfect metal whose apparent surface is located at
z=—4 B. Previous local density studies locate this new
surface displaced toward the vacuum.®*% In our case it
is located inside the solid because we have assumed impli-
citly the infinite barrier model for the surface through the

z

When the second term in the right-hand side of this ex-
pression is evaluated utilizing the HA approximation to
the dielectric function [Eq. (3.13)], it reduces to

;1+_L;__1-+0

l =
¢'(z) 4z 4o, 72

1
23

When the PLA dielectric function is used instead one ob-
tains

—2 40
22

L
23

I

SRM. In the absence of dispersion the real surface coin-
cides with the apparent surface. The sign of the disper-
sion correction to the surface plasma affects the position
of the apparent surface as well.

The potential at the position of the particle has been
plotted in Fig. 1 in relation to its dependence on the mod-
el (a), damping (b), and velocity (c). The SRM gives al-
most identical results when using both the PLA and HA
approximations to the bulk dielectric function, showing
that the induced potential at the position of the ion is not
affected by electron-hole pair excitations. One obtains
similar values for the potential when using the Hamil-
tonian formulation of Egs. (4.1), (4.3), and (5.1). The in-
duced potential reaches the bulk value (=7w,/2v) in the
solid side at a distance |z| > mv/2w, [see Fig. 1(a)]. The
potential at the surface (z=0) is reduced by the factor
V2 with respect to the bulk value, in good agreement
with the local response result. The dependence on the
damping is consistent with previous calculations for the
bulk wake potential:* the larger the damping the more
attenuated the potential. Moreover, this attenuation
seems to be stronger in the solid and it disappears for
z>mv /20, in the vacuum side, where the potential con-
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verges to the classical limit [see Fig. 1(b)]. The induced
potential seems to follow a universal curve independent
of the velocity, as it may be appreciated in Fig. 1(c), in
good agreement with the nonlocal description [see Eq.
(2.9)].

Ind. Potential (a.u.)
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~ — 7y =0.015 au.
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-0.4 -0.2 0.0 0.2 0.4

FIG. 1. Induced potential at the position of a proton moving
parallel with a solid-vacuum surface as a function of the dis-
tance to the surface. The solid is in the region z<0. (a)
Different models have been used for the surface response with
ry=2 and y=0.015 a.u.: local response (dashed-dotted line),
SRM with the PLA dielectric function (continuous line), SRM
with HA (dotted line), almost coinciding with the previous one,
and Hamiltonian formulation (dashed line). The classical in-
duced potential, —1/2z, and the bulk limit (quite close to
—7w,/2v in all the cases) are shown as dashed lines. The ve-
locity of the ion is v=5 a.u. (b) Effect of damping using the
SRM with the PLA dielectric function for r,=1.6 and damping
v =0.015, 0.15, and 0.55 a.u. (c) Effect of the velocity using the
SRM and the PLA for r,=3, ¥y =0.015 a.u., and v=4, 8, and 16

a.u.
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In Figs. 2(a)-2(d) the surface wake potential is shown
in the plane containing both the normal to the surface
and the particle trajectory for different positions of the
ion. It has been calculated from Egs. (5.2) and (5.3) with
the PLA approximation to the surface response given by
Eq. (3.15). When the particle is moving in the vacuum
side, the induced potential is almost symmetric with
respect to the apparent surface plane, as in the local
response approximation of Eq. (2.2). Under these cir-
cumstances a trough (a hill) is seen at a distance
~mv/20; (37v/2w,) behind the particle [Figs. 2(a) and
2(b)]. It has its origin in the characteristic oscillations of
the surface wake potential whose wavelength is
~2mv/w, for an external trajectory. When the particle
follows an inner trajectory, but stays close enough to the
surface (|z| <7v/2w,), the potential shows oscillations of
frequency w; and w, [see Fig. 2(c)] as predicted by the
simple model of Eq. (2.5). As the ion travels deeper in-
side the solid, the latter becomes dominant [Figs. 2(c) and
2(d)]. For an external trajectory the induced potential in
the vacuum in a plane parallel with the surface oscillates
with frequency o, as well and it increases when |z|+|z,|
decreases [see Eq. (5.3)] as can be seen in Fig. 2(e).

VI. PERPENDICULAR TRAJECTORY: V=0

A great deal of work has been concerned with the im-
age potential created by a charge moving in the direction
perpendicular to the surface.” 14161720 Here we picture
the induced potential as a space- and time-dependent
function. The problem has axial symmetry and conse-
quently the space dependence of the potential is realized
through R =|R/| and z. The © integration in (3.9) and
(4.2) can be performed directly, giving rise to a factor
Jo(RQ).

Using the Hamiltonian formulation, the potential out-
side the solid reads from Eq. (4.2),'¢

e —QUzl+lurh

surf( t)=— 2 wd J(R
$(r,0)=—a} [ dQ Jo(RQ) T

® —Qlz|
-2w31v|e(t>fo dQ JO(RQ)—Q—e;———
0

sinaQt

—_. (6.1)
O'ZQ +04?

The induced potential at the position of the particle
remains finite in this approximation when it is at the sur-

face. Ignoring the Q*term in 0 g, one obtains

R S— S
\/4(77+v2)—-,32
s B
X {——arctan———
2 Via(n+u?)—p

In the absence of dispersion this reduces to — 7w, /2v.

For large distances to the surface the small momentum
behavior dominates in the potential. Introducing disper-
sion in 029 through the term Bw,Q the image potential is
found to be from Eq. (6.1),



WAKE POTENTIAL IN THE VICINITY OF A SURFACE

2671
_ 1—(B/2v)*]sin(w,z /v)+(B/v)cos(w,z /v)
sl=—L+ B_l_l__ve(v) [ Isin(a; s s _12_+0_1;

4z 8w, z N [1+(B/2v)*] z z
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FIG. 2. Induced surface wake potential created by a proton, which is moving near an Al-vacuum interface (r,=2, y=0.2 a.u.)

with velocity v=4 a.u. from left to right. The proton has been represented by a black circle. The surface is described by the SRM

with the PLA dielectric function. The wake potential is shown in the plane perpendicular to the surface and containing the trajecto-
ry for four different separations of the proton with respect to the surface: (a) zo=10 a.u.; (b) zo=5 a.u.; (c) 2,

=—5au.;(d)z,=—10
a.u. It is also plotted in a plane parallel with the surface for zo=5 a.u. (e), z=0 a.u. (upper sheet) and z =S5 (lower sheet; the potential
has been shifted 0.1 a.u. downwards in this case). The solid is in the region z <0. The distance between contour lines is 0.04 a.u.
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FIG. 3. Induced potential at the position of a proton traveling in the perpendicular direction to a solid-vacuum surface from left to
right. (a) The velocities of the proton considered here are v=>5 a.u. (solid curve) and v=4 a.u. (narrow curve) in both the OUT (solid
at the left) and IN (solid at the right) cases. We have taken r; =2 and y =0.015 a.u. The SRM has been used with the PLA dielectric
function, Eq. (3.14), to describe the bulk solid. The bulk limit and the classical induced potential in the vacuum, — 1/2]z|, are also
included in the picture (broken lines). (b) Under the same conditions, with v=5 a.u., the results obtained from the local response ap-
proximation of Sec. II (dotted line), the Hamiltonian formulation (dashed line), and in the SRM with the PLA dielectric function
(solid line) are compared here. (c) Effect of damping for r,=1.6, v=5 a.u., and damping y =0.015, 0.15, and 0.55 a.u. using the SRM
and the PLA dielectric function. (d) Effect of the velocity for r,=3, y=0.15 a.u., and v=4, 8, and 16 a.u. using the SRM with the

PLA dielectric function.

and this expression has a similar qualitative behavior as
the previous one. In both cases the velocity-independent
correction coincides with the full correction to order
1/z%in the parallel case, and differs in a factor V2 from a
model to the other. The interpretation given for this
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(a) \7/ SR 64
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i ind
g 0

term in the parallel case is valid here as well. The
velocity-dependent term, present in the outgoing case, os-
cillates with frequency w,.

Figure 3(a) shows the induced potential at the position
of the particle for the incoming (IN) and outgoing (OUT)

z (a.u.) ‘\E)A(Surface
‘64\ Q\n N 32 64 Ion position
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FIG. 4. Wake formation (a) and destruction (b) processes when a proton crosses a solid-vacuum interface following a perpendicu-
lar trajectory. The induced potential is plotted for points along the trajectory. The different positions of the ion for different times
are represented by a chain of open circles in the z¢ plane. The parameters used in the calculation are shown in the figure.
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trajectories calculated in the SRM with the PLA dielec- - region |z| <mv/2w,. The oscillations that appear once
tric function to describe the bulk solid. Before the parti-

the particle has crossed the surface correspond to the fre-
cle has crossed the surface, the potential deviates itself

quency o, in the vacuum and to a superposition of fre-
very much from the classical induced potential in the

quencies o, and w, in the solid. The wavelength of those
vacuum and from the bulk value in the solid only in the

oscillations increases with v [see Fig. 3(a)]. In Fig. 3(b)
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FIG. 5. (a)-(f) Induced surface wake potential created by an outgoing proton that crosses an Al-vacuum surface (r,=2, y =0.015
a.u.) in a perpendicular direction to the surface. The solid is in the region z <0. The SRM and PLA have been used. The particle ve-
locity is v=6 a.u. The proton, plotted here as a black circle, reaches the surface at 1 =0. The wake is plotted on a grid in z— vt and
R for different times as shown in the figure. For finite times the surface is represented by a vertical solid line. The contour line incre-
ment is 0.05 a.u. (g) The same as (a)-(f) for £ =1.25 and for a different region in the plane (R,z), which allows us to see the Mach-
cone structure in the surface wake.
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the SRM results are compared with the ones obtained
from Egs. (4.1), (4.3), and (6.1) in the Hamiltonian formu-
lation: Before the particle has crossed the surface both
models give quite similar results except near the surface
(|z] <mv/10w,). In fact, the Hamiltonian formulation
gives the same value for the induced potential at the sur-
face (z=0) in the IN and OUT trajectories and that is
not the case in the SRM: The magnitude of the induced
potential at the surface is smaller in the IN trajectory.
After the particle has crossed the surface the results differ
significantly in the region |z| <7v/2w,. In Figs. 3(c) and
3(d) we show the influence of damping and velocity on
the induced potential. The conclusions that can be
drawn are the same as in the parallel case: The smaller
the damping or the velocity the closer to the surface are
the bulk limit and the classical induced potential in the
vacuum reached. For an OUT particle moving in the
vacuum side the surface-plasma-induced oscillations seem
to be attenuated with the damping [see Fig. 3(c)
in the upper right corner]. The difference

ind(z=0)— 23 (z=0) goes to O like 1/v* in the large-
velocity limit'%!? [see Fig. 3(d)].

The evolution of the surface wake potential is shown in
Fig. 4 for points along the trajectory in the IN and OUT
cases and in Fig. 5 for points not exclusively in the trajec-
tory but only in the OUT case. The SRM, using the
PLA, has been adopted. The bulk wake is seen to remain
almost unchanged until the particle has crossed the sur-
face in the OUT case and even when the ion is in the vac-
uum the potential in the solid resembles very much the
bulk wake. This picture is not valid for points near the
surface (|z| <7v/2w,). It indicates that

¢"(r,t)=¢*(r—vt,v)O(—2z)

may constitute a good approximation to the surface wake
potential. The first minimum of the potential, as it ap-
pears in the bulk wake, is formed after a time ~7/0,
once the charge has crossed the surface in the IN case
[see Fig. 4(a)].

F.J. GARCIA de ABAJO AND P. M. ECHENIQUE 46

VII. SUMMARY

The surface wake potential created by a swift charged
point particle moving close to a planar solid-vacuum in-
terface has been analyzed from two different points of
view: the well-known Hamiltonian formulation based on
the plasma modes, and the specular-reflection model us-
ing different nonlocal approximations to the bulk dielec-
tric function. The latter has been used to picture the sur-
face wake in the cases of parallel and perpendicular
motion.

Under parallel motion conditions, when the ion follows
an external trajectory, the surface wake presents a max-
imum and a minimum resembling the bulk wake, but
their distance from the particle is V'2 times larger. The
surface wake is practically the bulk wake when the ion is
traveling at a distance larger than 7v/2w, from the sur-
face inside the solid.

When the charge moves perpendicular to the surface
and toward the vacuum, the potential in the solid side
turns out to be the bulk wake potential until the particle
has almost reached the surface. When the ion penetrates
the solid the wake formation takes a time ~#/w,. The
oscillations in the potential of frequency w, after the par-
ticle has crossed the surface are well reproduced in both
models.

The influence of damping in the plasma modes on the
induced potential has also been studied and the results
are the same as in the bulk wake potential:%® attenuation
of the potential for increasing damping. This effect is
stronger in the solid side.
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